DIMENSION OF COMMUTATIVE SUBRINGS IN Rn.k

I. N. Bernshtein

The ring $R_{n,k}$ was introduced in [1]. This ring is an algebra over a field K of characteristic 0 with generators $p_1, \ldots, p_n, q_1, \ldots, q_n, x_1, \ldots, x_k$ and defining relations

$$[p_i, p_j] = [q_i, q_j] = [p_i, x_j] = [q_i, x_j] = [x_i, x_j] = 0, \quad [p_i, q_j] = \delta_{ij}.$$

The purpose of the present article is to prove the following theorem.

THEOREM 1. If $A \subseteq R_{n,k}$ is a commutative subring (always considered over a field K), then dim $A \leq n + k$.

Here the term dimension is used as in [1]. In order to prove the theorem we will introduce another definition of dim A: Namely, we introduce the increasing filter $K = L^0 \subset L^1 \subset \ldots \subset L^t \subset \ldots$ in $R_{n,k}$, where L^t is the set of elements in $R_{n,k}$ that can be represented in the form of polynomials of degree $\leq t$ in p_i , q_i , and x_i .

Let $a(t, A) = \dim_{K}(A \cap L^{t})$, and set

$$\dim A = \overline{\lim}_{t \to \infty} \frac{\ln a(t, A)}{\ln t}.$$

It is easy to see that the dimension in our case is no less than the dimension as defined in [1], so we can prove Theorem 1 for our definition. As a matter of fact, we will prove a somewhat stronger theorem:

THEOREM 2. If $A \subseteq R_{n,k}$ is a commutative subring, then a $(t, A) \le C_{t+n+k}^t$.

<u>Proof.</u> Consider the associated graduated ring $gr = \sum_{t=0}^{\infty} gr^t$ for $R_{n,k}$ with respect to the filter L^t .

Here $\operatorname{gr}^t = \operatorname{L}^t/\operatorname{L}^{t-1}$. It is easy to show that $\operatorname{L}^t \cdot \operatorname{L}^s \subset \operatorname{L}^{t+s}$ and $[\operatorname{L}^t, \operatorname{L}^s] \subset \operatorname{L}^{t+s-2}([\operatorname{L}^t, \operatorname{L}^s]$ is the linear space generated by the elements [a, b], where $a \in \operatorname{L}^t$, $b \in \operatorname{L}^s$). Thus, in gr we can introduce a multiplication and Poisson brackets [,] so that $\operatorname{gr}^s \cdot \operatorname{gr}^{s+t} \subset \operatorname{gr}^{s+t}$ and $[\operatorname{gr}^s, \operatorname{gr}^t] \subset \operatorname{gr}^{s+t-2}$. It was shown in [1] that gr is a ring of polynomials in p_i , q_i , and x_j . With respect to [,], gr is a Lie algebra, where $[p_i, p_j] = [q_i, q_j] = 0$, $[p_i, q_j] = \delta_{ij}$, and x_i belongs to the center. It is easy to show that the Leibnitz formula [ab, c] = a[b, c] + b[a, c] holds. With each element $r \in R_{n,k}$ we associate the homogeneous element [r] in gr as follows: If $r \in \operatorname{L}^t$ and $r \notin \operatorname{L}^{t-1}$, then for $[r] \in \operatorname{gr}^t$ we take the image of r under the factorization $\operatorname{L}^t \to \operatorname{gr}^t$. Let [A] denote the linear space generated by the elements [a], where $a \in A$. Then [A] is a subring, its elements commute with respect to Poisson brackets (since $a_1a_2 = a_2a_1$ implies that $[[a_1], [a_2]] = 0$), and

$$a(t, [A]) = \dim (\bigcup_{i \leqslant t} \operatorname{gr}^i \cap [A]) = \sum_{i \leqslant t} \dim (\operatorname{gr}^i \cap [A])$$

$$= \sum_{i \leqslant t} \left[\dim \left(L^i \cap A \right) - \dim \left(L^{i-1} \cap A \right) \right] = a(t, A).$$

It is therefore sufficient to show that if B is a subring in gr that is commutative with respect to Poisson brackets, then $a(t, B) \le C_{t+n+k}^t$.

We will treat gr as a ring of polynomials over the linear space M (conjugate to the space $\{p_i, q_i, x_i\}$).

Translated from Funktsional'nyi Analiz i Ego Prilozheniya, Vol. 1, No. 4, pp. 79-81, October-December, 1967. Original article submitted June 16, 1967.

LEMMA 1. If P, Q \in gr, \alpha \in M, then the value of [P, Q] at the point \alpha depends only on the linear terms $dP(\alpha)$ and $dQ(\alpha)$ at this point (for R \in gr we let dR denote the differential form $dR = \sum \frac{\partial R}{\partial p_i} dp_i + \sum \frac{\partial R}{\partial q_i} dq_i + \sum \frac{\partial R}{\partial q_i} dx_j$). [P, Q](\alpha) is a skew-symmetric 2-form of vectors $dP(\alpha)$ and $dQ(\alpha)$ of the space M_{α}^* (which is the cotangent space at the point \alpha).

Proof. We have

$$\begin{array}{l} P=P\left(\alpha\right)+P_{1}+P_{2}\\ Q=Q\left(\alpha\right)+Q_{1}+Q_{2} \end{array} \right\} \text{, where } \begin{array}{l} P_{1} \text{and } Q_{1} \text{ are linear terms at } \alpha\text{,} \\ P_{2} \text{and } Q_{2} \text{ have a first-order zeroth.} \end{array}$$

 $[P, Q](\alpha)$ does not depend on the constants $P(\alpha)$ and $Q(\alpha)$, nor on P_2 and Q_2 , since P_2 (Q_2) can be represented in the form $P_2 = \sum Y_i Z_i$, where $Y_i(\alpha) = Z_i(\alpha) = 0$, and then for any $R \in gr$

$$[P_2, R](\alpha) = \sum [Z_i, R](\alpha) Y_i(\alpha) + \sum [Y_i, R](\alpha) Z_i(\alpha) = 0.$$

The second part of the lemma is obvious.

Let T_{α} denote the form obtained on M_{α}^* . Then T_{α} $(dp_i, dq_i) = -T_{\alpha}$ $(dq_i, dp_i) = 1$, and T_{α} is equal to 0 on the remaining pairs of basis vectors dp_i , dq_i , dx_i . L_{α}^B denotes the subspace in M_{α}^* defined by the equation $L_{\alpha}^B = \{db(\alpha)|b \in B\}$. Then the form T_{α} degenerates on L_{α}^B , since $[b_1, b_2] = 0$ for $b_1, b_2 \in B$. Since the rank T_{α} is 2n, we have dim $L_{\alpha}^B \le n + k$ (this is fundamental to the proof). Theorem 2 is now an immediate consequence of the following lemma.

LEMMA 2. Let R be a ring of polynomials over a linear space M(i.e., $R = K[Y_1, \ldots, Y_N]$, where Y_i are the coordinates in M), and let A be a subring of R, such that dim $L_{\alpha}^A \leq l$ for all $\alpha \in M$. Then $a(t, A) \leq C_{t+1}^t$.

<u>Proof.</u> We can assume that $\dim L_{\alpha}^{A} = l$ for some $\alpha \in M$, since otherwise the lemma would be reduced to the case of a smaller l. We take α for the coordinate origin. $\dim L_{0}^{A} = l$, so we can choose $g_{1}, \ldots, g_{l} \in A$, such that $dg_{1}(0)$, $dg_{2}(0)$, ..., $dg_{l}(0)$ are linearly independent. Changing coordinates and subtracting the appropriate constants from g_{1} , we find that $dg_{1}(0) = dY_{1}$, $g_{1}(0) = 0$ ($i \leq l$). The condition $\dim L_{\alpha}^{A} \leq l$ is equivalent to the condition $da_{1}(\alpha) \wedge \ldots \wedge da_{l}(\alpha) \wedge da_{l+1}(\alpha) = 0$ for $a_{1}, \ldots, a_{l+1} \in A$, $\alpha \in M$ (here Λ is the outer product). Since this equation is true for all $\alpha \in M$, it is true in the polynomial sense, i.e., the coefficient of $dY_{i_{1}} \wedge \ldots \wedge dY_{i_{l+1}}$ is a polynomial that is identically equal to 0 for any set i_{1}, \ldots, i_{l+1} . Let [r] with $r \in R$ denote a homogeneous polynomial composed of lower-order terms in r. Then

$$da_1 \wedge da_2 \wedge \ldots \wedge da_{l+1} = d[a_1] \wedge \ldots \wedge d[a_{l+1}]$$

+ terms with higher-degree coefficients.

Thus, $d[a_1] \wedge \cdots \wedge d[a_{l+1}] = 0$ for $a_1, \ldots, a_{l+1} \in A$. Let \overline{A} denote the linear space generated by [a] with $a \in A$. It is easy to see that $a(t, \overline{A}) \geq a(t, A)$. If $\overline{a} \in \overline{A}$, then, since $Y_i = [g_i] \in \overline{A}$ ($i \leq l$),

$$dY_1 \wedge \ldots \wedge dY_i \wedge d\bar{a} = \sum_{i>i} \frac{\partial \bar{a}}{\partial Y_i} dY_1 \wedge \ldots \wedge dY_i \wedge dY_i = 0.$$

i.e., $\partial \overline{a}/\partial Y_i = 0$ for i > l. This means that \overline{a} is a polynomial in Y_1, \ldots, Y_l . Since the number of polynomials of l variables of degree $\leq t$ is C_{t+l}^t , we have $a(t, \overline{A}) \leq C_{t+l}^t$, and a fortiorial $a(t, A) \leq C_{t+l}^t$. This completes the proof of Theorems 1 and 2.

We can similarly prove

THEOREM 3. Let L be a finite dimensional Lie algebra over a field K of characteristic 0. U(L) is an algebra containing L, and A is a commutative subring of U(L). Then dim $A \le n + k$, where k is the codimension of the orbits of common position in the representation conjugate to the associated representation, $2n + k = \dim L$.

LITERATURE CITED

1. I. M. Gel'fand and A. A. Kirillov, DAN SSSR, 167, No. 3 (1966), 503-505.