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HIDDEN SIGN IN THE LANGLANDS CORRESPONDENCE

JOSEPH BERNSTEIN

Abstract. In this note I describe some modification of the Langlands correspondence
and explain why the modified correspondence is more natural than the original one. I will
also discuss the significance of this modification to the theory of automorphic L-functions.

1. Introduction

1.1. The Langlands correspondence. In 1967, motivated by his results on Eisenstein
series, Langlands introduced the notion of the dual group. Namely, starting with a reductive
group G over some field F , he constructed the dual group G∨ over C. He suggested that
many problems about representations of groups over local fields, and about automorphic
representations of adelic groups, should have natural interpretations in terms of the Galois
group of F , and of the dual group G∨.

Langlands formulated several conjectures that described the correspondence between
representations of G and Galois objects constructed in terms of the dual group G∨ (the
Langlands correspondence). This discovery transformed the area of representation theory
and automorphic forms since it gave some arithmetic flavor to the problems of representa-
tion theory of these groups. During the last 50 years, this paradigm (under the name “the
Langlands program”) is one of the main lines of research in the Representation Theory and
the Theory of Automorphic Representations.

In this note I will discuss only the p-adic case of the Local Langlands correspondence
(LLC), though the conclusions are clearly applicable to representations of real groups, to
automorphic representations, and to the Geometric Langlands Program.

In what follows, we fix a p-adic field F of characteristic 0. We denote by WF the Weil

group of the field F – the subgroup of the absolute Galois group Gal(F ) := Gal(F̄ /F ) that
in some sense better captures the arithmetic structure of F . By definition, WF consists
of elements of the group Gal(F ) that act on the residue field by integer powers of the
Frobenius automorphism.

We fix a connected reductive group G over F , and consider the topological group
G = G(F ) of its F -points. Our main object of study is the category M(G) of smooth

representations of the group G (we start with representations in vector spaces over complex
numbers, but later switch to slightly more general case).

One of the most important problems here is to give a good description of the set Irr G
of irreducible representations of G, i.e., the set of isomorphism classes of simple objects in
M(G).
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In this note I will discuss only the case of a split group G. Langlands constructed the
complex reductive group G∨ dual to G and proposed to classify irreducible representations
of G in terms of G∨.

Namely, he considered the set of Langlands parameters LAN(G) that consists of con-
tinuous morphisms φ : WF → G∨ modulo the adjoint action of the group G∨. The main
claim of the Local Langlands Correspondence (LLC) is that there should be some natural
correspondence between the sets Irr G and LAN(G).

Later on, the correspondence of this type has been constructed in many cases. It has
been also realized that, in order to have such a natural correspondence, one has to modify
both sides of it.

On the representation side, Irr G should be replaced by the set of isomorphism classes
of stacky G-modules (see [5]). In more explicit terms, this means that instead of the set
Irr G we should consider the disjoint union of the sets Irr Gi for all pure inner forms of the
group G.

On the Galois side, the quotient LAN(G) = Mor(WF ,G∨)/G∨ should be considered not
as a set, but as an algebraic stack LAN (G) (let us call it the Langlands stack). The set
of Langlands parameters should be extracted from this stack by a standard procedure.

In this note I will concentrate on the Galois side of the LLC. I will argue that, in fact,
there is some hidden sign in the Langlands Correspondence. This implies that in order
to have a more natural correspondence, one has to modify the Langlands stack LAN (G)
described above.

1.2. Let me describe some general semantic difficulty in analyzing this type of correspon-
dences. Suppose we have two constructions that produce two sets S and T , and we expect
that there is a “natural” correspondence between these two sets. For example, we would
like to construct a map ν : S → T which is a bijection, or is very close to a bijection.

Suppose that after some work I produced a nice map ν : S → T . However, suppose
that my colleague, using different technique, has produced another map µ : S → T . What
should I think about this?

The first idea is that, in fact, these two maps should coincide. However, this is not always
the case. For example, suppose that the set S has many natural automorphisms (e.g., in
the case of the group G = PGL(n, F ), the set Irr G has a large group of automorphisms
given by multiplication by characters of the group G). Then, it can happen that the
correspondences ν and µ described above differ by a twist by one of these automorphisms.

Now the question is “which of the correspondences ν and µ is more correct?” This is not
a mathematical, but rather a meta-mathematical question.

There is a general method (widely used by Grothendieck) how to approach the questions
of this type. Namely, suppose that we characterized the desired correspondence by some
properties. This means that we introduce some list A of properties (axioms) that our
correspondence between S and T should satisfy. If this system A is good enough, then
usually it is not difficult to show that the correspondence that satisfies the system of axioms
A is uniquely defined – if it exists.
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In this way, we can fix the desired correspondence in advance, even without knowing
that it exists. Then, the difficult part of the theory is to prove that such correspondence
does exist, but at least we know precisely what we would like to construct.

This is a very powerful method Grothendieck used to produce many important con-
structions. However, it does not completely answer the question formulated above. The
reason is that we can formulate two different sets of axioms A and B, and check that they
both have uniqueness property and produce our correspondences ν and µ. So the question
“which list of axioms is more correct?” is a meta-mathematical question to be discussed in
some different (e.g., aesthetic) terms.

1.3. Basic Requirement. Langlands introduced his correspondence having in mind some
analytic applications; he was motivated by and mostly interested in applications to auto-
morphic representations and L-functions. However, if we consider just the p-adic LLC,
we can see that it has a very algebraic structure. Thus, it is natural to formulate the
properties of the desired correspondence in algebraic terms.

Namely, Langlands was working with representations in complex vector spaces. However,
in both sides of LLC we can replace the field of complex numbers by some other field. Thus,
from now on, let us fix another field C (the field of coefficients). For simplicity, we assume
that this field C is algebraically closed of characteristic 0 – in other words it mimics the
field of complex numbers, but is a more algebraic object, since it is not endowed with any
topology.

Now, on representation side, we consider the category M(G) of smooth representations
of the group G in vector spaces over the field C and denote by Irr G the set of isomorphism
classes of simple objects of the category M(G).

On the Galois side, we consider the dual group G∨ as a reductive group over C, consider
the ind-variety Mor(WF ,G∨) of continuous (i.e., locally constant) morphisms φ : WF → G∨

and define the stack LAN (G) to be the quotient stack Mor(WF ,G∨)/G∨.

Notice that now both parts of the Langlands correspondence have structure of an alge-
braic object over C. One of the main properties, that we should expect from LLC is that
it is functorial in C. In particular, our collection of axioms for LLC should include the
following basic requirement.

Suppose we have two functorial constructions S and T that from a field C
produce objects S(C) and T (C) in some category. We would like to construct
a family ν of morphisms νC : S(C) → T (C). Then, we require that
this construction commutes with all automorphisms of the field C.

1.4. The significance of the basic requirement is that it is not satisfied by the standard
Langlands correspondence. The reason is that the Langlands construction is based on
the Satake isomorphism, and this isomorphism does not satisfy the basic requirement 1.3.
In other words, the Satake isomorphism is not completely canonical, it depends on some
choices. We will discuss this in Subsection 2.4.

The main goal of this note is to show that the basic requirement forces us to modify
the stack LAN (G) of Langlands parameters. Moreover, analyzing this modified stack
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LAN (G)′ we will see that there is some sign hidden in the Langlands correspondence –
the sign missed in the original Langlands picture.

In fact, the traces of this hidden sign imbalance appeared in many works analyzing
concrete cases of the Langlands correspondence – local, global and geometric (for example,
see [1], [2], [3]). The reason is that this sign is a real phenomenon and ignoring it makes
many constructions unnatural. I will discuss this later.

This work was done in the framework of the ERC grant 291612. It was partially done
during my visits at MPIM-Bonn and IAS, Princeton. I would like to thank these Institutes
for very stimulating atmosphere.

I presented the results of this work in the framework of the 24-th Takagi lectures in
December 2019. I would like to thank the Mathematical Society of Japan for inviting me
to give this lecture.

I would like to thank P. Sarnak, P. Schneider, A. Reznikov, E. Sayag, Y. Sakellaridis,
and S. Carmeli for many fruitful discussions.

2. the Langlands description of LLC

Let me describe some arguments that lead Langlands to LLC. He already had a con-
struction of the dual group and understood that it should play an important role in the
representation theory.

2.1. Construction of the dual group over the field C. Fix a field k. Consider a split
torus T ⊂ G defined over k. Let us denote by X∗(T) the lattice of characters λ : T → Gm

and by X∗(T ) the lattice of cocharacters ν : Gm → T, where Gm is the multiplicative
group and all morphisms are morphisms of algebraic groups.

These two groups — X∗(T) and X∗(T ) — are dual lattices. The value of the pairing
< λ, ν > is defined as an the integer that describes the composition λ◦ν : Gm → T → Gm.

The group T can be reconstructed from any of these two lattices. Namely,

T = X∗(T)⊗Z Gm and also T = Hom(X∗(T), Gm).

Given another field C, we define the dual torus T ∨ as a split algebraic torus over C such
that X∗(T ∨) = X∗(T), i.e., T ∨ = Hom(X∗(T̃ ), Gm(C)).

Now, letG be a connected split reductive group over k. Let us fix a split Cartan subgroup
T ⊂ G. Let us denote by Σ ⊂ X∗(T) the root system of G and by Σ∨ ⊂ X∗(T) the dual
coroot system of G. It is the standard fact that the quadruple (X∗(T), X∗(T),Σ,Σ∨)
determines an isomorphism class of the group G.

Now, consider the dual quadruple (X∗(T), X∗(T),Σ∨,Σ) and construct the reductive
group G∨ over some other field C that corresponds to this dual quadruple. By definition
this is the Langlands dual group of G.

2.2. LLC for unramified representations. The starting point of the Langlands con-
struction is an observation that to every unramified irreducible representation π of the
group G we can assign a conjugacy class L(π) in the dual group G∨ (this is an analog of
the Artin map in the local class field theory).
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Namely, let us fix a hyper-special subgroup K ⊂ G and denote by H(G) = HK(G) the
corresponding spherical Hecke algebra with coefficients in the field C. Every unramified
representation π has unique, up to scalar factor, K-invariant vector v, and the vector v
defines a character θ = θπ of the algebra H(G).

According to a Satake theorem, we can identify the algebra H(G) with the algebra
O(T ∨)W of regular functions on the dual torus T ∨ invariant under the action of the Weyl
group W of G∨ (it is also the Weyl group of G). Thus, the character θ corresponding to π
defines a W -orbit on T ∨(C), and hence a semisimple conjugacy class of the group G∨(C).

Using a canonical morphism p : WF → F× from the local class field theory, Langlands
interprets the above-described conjugacy class as an unramified morphism

L(π) = φ : WF → G∨

defined up to the adjoint action of G∨.

2.3. Extension to other representations – global argument. Next, Langlands uses
an informal, but very powerful, global argument to suggest that this correspondence should
have a natural extension L : Irr G → Lan(G) to all irreducible representations — we will
call this the Langlands correspondence.

The argument flows approximately as follows. We can consider our field F as a local
counterpart of some global field k, i.e., F = ku for some place u of k. Given an irreducible
representation π of G, we can hope that it can be extended to a global automorphic
representation Π of the adelic group G(Ak). This representation is a restricted tensor
product — over all places of k — of local representations (πv, G(kv)).

Since almost all of these representations are unramified, we can apply to them the
previous construction. This defines a collection of morphisms

φv : Wv → G∨ , where Wv = Wkv .

Now we can think about this collection as coming from one morphism φ : W → G∨, where
W is some version of the global Galois group (we assume that the group W contains all
the Weil groups Wkv as subgroups).

Notice that the morphism φ is uniquely determined by the collection of morphisms φv

for almost all v, and, in its turn, it determines a morphism φu : WF = Wku → G∨ that we
wanted to construct (this is some kind of “analytic continuation” in the parameter v).

I repeat: this is quite informal, but very convincing argument.

2.4. What goes wrong? The correspondence described above does not satisfy the basic
requirement 1.3. The reason is that the Satake isomorphism does not satisfy this require-
ment. Let us analyze what goes wrong.

The most transparent description of the Satake isomorphism is given by the following
procedure. Let us fix a Borel subgroup B ⊂ G, denote by U its nil-radical and consider
the natural projection p : B → T = B/U . This group T is called the Cartan group of
G. Note that it is defined by the group G canonically, i.e., up to unique isomorphism.

Unramified characters χ : T → C× naturally correspond to points of the dual torus
T ∨(C). Given such a character, we extend it to the group B, and construct the normalized
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induced representation πχ = indG
B(χ). This representation defines a character

θχ : H(G) → C×.

Thus, an element h ∈ H(G) defines a function on points χ ∈ T ∨ of the dual torus, and the
Satake theorem is the statement that this correspondence gives an isomorphism of H(G)
with the algebra O(T ∨)W .

The problem is that the normalized induction is not compatible with the basic require-
ment 1.3. Indeed, the usual induction is clearly compatible with the basic requirement 1.3,
but the normalized induction differs from it by a twist by a character δ which is a square
root of the modulus character. The choice of this square root is not canonical. It is easy
to make it canonical if we fix a square root

√
p ∈ C of the prime number p equal to the

residual characteristic of F . However, this “canonical” choice is not invariant with respect
to automorphisms of the field C.

Thus, we see that the parabolic induction and the Satake isomorphism are not

compatible with the basic requirement 1.3.
Note that we can not simply replace normalized induction by the usual induction since

having done so we will not get W -invariant functions on T ∨.

3. Modification of the Langlands correspondence

In this section I will describe a modification L′ of the Langlands correspondence which
is compatible with the basic requirement 1.3. Following the idea by Langlands, I will first
define the correspondence L′ on a large collection of irreducible representations π. This
large collection consists of representations of “the principal series types” — it contains
all unramified representations. Then, I conjecture that it should naturally extend to all
irreducible representations.

3.1. The Jacqet functor. Fix a point of the flag variety X and denote by B its stabilizer
in G. We denote by U the unipotent radical of B and by T the quotient toric group
T = B/U .

We will use the non-normalized Jacquet functor

J : M(G) → M(T ) given by (π, V ) 7→ (J(π), J(V )),

where J(V ) := VU is the quotient space of coinvariants, equipped with the natural action
of the group T .

We say that an irreducible representation (π, V ) is of the principal series type if
J(π) 6= 0.

Let (π, V ) be an irreducible representation of this type. Then, the space J(V ) is finite-
dimensional. Let us denote by µ = µ(π) the finite collection of all characters µi of the
abelian group T that appear in the decomposition of this space.

Since T is split, i.e., isomorphic to a product of copies of the group F×, we can interpret
any morphism χ : T → C× as a morphism χ : F× → T ∨(C). The Local Class Field Theory
implies that we can interpret χ as a morphism χ : WF → T ∨(C).
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Thus, starting form the representation (π, V ), we have constructed a family of morphisms
µi : WF → T ∨(C). Unfortunately, these morphisms are not conjugated by the action of
the Weyl group W on T ∨, so we can not construct from them one morphism WF → G∨

defined up to conjugation.

3.2. The dot action and normalization. In order to construct a morphism WF → G∨,
we will use the fact that the characters µi are related by a symmetry called the dot action.
Let us describe it.

First of all, given any (algebraic) weight ν : T → Gm, we can construct a character
|ν| : T → C× by composing with the standard modulus morphism | − | : F× → C×. Now,
define the dot action of the Weyl group W on the group Char(T ) of characters of T by the
condition that for every simple root α, the dot action of the corresponding simple reflection
σα is given by

σα · (χ) := σα(χ)/|α|.
The following claim is the standard consequence of the theory of intertwining operators.

Claim. All the characters µi of the group T lie on the same orbit of the dot action of the

Weyl group W .

This claim is just a reformulation of the fact that representations obtained by normalized
induction from two characters have a common sub-quotient if and only if these characters
lie on the same W -orbit.

3.3. Weights of type ρ. Let r ∈ X∗(T) be a weight. We say that r is a weight of type

ρ if for any simple root α we have σα(r) = r/α (here we write the operation in X∗(T)
multiplicatively).

For example, if the group G is semi-simple and simply connected, then the weight ρ
equal to the half sum of positive roots has this property.

It is easy to see that weights of type ρ are obtained from one another via multiplication
by algebraic characters of the group G.

Suppose we fixed a weight r of type ρ. Given an irreducible representation π ∈ Irr G of
the principle series type, we can construct a collection of characters µ = µ(π) of the group
T as in Subsection 3.1. Then, we construct a new collection λ = λ(π) of characters λi by
setting λi := |r| · µi.

The claim 3.2 means that all the characters λi are conjugated under the action of W .
This means that the corresponding morphisms λi : WF → T ∨(C) are conjugated under
the action of W . Hence, up to a conjugation by the group G∨(C), they define a morphism
λ :WF → G∨(C) — that was our goal.

3.4. Construction of the correspondence L′ for representations of principal series

type. In general, our group G does not have a weight of type ρ. But we can remedy this.
Suppose we constructed a central extension of the algebraic group G

1 → Gm → R → G → 1
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Then, by Hilbert’s Theorem 90 we have a central extension of the topological group G

1 → F× → R → G→ 1.

Thus, we can describe any representation π of G as a representation of the group R
trivial on F×.

Now I claim that any group G has a canonical central extension of this type and this
extension has a canonical weight r of type ρ. We will denote this extended group by G̃,
the group of its F -points by G̃, and its dual group over C by GD.

Given an irreducible representation π ∈ Irr G, we will lift it to a representation of the
group G̃; then, using the canonical weight r, we construct a morphism λ : WF → GD

defined up to a conjugation by the group G∨. This is the idea of our construction of the
modified Langlands parameter ψ = ψ(π) : WF → GD.

3.5. The geometric construction of the extended group G̃. Let us first give a geo-
metric description of the group G̃. We denote by X the flag variety of the group G (we
consider X as a k-scheme; its k-points are Borel subgroups of G). The group G acts on
the set X = X(k) transitively.

3.5.1. Square roots. Let ∆ be the anti-canonical line bundle on X; the group G naturally
acts on ∆.

Lemma. 1) The bundle ∆ has a square root, i.e., there exists a line bundle L on the

k-scheme X such that its square L⊗2 := L⊗ L is isomorphic to ∆.

2) Any two square roots L and L′ are isomorphic as line bundles.

3) For any line bundle L, we have End(L) = k. In particular, the group of automor-

phisms of L is isomorphic to k×.

Remark. Two square roots L and L′ are not always isomorphic as square roots, (i.e.,
there is no isomorphism between these vector bundles compatible with isomorphisms of
their squares with ∆). In fact, it is easy to see that the group k× transitively acts on the
set of isomorphism classes of square roots; the kernel of this action coincides with (k×)2,
i.e., the set of isomorphism classes of square roots has the size of the set k×/(k×)2.

In this lemma we consider all vector bundles and their morphisms over the field k. When
k is algebraically closed, these results are standard. The general case is an easy exercise in
Galois cohomology.

3.5.2. Let us fix a square root L of the bundle ∆, and use it to construct the extended
group G̃. Let me describe the set of its points over the algebraic closure of k.

Notice that for any element g ∈ G, the line bundle g∗(L) is isomorphic to L since its
square is isomorphic to g∗(∆) ≃ ∆.

Now define the group G̃ as a set of pairs (g, α), where g ∈ G and α is an isomorphism

α : L → g∗(L). Then, G̃ is a group under the natural composition law. Clearly, G̃ has
a central subgroup Gm and we have an exact sequence of algebraic groups

1 → Gm
i′−→ G̃

p′−→ G → 1.
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In particular, we see that the group G̃ is connected.
The square root L defines a weight r of the Borel group – this is the canonical weigh r

that we wanted to construct
It is clear that the group G̃, all morphisms, and the weight r are defined over the field k.

From Lemma 3.5.1 it is obvious that the groups G̃ constructed from two different square
roots are canonically isomorphic, so this construction does not depend on the choice of
the square root.

3.5.3. Combinatorial description of the extended group G̃. Let (X∗(T), X∗(T),Σ,Σ∨) be

the quadruple that defines the group G. Consider the lattice X∗(G̃) := X∗(G)⊕ Zr and
extend the action of the Weyl groupW to this lattice by the condition that for every simple
root α, we have

σα(r) = r/α.

This defines all the required combinatorial data for the group G̃.

3.5.4. Features of the extended group G̃.

• We have a canonical central extension

1 → Gm
i−→ G̃

p−→ G → 1

and the corresponding central extension on the level of F -points

1 → F× → G̃→ G→ 1.

• We have a canonical weight r ∈ X∗(G̃). The composition r ◦ i : Gm → Gm is identity.

• We also have a canonical morphism j : G̃ → Gm of algebraic groups over F such that
the composition j ◦ i : Gm → Gm is given by squaring map z 7→ z2.

Let us describe this morphism j over an algebraically closed field.
We fix an isomorphism of L⊗2 with ∆. Then, every element g ∈ G̃ induces an isomor-

phism ∆ → g∗(∆). This isomorphism differs from the geometric action of the element
p(g) on the bundle ∆ by some constant factor j(g) ∈ k×, and this defines the morphism j.

It is clear that the morphism j does not depend on the choice of the above isomorphism
and is defined over the base field k.

Let us denote by H the kernel of the morphism j. This is a central two-fold cover of the
group G – it might be connected or disconnected.

Remark. The group H is what we really are interested in. However, since this group
might be disconnected, it is not clear how to define its dual group. So our construction in
some sense is a way to define this dual group using the resolution

1 → H → G̃ → Gm → 1.

3.5.5. Langlands dual data. Now we can consider the dual objects of all these morphisms.
Denote by GD the dual group of the group G̃, and consider the exact sequence of algebraic

groups over C, which is dual to the sequence in Subsection 3.5.4, namely the sequence

1 → G∨ i−→ GD p−→ Gm → 1.
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We denote by r the coweight of the group GD corresponding to the weight r above. We
also consider the central morphism j : Gm → GD dual to the morphism j : G̃ → Gm from
Subsection 3.5.4. We see that the composition p ◦ r : Gm → Gm is the identity morphism,
and the composition p ◦ j : Gm → Gm is given by squaring.

Definition. We call the collection (GD, i, p, j, r) the Langlands dual data for the group
G.

Remark. For G = PGL(2), the group G̃ is isomorphic to GL(2).
The Langlands data is

G∨ = SL(2, C), GD = GL(2, C), p = det,

and the morphism j : C× → GD = GL(2, C) is the usual central morphism.
In standard coordinates, the coweight r ∈ X∗(GD) is given by (1, 0).

It is very useful to play with all the constructions I described for this particular case
since it contains many of the subtleties of the general case.

3.6. Modified Langlands parameters. We define the modulus character ω : WF → C×

as a composition of the canonical projection p : WF → F× from the local class field theory
and the modulus character F× → C× given by a 7→ |a|. In other words, ω is an unramified
character of the Weil group WF such that ω(Frob) = q, where Frob is the Frobenius
element and q is the cardinality of the residue field of F .

Tracing our constructions it is easy to check that to every irreducible representation
π ∈ M(G) of principal series type we have assigned a morphism ψ : WF → GD, defined up
to a conjugation by G∨, that satisfies the following condition:

(ω) The composition of ψ with the projection p : GD → C×

coincides with the modulus morphism ω.

Let us consider the variety Morω(WF ,GD) of all continuous morphisms ψ : WF → GD

satisfying condition (ω); define the modified Langlands set LAN(G)′ as the quotient
set Morω(WF ,GD)/G∨, and the modified Langlands stack LAN (G)′ as the quotient
stack Morω(WF ,GD)/G∨.

3.6.1. Then, we can formulate the modified local Langlands correspondence as follows:

(LLC′) There should be a canonical correspondence between the set Irr G
and the set of modified Langlands parameters ψ :WF → GD given
by points of the modified Langlands stack.

The advantage of this formulation is that it is compatible with the basic requirement 1.3.
I believe that the correspondence L′ is a more “correct” version of the original Langlands
correspondence L. In what follows I will try to describe some consequences of this new
point of view.
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3.6.2. Example. Consider the group G = PGL(2, F ). In this case, the extended group is
G̃ = GL(2) and GD = GL(2, C).

Thus, the modified Langlands parameters ψ are morphisms ψ : WF → GL(2, C) that
satisfy the condition

(ω) det(ψ(u)) ≡ ω(u) for any u ∈ WF ,

defined up to a conjugation by the group G∨ = SL(2, C).
Notice that the set LAN(G)′ of modified Langlands parameters is very close to the

set LAN(G) of Langlands parameters, that is the set of morphisms φ : WF → GL(2, C)
satisfying the condition det(φ(u)) ≡ 1.

If we choose a character δ : WF → C× such that δ2 = ω, then we can identify these two
sets of parameters by ψ = δ · φ.

The difference is that the modified Langlands correspondence satisfies the basic require-
ment 1.3, while the original Langlands correspondence does not have this property, since
the choice of the character δ is not preserved by automorphisms of the field C.

4. The Langlands dual group as an enhanced group

4.1. Description of the Langlands-data group GD. Let us study in more detail the
structure of the Langlands data described in Subsection 3.5.5. We have a morphism of
algebraic groups p : GD → Gm; its kernel is the Langlands dual group G∨. We also have
a morphism j : Gm → GD such that the composed morphism p ◦ j : Gm → Gm is given by
squaring.

From this we immediately deduce the following

Proposition. The group GD is generated by the subgroups G∨ and j(Gm). The natural

morphism Gm × G∨ → GD is a central two-fold covering, i.e., the group GD is a quo-

tient of the group Gm × G∨ by a subgroup of order 2 generated by a central element

(−1, ǫ) ∈ Gm × G∨.

4.1.1. The special element ǫ ∈ G∨. The implication is that the dual group has an additional
structure – it has a distinguished central element ǫ of order 1 or 2. In other words, it is
equipped with a canonical morphism ǫ of the cyclic group µ2 to the center of G∨, where
µ2 ⊂ C× is the group of square roots of 1.

Definition. An enhanced group (D, ǫ) is a groupD enhanced with a morphism ǫ : µ2 → Z(D),
where Z(D) is the center of D.

Thus, we see that the dual group has a canonical structure of an enhanced group.
This enhanced structure plays a crucial role in my exposition. It can be described in

many different ways. Here is one of the descriptions.
Consider the weight t ∈ X∗(G) equal to the sum of all positive roots of G. We can

interpret t as an element of X∗(T ∨), i.e., as a morphism t : Gm → T ∨. Let ǫ be the
restriction of this morphism to the subgroup µ2 ⊂ Gm.

It is easy to check that the morphism ǫ is invariant under the action of the Weil group
of G∨, and hence its image lies in the center of G∨.



12 JOSEPH BERNSTEIN

This morphism ǫ : µ2 → G∨ has been described in [1].

4.2. A Remark on Geometric Satake Theorem. When I discussed this additional
structure with other mathematicians, they objected that in the Geometric Satake Theorem
one constructs the dual group G∨ without additional structures. It took me some time to
understand that in the Geometric Satake Theorem, the group G∨ also is an enhanced group.
Unfortunately, in most of papers that I read about this, it is very difficult to discern this
structure from the statements of results; the structure only becomes apparent when you
dive into the proofs.

4.2.1. The standard way to formulate the Geometric Satake Theorem runs as follows.
Starting from the groupG, we construct the affine Grassmannian GR(G) and some category
P of perverse sheaves on this Grassmannian.

In [4], Lusztig has defined a convolution operation ∗ on the category P; this operation
endows P with the structure of a monoidal category. Later, Drinfeld used the global version
of the affine Grassmannian to reinterpret the operation ∗ as a fusion product. This implies
that, in fact, the category P has a canonical tensor stricture; i.e., a monoidal structure
and a symmetry constraint.

V. Ginzburg in [6], I. Mirkovich and K. Vilonen in [7], used Tanakian formalism to relate
this category to the dual group G∨.

The idea is as follows. Consider a fiber functor F : P → Vect defined by

P 7→ F (P ) := H∗(GR(G), P ).

Tanakian formalism implies that the tensor category P is equivalent to the category Rep(R)
of representations of some group R. One computes this group and sees that it is isomorphic
to G∨.

4.2.2. The actual construction. The above arguments are misleading. The actual situation
is slightly more sophisticated. Namely, the functor F is not a fiber functor with respect
to the natural Drinfeld tensor structure. Indeed, it preserves the monoidal structure, but
is not compatible with the symmetry constraints. In retrospect, this should be obvious,
since cohomologies are not spaces, but super spaces.

The functor F is, in fact, a fiber functor if we consider it as a functor F : P → SVect
into the category of super vector spaces.

Deciphering the proofs, one can see that the result proven in [7] can be formulated as
follows.

Proposition. 1) Consider the enhanced group (G∨, ǫ). Consider the category of represen-

tations (σ,G∨, V ) of this group in the category SVect of finite-dimensional super vector

spaces that satisfy the following condition

The operator σ(ǫ) defines the parity on the super space V .

These representations form a symmetric tensor category M and the forgetful functor

F ′ : M → SVect is a fiber functor.
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2) The category M with the fiber functor F ′ is canonically equivalent to the category P
with the fiber functor F .

Thus, we see that in the Geometric Satake Theorem, the dual group has the natural
structure of an enhanced group. In fact, if one looks more carefully, one discerns in this
theory also the full Langlands data – the group GD and morphisms i, p, j, r.

4.3. Another description of modified Langlands parameters. We have seen that
the Langlands-data group GD can be described as the quotient GD = Gm × G∨/(−1, ǫ).
Hence, we have a canonical covering morphism of algebraic groups Gm × G∨ → GD. We
can use it to give another description of the modified Langlands parameters.

Namely, the squaring map defines a two-fold central cover on the group C×. Using the
modulus morphism ω : WF → C× we get an induced covering W̃F → WF . We denote by
ǫW the central element in W̃F that generates the kernel of this covering.

Now it is clear that a modified Langlands parameter ψ : WF → GD determines, and is
completely determined by, the morphism ψ : W̃F → G∨ that is genuine, i.e., it maps ǫW to
the distinguished central element ǫ of the Langlands dual group G∨.

Thus, we can define the set LAN(G)′ of modified Langlands parameters to be the set
Morg(W̃F ,G∨) up to the adjoint action of the group G∨, where Morg stands for the set of
genuine morphisms. Similarly, we can describe the modified Langlands stack LAN (G)′.

Remark. In fact, the covering W̃F → WF splits, i.e., W̃F is isomorphic to µ2 ×WF . If
we fix this splitting, we can identify genuine morphisms W̃F → G∨ with all morphisms
WF → G∨, i.e., identify modified Langlands parameters with the usual ones.

However, there is no canonical splitting, so this identification is not compatible with
the basic requirement 1.3. In fact, the choice of the positive square root of p(= resid-
ual characteristic of F ) defines a splitting of this covering that gives the usual Langland
correspondence.

Remark. From the Local Class Field Theory we know that there exists a unique non-trivial
two-fold central extension p : W2 → WF . It can be described as an extension induced from
the double covering F̄× → F̄× by the canonical morphism p : WF → F× → F̄×.

I believe that this extension W2 should play an important role in the Langlands corre-
spondence, but so far I was not able to bring it to the picture.

5. The absolute Satake isomorphism

Using the Langlands dual data described above we can give a more “correct” description
of the Satake isomorphism, namely a description compatible with the basic requirement 1.3.

Let G be a split reductive group over a p-adic field F , let C be a field of coefficients
described above; let H(G) = HK(G) be the spherical Hecke algebra of G with coefficients
in C, see Subsection 2.2.

Consider the dual Langlands data p : GD → Gm.
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Let q be the cardinality of the residue field of F . We consider q as an element of Gm,
and consider the subvariety Xq = p−1(q) ⊂ GD. The dual group G∨ acts on this variety on
the left, on the right, and by the adjoint action. Let me consider the adjoint action.

The discussion above implies the following

Theorem. (The absolute Satake isomorphism) There exists a canonical isomorphism

of the Hecke algebra H(G) with the algebra O(Xq)
G∨

of regular functions on the variety Xq

invariant under the adjoint action of the group G∨.

Note that the variety Xq together with the actions of the group G∨ is isomorphic to the
group G∨ which can be thought of as the variety X1 = p−1(1). However, this isomorphism
is not canonical. In particular, if we consider a field C that is not algebraically closed, then
the absolute Satake isomorphism holds while the usual Satake isomorphism does not work.

5.1. The absolute Satake isomorphism for the universal Hecke algebra. Denote
by Λ+ the set of dominant coweights of G. The Cartan decomposition for the group G
states that G is a disjoint union of double cosets G =

∐
Bλ under the left and right actions

of the compact group K.
Let us denote by eλ ∈ H(G) the normalized bi-K-invariant measure on the open subset

Bλ. These elements form a basis of the linear space H(G) and multiplication in this basis
is given by a collection of coefficients aνλµ via eλ · eµ =

∑
aνλµeν .

It is a standard fact that these coefficients are polynomials in q. This means that
there exists a family of polynomials P ν

λµ ∈ Z[x], defined purely in terms of the quadruple
(X∗(G),X∗(G),Σ,Σ

∨), such that aνλµ ≡ P ν
λµ(q).

Hence, we can consider the universal Hecke algebra H over the algebra A = C(q, q−1)
of Laurent polynomials with the basis eλ and multiplication defined by the collection of
polynomial P ν

λµ.
The absolute Satake isomorphism can be reformulated as follows.

Theorem. There exists a canonical isomorphism of the universal Hecke algebra H with

the algebra of regular functions on the group GD invariant under the adjoint action of the

group G∨. The structure of the A-algebra is given by the natural morphism

p∗ : A = O(Gm) → O(GD).

In fact, this isomorphism can be defined over Q. Probably, after taking care of some
normalizations, it would be defined over Z as well.

6. Functoriality and almost algebraic groups

6.1. The Langlands Functoriality. Consider two reductive groups H and G; suppose
that we are given a morphism of algebraic groups ν : H∨ → G∨. Then, any Langlands
parameter φ : WF → H∨ defines a Langlands parameter φ◦ν : WF → G∨. Since Langlands
parameters are related to representations, Langlands formulated the following functoriality
principle.
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Principle. Given a morphism of algebraic groups ν : H∨ → G∨, there should exist a cor-

respondence ν∗ from the set Irr(H) to the set Irr G. The same is true for automorphic

representations.

This principle is a very powerful tool since in many cases one can try to establish such
correspondence directly without trying to understand the mystery of the dual groups.

Now consider this matter from the perspective of the modified Langlands correspondence.
Both H∨ and G∨ are enhanced groups. If ν is a morphism of enhanced groups, then the
functoriality is easy to accept. But suppose that ν is not compatible with enhancements.
Then, it is not clear what to do.

Example. Let G = PGL(2, F ), H = T its split torus. We have the standard embedding

ν : H∨ = C× → G∨ = SL(2, C).
This embedding is not compatible with the enhancement of the group G∨, so it is not clear
that we should have a nice correspondence ν∗ from Irr(H) to Irr G.

Of course, we have a normalized induction functor ind : Irr H → Irr G, but we have
seen that this functor is not natural since it does not satisfy the basic requirement 1.3.

6.2. I suggest to generalize the class of groups we would like to consider, so that we can
formulate this principle in more general situations.

Definition. An almost algebraic reductive group (G, ǫ) is a reductive group G

equipped with a central enhancement morphism ǫ : µ2 → G∨, where µ2 ⊂ Gm is the
group of square roots of 1.

Given an almost algebraic group (G, ǫ), we construct a topological group G′ as follows.
Consider the group S = Gm ×G and the natural embedding ǫ′ = i× ǫ : µ2 → S∨. This

defines an isogeny (two-fold covering) p : S∨ → R∨ of connected reductive groups over C,
where R∨ := S∨/µ2. Passing to the dual groups we get a two-fold cover p : R → S of
algebraic groups over F with fiber µ2.

Let us consider the algebraic groupH = p−1(G). We have a central extension p : H → G

with fiber µ2. Note that the group H might be disconnected.
Starting with the central extension of algebraic groups p : H → G, we construct the

central extension of topological groups p : G′ → G. Namely, we denote by G′ the preimage
in H(F̄ ) of the subgroup G = G(F ) ⊂ G(F̄ ).

The morphism p : G′ → G is a topological covering of topological groups, its kernel A
is canonically isomorphic to the group µ2, i.e., it has a canonical character ξ : A → C×.

Definition. Given an almost algebraic group (G, ǫ), we denote by M(G, ǫ) the category
of smooth representations of the topological group G′ such that the action of the subgroup
A is given by the character ξ (genuine representations of the group G′).

Notice that this category M(G, ǫ) is very similar to the category M(G). Usually, one
can easily pass from one of them to the other.

If ǫ is the standard enhancement of G described in Section 4, then G′ = µ2 × G, and
hence the category M(G, ǫ) is canonically equivalent to the category M(G).
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Now we can formulate the generalized version of the functoriality principle.

Principle. Consider reductive groups H and G, and a morphism of algebraic groups
ν : H∨ → G∨. Let ǫ : µ2 → H∨ be an enhancement of the group H . Assume that the
composition eν defines an enhancement e of the group G, i.e., that the image of ν ◦ ǫ is
central. Then, there should be a correspondence between simple objects in M(H, ǫ) and
in M(G, ǫ).

7. Automorphic L-functions

One of the most important applications of the Langlands philosophy was his construction
of a family of L-functions attached to automorphic representations and representations of
the dual group.

I will not repeat Langlands construction, but just describe the modified construction
that arises if we apply the Langlands approach to the modified Langlands correspondence.
In order not to confuse things, I will denote these new functions by R, not by L.

7.1. Construction of partial R-functions. Fix a connected reductive group G over
a global field k (like before, I assume that G is split). Let us consider the adelic group
G = G(Ak), and its discrete subgroup Γ = G(k); denote by X the automorphic quotient
space X = Γ\G.

Let F(X) be the space of complex-valued functions on X of moderate growth (here we
work with complex vector spaces, so we take C = C). Fix some irreducible automorphic
representation Π of the group G realized in the space F(X). (The most interesting is the
case of cuspidal representations.)

It is known that the representation Π is the restricted tensor product of local represen-
tations (πv, Gv) over all places v of the field k. Here, Gv = G(kv) is a locally compact
group and πv is its irreducible representation. Thus, starting with the automorphic repre-
sentation Π, we constructed a collection of representations πv ∈ Irr(Gv). Almost all these
representations are unramified.

Now, fix a complex-analytic representation τ : GD → GL(E), see Subsection 3.5.5.
I would like to assign a complex number R(Π, τ) to this data. Formally, this number is

the product of local factors R(πv, τ).
Consider the p-adic field F = kv. Using the modified Langlands correspondence we

can assign to the representation πv a morphism ψv : WF → GD. Combining it with the
representation τ : GD → GL(E) we get a finite-dimensional representation Rv = τ ◦ ψv of
the Weil group WF in the space E. We would like to define the local factor R(πv, τ) in
terms of this representation.

Suppose v is an unramified place. Then, the representation Rv is unramified. Therefore
it is completely determined by the image of the Frobenius class Xv = Rv(Frob) ∈ GL(E).
Let us postulate that in this case the local factor R(πv, τ) is defined as follows

R(πv, τ) := det(1−Xv)
−1 = det(1− τ ◦ ψv(Frob))

−1.
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I assume that one can define correct factors for ramified places also, but so far let us
consider the partial constant RS, where S is a finite subset of places of the field k, a subset
that contains all ramified and Archimedean places. Namely, we define this constant as the
product of local factors RS(Π, τ) :=

∏
v/∈S R(πv, τ).

This formal product is usually not convergent, but we can regularize it in a stan-
dard way. Namely, we include each representation Rv into a family of representations
Rv(s) = ω−s · Rv, where ω is the modulus character of the groupWF , see Subsection 3.5.5.

From these representations we construct the local factors R(πv, τ ; s) and define the par-
tial R-function

RS(Π, τ ; s) :=
∏

v/∈S

R(πv, τ ; s)

.
This product absolutely converges for Re(s) ≫ 0 and defines a function holomorphic

in s. Following Langlands, I conjecture that this function has meromorphic continuation,
and then define R(Π, τ) as R(Π, τ ; s) evaluated at s = 0.

7.1.1. Of course, this definition essentially mimics Langlands’s definition of automorphic
L-functions. In other words, these R-functions are, probably, just the same L-functions
with a slightly different normalization of parameters. However, sometimes such normaliza-
tions do matter.

Example. For a given L-function L(s), it is important to study its special values. In
other words, one would like to describe special points s for which the values L(s) have an
arithmetic significance, and try to interpret these values.

In the normalization I described, it is quite clear where to look for these spacial points.
Namely, if the automorphic representation Π is of algebraic type and the representation τ
of the Langlands-data group GD is algebraic then the point s = 0 should be special. In
fact, in this case all integer points s are special, since we have the identity where p is the
1-dimensional representation of GD corresponding to the morphism p : GD → Gm in the
Langlands data, see Subsection 3.5.5.

7.1.2. Functional equation. I do not know how to describe the meromorphic continuation
of these R-functions and how to write the ramified and Archimedean factors. However, if
all this is done, then I would be able to guess the shape of the functional equation.

Namely, given a cuspidal automorphic representation Π of G and a representation τ of
the group GD, consider the contragradient automorphic representation Π̃ and the repre-
sentation τ∨ := p⊗τ ∗ of the group GD. Then, the functional equation should give a simple
relation between functions R(Π, τ ; s) and R(Π̃, τ∨;−s).
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