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STRONG DENSITY OF SPHERICAL CHARACTERS
ATTACHED TO UNIPOTENT SUBGROUPS

AVRAHAM AIZENBUD, JOSEPH BERNSTEIN, AND EITAN SAYAG

Abstract. We prove the following result in relative representation the-
ory of a reductive p-adic group G:

Let U be the unipotent radical of a minimal parabolic subgroup of G,
and let ψ be an arbitrary smooth character of U . Let S ⊂ Irr(G) be
a Zariski dense collection of irreducible representations of G. Then the
span of the Bessel distributions Bπ attached to representations π from
S is dense in the space S∗(G)U×U,ψ×ψ of all (U × U,ψ × ψ)-equivariant
distributions on G.

We base our proof on the following results.
(1) The category of smooth representations M(G) is Cohen-Macaulay.
(2) The module indGU (ψ) is a projective module.
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1. Introduction

Let G be a reductive (connected) algebraic group defined over a non-
Archimedean local field F . Let G = G(F ) be the corresponding ℓ-group.

In this paper we prove few results about the representation theory of G and
about its relation with unipotent subgroups of G. Our main result concerns
density of spherical characters with respect to unipotent subgroups. In order
to formulate it we recall the construction of spherical character attached to
an irreducible smooth representation. We denote by H(G) the Hecke algebra
of G consisting of smooth compactly supported measures on G. We also let
C−∞(G) the space of generalized functions on G. These are linear functionals
on H(G).

Definition 1.0.1. Let (π, V ) be a smooth (complex) representation of G. Let
π∗ be the dual representation of π and let π̃ := (π∗)∞ be the contragredient
(i.e. smooth dual) representation of π. For l1 ∈ π∗ and l2 ∈ π̃∗, we define
the spherical character as the generalized function χπl1,l2 ∈ C−∞(G) by

〈χπl1,l2, f〉 := 〈f · l1, l2〉,

for any smooth compactly supported measure f ∈ H(G).

Note that if H1, H2 ⊂ G are two (closed) subgroups, χi : Hi → C are
(continuous) characters and l1 ∈ (π∗)H1,χ1, l2 ∈ (π̃∗)H2,χ2, then the spherical
character χπl1,l2 lies in the space of (H1×H2, χ1×χ2)-equivariant generalized

functions. We shall denote this space by C−∞(G)H1×H2,ψ×ψ.
We also recall the infinitesimal character map. Let M(G) be the category

of smooth (complex) representations of G. We will denote by Irr(G) the
set of isomorphism classes of irreducible smooth representations of G. Let
z(G) be the Bernstein center of M(G). Given an irreducible representation
(π, V ) ∈ Irr(G) the action of each z ∈ z(G) on V is, by Schur’s lemma,
given by a multiplication with a complex scalar χ(V,π)(z) ∈ C. Notice that
χ(V,π) : z(G) → C is an algebra homomorphism. Denote by

(1) Θ(G) :=MorC(z(G),C)

the set of algebra homomorphisms of the center.
We obtain the infinitesimal character map:

(2) inf : Irr(G) → Θ(G)

defined by inf(V ) := χ(V,π).
2



In words, inf(V ) is the character by which z(G), the Bernstein’s center of
G, acts on the irreducible representation V .

Remark 1.0.2. Let A be a unital algebra over C. It is natural to consider
the set of maximal ideal in A or the set of prime ideals in A as its spectrum.
Our choice to consider SpecC(A) := MorC(A,C) is guided by the fact that
when B = Πα∈IAα we obtain SpecC(B) =

⊔
α∈I SpecC(Aα). Such equality

does not hold for the prime (or maximal) spectrum. For more details one
can consult [LLS91].

To formulate our density result, we introduce the ad-hoc notion of rich
collections of irreducible representations.

Definition 1.0.3. We say that a set Π ⊂ Irr(G) (of smooth irreducible
representations of G) is rich if inf(Π) ⊂ Θ(G) is Zariski dense.

Our density theorem for spherical characters is the following:

Theorem A (Density; see §5 below). Let U < G be a closed subgroup which
is exhausted by its open compact subgroups (i.e. any compact subset of U is
contained in a compact subgroup of U). Let ψ be a character of U . Assume
that (G,U) is of finite type (see Definition 2.3.1 below). Let Π ⊂ Irr(G) be
rich.

Then the space of spherical characters

span({χπl1,l2|π ∈ Π, l1 ∈ (π∗)U,ψ, l2 ∈ (π̃∗)U,ψ})

is dense in the space C−∞(G)U×U,ψ×ψ

The following theorem provides examples of pairs satisfying the conditions
of the theorem above.

Theorem 1.0.4. Let U be a maximal unipotent subgroup of G and let U =
U(F ). Then (G,U) is of finite type. Namely, for any character ψ : U → C×

and any irreducible π ∈ Irr(G) we have:

dim(π∗)U,ψ <∞

This theorem can be easily deduced from the results of [BH03], see Ap-
pendix B for more details.

The proof of Theorem A is based on the following two results.

Theorem B (See §3 below). The category M(G) of smooth representations
of G is Cohen-Macaulay, i.e. for any finitely generated projective module P ∈
M(G) the algebra End(P ) is a Cohen-Macaulay module of full dimension
(see Definition 3.0.1 below) over its center.

Theorem C (See §4 below). Let G, G, U, ψ and F be as in Theorem A.
Then the module indGU(ψ) is a projective object in the category M(G) of

smooth representations of G.

Using the Bernstein decomposition of the category M(G), the proof of
Theorem C is easy. It is merely the observation that finitely presented flat
modules are projective.

3



1.1. Related Works.

1.1.1. Density of spherical characters. Density of characters of irreducible
representations inside the space of Ad-invariant distribution, is a classical
result in representation theory (See [DKV84, Kaz86]). In [AGS15] a general
result about density of spherical characters of admissible representations was
proven. Theorem A give a very strong kind of density for the unipotent case.
We do not expect this kind of density to hold in general.

1.1.2. Cohen-Macaulay property of M(G). A proof of Theorem B was re-
cently published as Proposition 3.1 of [BBK18]. For completeness we include
the proof here.

1.1.3. Projectivity of indGU (ψ). For non-degenerate ψ, the small Whittaker
module W = indGU (ψ) is studied in [BH03]. In particular it is shown to be
finitely generated over any component of Θ(G), ([BH03, Theorem 4.2,(2)]).

In recent works, the small Whittaker module W was studied further and,
in the quasi-split case, its projectivity was shown in [CS19, Corollary A.6].
Note that the proof in [CS19] can be easily generalized to cover Theorem C.

Our argument here is slightly more general, it is based on Bernstein’s
decomposition of M(G) (showing in particular that M(G) is locally Noe-
therian) and a general result from homological algebra connecting flatness
to projectivity for finitely presented modules.

1.2. Acknowledgments. We would like to thank Guy Henniart for encour-
aging us to write Appendix B, for his help in Appendix A, for explaining
us the proof of Lemma A.0.2 and for many useful suggestions regarding the
exposition of the paper. We also thank Elad Sayag for a useful conversation
concerning Theorem C.

2. The Bernstein decomposition of the category M(G) and

the Bernstein center

In this section we summarize the parts of the theory of the Bernstein
center and Bernstein decomposition that are used in this paper.

Recall that G is a reductive (connected) algebraic group defined over a
non-Archimedean local field F and G = G(F ).

Throughout the body of the paper we fix a minimal parabolic subgroup
B ⊂ G and its Levi subgroup T. All the parabolic subgroups and Levi
subgroups that we consider are assumed to contain T (even if we do not say
that explicitly). Note that any parabolic subgroup that contains T has a
unique Levi subgroup M that contains T.

By parabolic and Levi subgroups of G we mean the groups of F -points of
parabolic and Levi subgroups of G. We now list few notations to formulate
some results from the theory of Bernstein center.

Notation 2.0.1. Let P be a parabolic subgroup of G and M be its Levi
subgroup. Let ρ be a cuspidal representation of M = M(F ). Denote

4



• iGM : M(M) → M(G) the (normalized) parabolic induction from M
with respect to P.

• i
G

M(ρ) : M(M) → M(G) the (normalized) parabolic induction from
M with respect to the opposite parabolic subgroup P̄.

• rGM : M(G) → M(M) the (normalized) Jacquet functor.
• rGM : M(G) → M(M) the (normalized) Jacquet functor with respect
to the opposite parabolic subgroup P̄.

• We denote by G0 the subgroup of G generared by compact subgroups.
• For a Levi subgroup M ⊂ G we denote by XM the complex torus
of unramified characters on M. Note that the ring O(XM) of regular
functions on XM is isomorphic to the group algebra C[M/M0].

• By a cuspidal data we mean a pair (M, ρ) consisting of a Levi sub-
group M ⊂ G and its irreducible cuspidal representation ρ.

The following theorems summarizes the results proved in [Ber84, Ber87,
BR, Bus01]. See [AS20, Theorem 2.5] and [AAG12, §§2.1] for detailed refer-
ences for each item.

2.1. Bernstein Decomposition.

Theorem 2.1.1.

(1) The functor rGM is right adjoint to i
G

M , that is

HomG(i
G

M(V ),W ) ∼= HomM(V, rGM(W )).

(2) For a cuspidal data (M, ρ) let ΨG(M, ρ) = i
G
M(ρ ⊗ O(XM)) be the

normalized parabolic induction of ρ⊗O(XM ), where the action of M
is diagonal. Then ΨG(M, ρ) ∈ M(G) is a projective generator of a
direct summand of the category M(G).

(3) We call the category generated by ΨG(M, ρ) a Bernstein block of
M(G). The collection of those blocks is denoted by Ω. For ω ∈ Ω
and V ∈ M(G) we denote by Vω ∈ ω to be the corresponding direct
summand. We have

M(G) =
∏

ω∈Ω

ω.

(4) For a cuspidal data (ρ,M), the Bernstein center z(G) acts through a
character χ(M,ρ) on iGM(ρ). This gives a bijection between the set of
conjugacy classes of cuspidal data and the variety Θ(G) (see (1)).

The following gives a description of the algebra EndG(ΨG(M, ρ))) and its
center.

Theorem 2.1.2.

(1) Let ρ be an irreducible cuspidal representation of G, and set Iρ :=
{ψ ∈ XG|ψρ ≃ ρ} and embed O(XG) in R(G,ρ) := End(ΨG(G, ρ)).
Then there exists a decomposition

R(G,ρ) =
⊕

ψ∈Iρ

O(XG)νψ,

5



such that νψf = fψνψ and νψνψ′ = cψ,ψ′νψψ′ where fψ is the transla-
tion of f ∈ O(XG) by ψ and cψ,ψ′ are scalars.
In particular Z(R(G,ρ)) ∼= O(XG)

Iρ ∼= O(XG/Iρ)
(2) For a cuspidal data (ρ,M), the natural embeding

EndM(ΨM(M, ρ))) → EndG(ΨG(M, ρ))

gives an isomorphism

Z(EndM(ΨM(M, ρ)))WM,ρ,G ∼= Z(EndG(ΨG(M, ρ)))

where WM,ρ,G = {g ∈ G|gMg−1 = M ; ρ|M0 ◦ Ad(g) ∼= ρ|M0}. cf.
[BR, pp 73-74].

2.2. Splitting subgroups.

Theorem 2.2.1.

(1) There exists a local base B of the topology at the unit e ∈ G, such that
every K ∈ B is a compact (open) subgroup satisfying the following:
(a) The category M(G,K) of representations generated by their K-

fixed vectors is a direct summand of the category M(G).
(b) The functor V → V K is an equivalence of categories from M(G,K)

to the category of modules over the Hecke algebra H(G,K).
(c) The algebra H(G,K) is Noetherian.
(d) For any (standard) Levi subgroup M ⊂ G and for any V ∈

M(G) the map

V K → rGM(V )K∩M

is onto.
We will call an open compact subgroup K satisfying these properties,
a splitting subgroup.

(2) For any splitting subgroup K ⊂ G we have

M(G,K) =
⊕

ω∈ΩK

ω

for some finite subset ΩK ⊂ Ω.
(3) We have ⋃

K∈B

ΩK = Ω

2.3. Relation to harmonic analysis. We recall the following definition of
pairs of finite types and some of their properties.

Definition 2.3.1 (cf. [AS20, §3]). Let H ⊂ G be a closed subgroup. We
say that (G,H) is of finite type if for any character χ : H → C

× and any
π ∈ Irr(G) we have

dim((π∗)H,χ) <∞

Theorem 2.3.2 ([AGS15, Theorem B.0.2]). If (G,H) is of finite type then
for any character χ : H → C

× and any compact open K < G the module
indGH(χ)

K is finitely generated H(G,K)-module.
6



Corollary 2.3.3. If G,H, χ are as above, then for any ω ∈ Ω(G) the repre-
sentation indGH(χ)ω is finitely generated.

Proof. This follows immediately from the previous theorem (Theorem 2.3.2)
and from Theorem 2.2.1 (2, 3). �

Theorem 1.0.4 provides examples of pairs of finite type.

3. Cohen-Macaulay property of the category of smooth

representations of reductive p-adic groups

In this section we prove Theorem B. We first fix conventions regarding
the concept of Cohen-Macaulay modules. We use the notion of Cohen-
Macaulay modules over local rings, and their dimension. Since the dimension
of a module over non-local ring might vary from point to point, there are
several useful version of the notion of Cohen-Macaulay module in this more
general situation. In the following we consider some of these versions.

Definition 3.0.1. Let A be a commutative unital C-algebra and let V be an
A-module.

• We say that V is locally Cohen-Macaulay if for any p ∈ Spec(A), the
module Vp is Cohen-Macaulay over Ap.

• We say that V is equi-dimensional Cohen-Macaulay module if there
is an integer d ≥ 0 such that for any p ∈ Spec(A), the module Vp is
Cohen-Macaulay module of dimension d over Ap.

• We say that V is Cohen-Macaulay of full dimension if for any p ∈
Spec(A), the module Vp is Cohen-Macaulay module of dimension
dimp(Spec(A)).

• We say that V is component-wise Cohen-Macaulay if for any con-
nected componentX ⊂ Spec(A) the restrictionM |X is equi-dimensional
Cohen-Macaulay module over OX(X).

We note that the following implications holds:

• equi-dimensional Cohen-Macaulay module is component-wise Cohen-
Macaulay module.

• Component wise Cohen-Macaulay module is locally Cohen-Macaulay
module.

• Full dimension Cohen-Macaulay module is component-wise Cohen-
Macaulay.

Let us recall the formulation of Theorem B:

Theorem 3.0.2 (See also [BBK18, Proposition 3.1]). The category M(G)
of smooth representations of G is Cohen-Macaulay, that is, for any finitely
generated projective module P ∈ M(G) the algebra End(P ) is a Cohen-
Macaulay module of full dimension over its center.

Proof. Using Theorem 2.1.1(2,3), without loss of generality, we may assume
that P = ΨG(M, ρ) ∼= iGM(indMM0(ρ|M0)), where M < G is a Levi subgroup

7



and ρ ∈ Irr(M) is a cuspidal representation. We have

End(P ) = HomG(i
G
M(indMM0(ρ|M0)), iGM(indMM0(ρ|M0))) =

= HomM(indMM0(ρ|M0), r̄GM(iGM (indMM0(ρ|M0))))

Let R = indMM0(ρ|M0) and Q := r̄GM(iGM(indMM0(ρ|M0))). Note that R is
finitely generated and hence, by [BR, Proposition 33], Q is also finitely gen-
erated module. By Theorem 2.1.2(2) and [BBG97, Theorem 2.1], it is enough
to show that HomM(R,Q) is finitely generated Cohen-Macaulay module over
the center of EndM(R). For this it is enough to show that HomM(R,Q) is
finitely generated Cohen-Macaulay over C[M/M0]. By Theorem 2.1.1(1, 2)
Q is projective. Hence, by Theorem 2.1.1(2) we can decompose Q = Q′⊕Q′′

where Q′ is a direct summand of Rn (for some n) and HomM(R,Q′′) = 0.
Thus, by [BBG97, Theorem 2.1], it is enough to show that EndM(R) is
finitely generated Cohen-Macaulay module of full dimension over C[M/M0].
This follows from Theorem 2.1.2(1). �

4. Projectivity of indGU(ψ) – proof of Theorem C

In this section we prove Theorem C. For this we first prove flatness of the
module indGU(ψ).

4.1. Flatness of indGU(ψ).

Proposition 4.1.1. Let L be an ℓ-group and let U < L be a closed subgroup
that is exhausted by its open compact subgroups. Let ψ be a character of U .
Then W := indLU(ψ) is a flat H(L)-module.

Proof. Consider W as a right representation via the inversion on L. Consider
also the functor

F : M(H(L)) → V ect

given by
F (M) = indLU(ψ)⊗H(L) M.

We have to show that F is exact.
Let

W : M(L) → V ect

be the functor given by
W (π) = πU,ψ−1 .

Since U is exhausted by its open compact subgroups, the Jacquet’s lemma
(see e.g. [BZ76, Lemma 2.35]) implies that W is an exact functor.

Let M ∈ M(H(L)), using

indLU(ψ)
∼= ψ ⊗H(U) H(L),

we obtain

F (M) ∼= (ψ ⊗H(U) H(L))⊗H(L) M ∼= MU,ψ =W (M).

Hence
F ∼= W.

8



The theorem follows. �

This theorem together with Theorem 2.2.1(1b) gives us the following:

Corollary 4.1.2. Let U < G be a closed subgroup that is exhausted by its
open compact subgroups. Let ψ be a character of U and W := indLU (ψ). Let
K < G be a splitting subgroup. Then the right H(G,K)-module WK is flat.

4.2. Proof of projectivity of indGU (ψ) (Theorem C).

Proof of Theorem C. By assumption, the pair (G,U) is of finite type. Let
W = indGU(ψ). By Theorem 2.3.2 the module WK is finitely generated over
H(G,K). The algebra H(G,K) is Noetherian (by Theorem 2.2.1(1c)) so the
module WK is finitely presented. Combining with Theorem 4.1.2, we see
that WK is a finitely presented flat module. It is well known that a finitely
presented flat module is projective (e.g. [Rot09, Theorem 3.56]). It follows
that WK is a projective H(G,K)-module. Thus it is a projective object in
M(H(G,K)).

For a splitting subgroup K ⊂ G we let

IK : M(H(G,K)) → M(G,K)

be the equivalence of categories as in Theorem 2.2.1. For a pair of splitting
subgroups K < L < G and V ∈ M(G) we can decompose V K = IL(V

L)K ⊕
VK,L. By Theorem 2.2.1(1a) we can choose a descending sequence Kn of
splitting subgroups that forms a basis for the topology at 1. We get

W =
⊕

n

IKn
(WKn,Kn−1).

Note that WKn,Kn−1 is a direct summand of WKn and hence projective. We
obtain that IKn

(WKn,Kn−1) is a projective object in M(G). Finally, being a
direct sum of projective objects, W is also a projective object of M(G).

�

5. Density of spherical characters – proof of Theorem A

5.1. Sketch of the proof. We consider V := S(G)U×U,ψ×ψ as a module
over z(G) and thus as a sheaf over Θ(G). We have to show the vanishing of
any section v ∈ V that satisfy the identities

〈ξ, v〉 = 0

for any spherical character ξ of any π ∈ Π.
We do it by three steps:

(1) We show that for any such section v, there exist a Zariski dense subset
C ⊂ Θ(G) such that for any χ ∈ C we have v|χ = 0.

(2) We show that V is (locally) finitely generated Cohen-Macaulay mod-
ule of full dimension (over each component).

9



(3) We show that, given an element v of a Cohen-Macaulay module of
full dimension M over a domain A, if there exist a Zariski dense
subset C ⊂ Spec(A) such that for any x ∈ C, then we have v|x = 0
then v = 0.

The proof of Step (1) is in §§5.2. For this we identify an open dense subset
of Θ(G) such that the category M have a very simple structure over points
in this set (see Definition 5.2.1 and Proposition 5.2.3).

Step (2) is based on Theorems B and C. It is proven in Lemma 5.4.1.
The proof of Step (3) is in §§5.3.

5.2. Good characters. In this subsection we identify an open dense subset
UG of the set Θ(G) of characters of z(G) such that the category M have very
simple structure over these characters.

Definition 5.2.1. We say that a cuspidal data (ρ,M) is good if the following
holds

• iGM(ρ) is irreducible.
• (WM,ρ,G)ρ =M . Here (WM,ρ,G)ρ is the stabilizer of ρ under the action
of the group WM,ρ,G defined in Theorem 2.1.2(2).

If (M, ρ) is good, we say that χ(M,ρ) ∈ Θ(G) is good, where χ(M,ρ) is defined
in Theorem 2.1.1 (4).

We denote by UG ⊂ Θ(G) the set of good characters.

Notation 5.2.2. Let C be an C-abelian category and z be its center. Given
a character χ : z → C we define a full subcategory:

C|χ := {c ∈ Ob(C)|∀λ ∈ z we have λ|c = χ(λ)Idc}

Proposition 5.2.3.

(1) The set UG ⊂ Θ(G) is a Zariski open dense.
(2) ∀χ ∈ UG we have M(G)|χ ∼= V ect. In other words: there ex-

ist a unique (up to an isomorphism) irreducible representation ρ ∈
M(G)|χ, and any representation in M(G)|χ is direct sum of several
copies of ρ.

In order to prove this proposition we need some preparations.
Recall that any C-abelian category C is a module category over the cat-

egory of modules over its center z. In particular, for an object M ∈ Ob(C)
and a character χ : z → C one can define M ⊗z χ. Explicitly, it can be
described as a quotient of M by the sum

∑

λ∈z

Ker(λ|M − χ(λ)idM)

Lemma 5.2.4. Let C, z and χ be as above. Let P be a projective generator
of C. Then P ⊗z χ is a projective generator of C|χ

10



Proof. Let X ∈ C|χ. We have

HomC|χ(P ⊗z χ,X) ∼= HomC(P,X).

This implies the assertion.
�

Lemma 5.2.5 (cf. Theorem 27 from [BR]). Let (ρ,M) be a cuspidal data
for G. Then for a generic unramified character χ of M the representation
iGM(χρ) is irreducible.

Lemma 5.2.6. Let (M, ρ) be a cuspidal data. Let w ∈ WM,ρ,G then iGM(ρ)
and iGM (Ad(w)ρ) have the same Jördan-Holder components.

For completeness, we include the proof of this Lemma in §§5.5.

Proof of Proposition 5.2.3.

(1) By lemma 5.2.5 and the fact that (WM,ρ,G)ρ/M is finite we get that
UG ⊂ Θ(G) is an open dense set.

(2) Let χ ∈ UG and (M, ρ) be a corresponding cuspidal data. To show
that M(G)|χ ∼= V ect, we will exhibit a projective generator for
M(G)|χ whose Endomorphism algebra is isomorphic to a matrix al-
gebra.
By Theorem 2.1.1 (2), the representation ΨG(M, ρ) = iGM (indMM0(ρ|M))

is a projective generator of M[M,ρ]. Thus by Lemma 5.2.4 the repre-
sentation

Q :=(iGM(indMM0(ρ|M0)))⊗z(G) χ

is a projective generator of the category M(G)|χ. In order to show
that EndG(Q) is isomorphic to a matrix algebra we show that Q is
isotypic (semi-simple) representation.
Theorem 2.1.2 (2) gives us the morphism ν : z(G) → z(M). Thus,

via ν, every representation τ ∈ M(M) have an action of z(G). We
have

Q ∼= iGM(indMM0(ρ|M0)⊗z(G) χ)

∼= iGM(indMM0(ρ|M0)⊗C[M/M0] (C[M/M0]⊗z(G) χ))

Our next step is to show that C[M/M0]⊗z(G) χ is a direct sum of
characters.
Theorem 2.1.2 (1) gives us morphisms:

z(M) → Z(R(G,ρ)) ∼= O(XG)
Iρ → O(XG).

Denote this composition by µ.
Since Θ(G) is a countable disconnected union of algebraic vari-

eties, we can use the classical language of algebraic geometry when
operating with it locally. Since the action of Iρ on XG is free, we
obtain that the corresponding map

µ∗ : Spec(C[M/M0]) → Θ(M)
11



is étale.
Notice also that ν induces a map ν∗ : Θ(M) → Θ(G) that is étale

over χ, by Theorem 2.1.2 (2) and the fact that χ ∈ UG is good.
Hence the map ν∗ ◦ µ∗ : SpecC[M/M0] → Θ(G) is étale at χ. Let

η be the character of z(M) acting on ρ. We have that ν∗(η) = χ. By
Theorem 2.1.2 (2), ν−1

∗ (χ) = WM,ρ,G · η.
Therefore

C[M/M0]⊗z(G) χ ∼=
⊕

i

χi

with χi ∈ XM and where

χiρ ≃ Ad(wi)ρ,

for some wi ∈ WM,ρ,G. We get

Q ∼=
⊕

i

iGM (Ad(wi)ρ).

By Lemma 5.2.6 all iGM(Ad(wi)ρ) are the same in the Grothendieck
group of M(G). Since χ is good, these induced representations are
all irreducible and hence isomorphic. This implies that Q is isotypic
(semi-simple) representation and hence

M(G)|χ ∼= M(EndG(Q)) ∼= M(Matk×k(C)) ∼= V ect.

�

Corollary 5.2.7. Let V = S(G)U×U,ψ×ψ. Let UG ⊂ Θ(G) be as above. For
any χ ∈ UG, we let πχ ∈ inf−1(χ) ⊂ Irr(G), be an irreducible representation

with infinitesimal character χ. Then the space (V ∗)z(G),χ−1
is generated by

the spherical characters of πχ.

Proof. By [AGS15, Proof of Proposition D], for any χ ∈ Θ(G), the space
(V ∗)z(G),χ is the space spanned by spherical characters of admissible repre-
sentations of G on which z(G) acts by χ−1. The corollary follows now from
the previous proposition (Proposition 5.2.3(2)). �

5.3. Support of elements of Cohen-Macaulay modules. In this sub-
section we show a strong restriction on the support of sections of Cohen-
Macaulay modules of full dimension, see Corollary 5.3.3.

Definition 5.3.1. Let A be a commutative unital finitely generated C-algebra.
We say that an A-module M is relatively torsion free if for any non-zero
element m ∈ M , and for any x ∈ Supp(m) we have dimx(Supp(m)) =
dimx(M).

Lemma 5.3.2. Let A be a commutative unital finitely generated C-algebra.
An equidimensional Cohen-Macaulay module M over A is relatively torsion
free.
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Proof. By [BBG97, Criterion 2.5] there exists a polynomial algebra B ⊂ A
such thatM is finitely generated (locally) free B-module. Let π : Spec(A) →
Spec(B) be the projection. Then π|Supp(M) is a finite map. The support ofm
in Spec(B) is the projection π(Supp(m)) and the support of M in Spec(B)
is the projection π(Supp(M)). Now

dim(Supp(m)) = dim(SuppB(m)) = dim(SuppB(M)) = dim(M).

�

Corollary 5.3.3. Let A be a commutative unital finitely generated C-algebra
without zero divisors and let M be a Cohen-Macaulay module of full di-
mension over A. Let m ∈ M and assume that there exist a dense subset
S ⊂ Spec(A) such that for each x ∈ S we have m|x = 0. Then m = 0.

Proof. Consider M as a sheaf over Spec (A). There exist an open dense
subset U ⊂ Spec(A) such that M |U is locally free. The assumption implies
that m|U = 0. By Lemma 5.3.2 we get m = 0. �

5.4. Cohen-Macaulay property of S(G)U×U,ψ×ψ and the proof of The-
orem A.

Lemma 5.4.1. For any Bernstein block ω ∈ Ω(G), the module (S(G)U×U,ψ×ψ)ω
is a finitely generated Cohen-Macaulay module of full dimension over (z(G))ω.

Proof. The inversion on G gives an anti-involution of H(G). It allows to
make a right module V R from a left module V of H(G). Note that

S(G)U×U,ψ×ψ
∼= indGU(ψ)

R ⊗H(G) ind
G
U (ψ).

By Theorem C and Corollary 2.3.3 the module indGU(ψ)ω is a direct sum-
mand of H(G)nω

ω for some nω. So, it is enough to check that H(G)nω
ω ⊗H(G)ω

H(G)nω
ω

∼= H(G)
n2
ω
ω is a Cohen-Macaulay module of full dimension over z(G)ω.

This follows from Theorem B. �

Proof of Theorem A. Let C be the collection of characters of z(G) corre-
sponding to Π.

Without loss of generality C ⊂ UG (see Definition 5.2.1). Let V =
S(G)U×U,ψ×ψ as above. Fix f ∈ V . We have to show that if for any spherical
character ξ of an irreducible representation π ∈ Π we have

〈ξ, f〉 = 0,

then f = 0. By Corollary 5.2.7 we obtain that f |χ = 0 for any χ ∈ C. Note
that V ∼= indGU(ψ)

R⊗H(G) ind
G
U(ψ). Thus, by Lemma 5.4.1, the module V is

Cohen-Macaulay of full dimension over z(G). Passing to a single component
of Θ(G) and applying Corollary 5.3.3 we obtain f = 0. �
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5.5. Proof of Lemma 5.2.6. Let I(χ) : iGM (χρ) → iGM(Ad(w)χρ) be the
intertwining operator defined for Re(χ) >> 0 (see e.g. [Mui08]). By Lemma
5.2.5, for generic χ it is an isomorphism. Fix now f ∈ H(G), we have that

tr(f, iGM(χρ)) = tr(f, iGM(Ad(w)χρ))

for such χ. But both sides are algebraic functions (e.g. Lemma 5.13 of
[Mui08]) of χ hence, by linear independence of characters we obtain the
result.

Appendix A. Degenerate characters of unipotent groups

In this appendix we prove some statement (Proposition A.0.1 below) on
characters of maximal unipotent subgroups of G. We use this result in the
next appendix in order to prove Theorem 1.0.4

We will use the notations of [BH03, §1]. In particular we fix:

• S - a maximal split torus of G.
• T - the centralizer of S in G.
• A minimal parabolic B of G, containing T.
• U - the unipotent radical of B.
• U := U(F ).
• Φ - the set of relative roots corresponding to (G,S).
• Φ+ - the set of positive roots corresponding to B.
• ∆ - the set of simple roots corresponding to B.

Proposition A.0.1. If ξ is degenerate character of U then there exist a
proper parabolic P ⊂ G containing B such that ξ|V(F ) = 1, where V ⊂ P is
the unipotent radical of P

For the proof we will need some recollections from [Bor91] and results
from [BH02]. For any root α ∈ Φ+ one can define a subgroup U(α) ⊂ U as
in [Bor91, Proposition 21.9 (i)] or [BH02, section 1.1].

Lemma A.0.2. If γ ∈ Φ+ is not colinear to a simple root, then U(γ) ⊂ [U, U ]

This lemma is proven in [BH02]. As it is not formulated explicitly there,
we indicate its proof.

Proof of Lemma A.0.2. Let char(F ) be the characteristic of F . Recall that
by [BH02] we have [U, U ] = [U,U](F ). We split the proof of the lemma into
several cases

Case 1: char(F ) 6= 2.
In this case the statement follows from [BH02, Theorem 4.1 (2)].

Case 2: char(F ) = 2, and G is absolutely almost simple.
This case follows from [BH02, Theorem 2.1(2,3)].

Case 3: char(F ) = 2, and G is F -almost simple, simply connected group.
By [Tit66, 3.1.2] and [BH02, Proposition 4.3], in this case G is a
restriction of scalars of an absolutely almost simple group G′. Now,
by [BH02, Lemma 4.4, Lemma 4.5(2) and Proposition 4.5] the result
follows from the previous case.
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Case 4: char(F ) = 2 and G simply connected.
This case follows from the previous one, since any simply connected
group is a product of simply connected, almost simple groups.

Case 5: char(F ) = 2, and G is semi-simple.
This case follows from the previous one, since by [BH02, Proposition
5.2] the group U does not change when we replace G by an isogenus
group.

Case 6: char(F ) = 2.
This case follows from the previus one, since U ⊂ [G,G].

�

One can assign to a set of simple roots I ⊂ ∆ a maximal parabolic sub-
group PI , see [Bor91, subsection 21.11, Proposition 21.12]. Let UI be the
unipotent radical of PI and let UI = UI(F ). Unfolding the concept of direct
spanning (see [Bor91, subsection 14.3]) we have:

Lemma A.0.3 (cf. [Bor91, Proposition 21.9 (ii)]). For a subset I ⊂ ∆
denote by [I] the set of elements in Φ that are non negative integral combi-
nations of elements of I. We have

UI =
∏

β∈Φ+r[I]

U(β),

where the product can be taken in any order.

Proof of Proposition A.0.1. By the definition, a degenerate character of U is
a character that is trivial on U(α) for some some α ∈ ∆. Let α be such that
ξ|U(α)

= 1 and let P := P∆−{α}. It is left to show that

ξ|U∆−{α}
= 1.

By Lemma A.0.3, it is enough to show that for any β ∈ Φ+ r [∆− {α}] we
have ξ|U(β)

= 1. As β ∈ Φ+ r [∆ − {α}] we will do it by considering two
cases:

Case 1: β is not co-linear to a simple root.
In this case the assertion follows from Lemma A.0.2

Case 2: β is co-linear to a simple root.
In this case β have to be co-linear to α and we have U(β) ⊂ U(α). By
the assumption on α this implies that ξ|U(β)

= 1.

�

Appendix B. Finite multiplicity result for degenerate

Whittaker models

In this appendix we deduce Theorem 1.0.4 from the special case where the
character ψ is non-degenerate, a result proven in [BH03, §4].

The reduction to the non-degenerate case is based on induction and Propo-
sition A.0.1.
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Proof of Theorem 1.0.4. The case when ξ is non-degenerate is proven in
[BH03, §4]. We will prove the general case by induction on the dimen-
sion of G. We can assume that ξ is degenerate. Using Proposition A.0.1 we
can find a proper parabolic subgroup P ⊂ G such that ξ is trivial on V(F ),
where V ⊂ P is the unipotent radical of P. Let M be the (standard) Levi
subgroup of P.

Note that ξ is the pullback of a character ξ0 of the group U(F )/V(F ) =
(U/V)(F ) =: N(F ).

We can identify N with the unipotent radical of the minimal parabolic
subgroup of M.

We have

(π∗)(U,ξ) ∼= ((rGM(π))∗)(N,ξ0).

Since π is irreducible it is finitely generated and admissible (see e.g. [BR,
Theorem 12]). This implies that the representation rGM(π) is finitely gener-
ated and admissible (see e.g. [BR, Proposition 19, Jacquet’s lemma (page
64)]) Hence it is of finite length (See e.g. [Cas, Theorem 6.3.10]). The
assertion follows now from the induction assumption. �
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