BRIEF COMMUNICATIONS

DIMENSION OF COMMUTATIVE SUBRINGS IN Ry g

I. N. Bernshtein

The ring Rp k was introduced in [1]. This ring is an algebra over a field K of characteristic 0 with
generators py, ..., Pns Q45 -+ -» Qn» Xy, « - -, Xk and defining relations

o il = 19: ¢} = pi, %1 = [qu, %] =[x, 61 =0, pi qi1 = by
The purpose of the present article is to prove the following theorem.

THEOREM 1. If AC Rpk is 2 commutative subring (always considered over a field K), then
dim A=n + k. '

Here the term dimension is used as in [1]. In order to prove the theorem we will introduce another
definition of dim A: Namely, we introduce the increasing filter K=1' CL'C... c Lt C ... in Ry,
where Lt is the set of elements in Rp,k that can be represented in the form of polynomials of degree =t in

pis qi, and Xj.

Let a(t, A) = dimg(A (N L), and set

dimA = fim maLA
o In¢

It is easy to see that the dimension in our case is no less than the dimension as defined in {1}, so we can
prove Theorem 1 for our definition. As a matter of fact, we will prove a somewhat stronger theorem:

THEOREM 2. If AC Ry k is a2 commutative subring, then a (t, A) = cg ke

Proof. Consider the associated graduated ring gr = 3 grt for Rp,x with respect to the filter LE,
=0

Here grt = LY/1f1 . It is easy to show that Lt . LS C LS and [Lt, L5] cL¥*S-2([Lt, L5] is the linear space
generated by the elements [a, b}, where a¢ Lt, b€ LS). Thus, in gr we can introduce a multiplication and
Poisson brackets [,] so that grs - grS*t < grS*tand [gr®, gr'] C gr3*-2, Itwas shownin[1]thatgrisa ringof poly-
nomials in pj, qj, and xj. Withrespectto[,], grisaLie algebra, where [pi,pji =[ai,9j] = 0, [p4,q;j} =6ij, and xj be-
longs tothe center. It is easy to show that the Leibnitz formula [ab, c] =a[b, ¢] + b[a, c] holds. Witheach ele-
ment 1€ Ry k we associate the homogeneous element [r] in gr as follows: If ré Lt and r ¢ Lt™1, then for
[r] € grt we take the image of r under the factorization Lt —~grt, Let [A] denote the linear space generated
by the elements [a], where a¢ A. Then [A] is a subring, its elements commute with respect to Poisson
brackets (since a,a, = a,a; implies that [[a;], {a,]] = 0), and

a(t, [A)= dim (_L<Jt gri N [A]) = ) dim (gr‘ 1 [4])
S it
= 3! [dim (LN A)—dim(L™ [} A)] = a(t, A).
it

It is therefore sufficient to show that if B is a subring in gr that is commutative with respect to Poisson

t
brackets, then a(t, B) = Ct otk

We will treat gr as a ring of polynomials over the linear space M (conjugate to the space {pi, i, xJ-}).

Translated from Funktsional'nyi Analiz i Ego Prilozheniya, Vol. 1, No. 4, pp. 79-81, October-
December, 1967, Original article submitted June 16, 1967.
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LEMMA 1. ¥ P, Q€gr, o ¢ M, then the value of [P, Q] at the point o depends only on the linear terms

dP(a) and dQ (o) at thls point (for Regr we let dR denote the differential form dR = ZOR dp; + Za—q-jdqz
-+ Zg—?dx,» ) (P, Q](e) is a skew-symmetric 2-form of vectors dP(«a) and dQ(«) of the space MZ (which is
i

.the cotangent space at the point o).

Proof. We have

P=P@)+P +P, where Pand'Q, are linear terms at a,
Q=Q@+Q+Q /" P,and\Q, have a first-order zeroth,

{P, Q](a) does not depend on the constants P(®) and Q(w), nor on P, and Q,, since P, (Qp) can be repre-
sented in the form P, = Z‘,Yi Z; , where Yj(a) = Zj(e) =0, and then for any Regr

1P, RI(@ = 3 (2, RI@)Y: @ T}J IV, RI(@) Zi(@) = 0.
~ The second part of the lemma is obvious.

Let Ty denote the form obtained on M¥,. Then Ty (dpi, d4;) =— Te (daj, dpj) =1, and Ty, is equal to 0
on the remaining pairs of basis vectors dp;, dq;, dx;j. IB denotes the subspace in M} defined by the equa-

tion Lg = {db@)be B}. Then the form Ty degenerates on La, since {by, b,] = 0 for by, b, ¢ B. Since the
rank Ty is 2n, we have dim 15 =n + k (this is fundamental to the proof). Theorem 2 is now an immediate

consequence of the following lemma.

LEMMA 2. Let R be a ring of polynomials over a linear space M(i.e., R = K[Yy, ..., YNI], where Yj
are the coordinates in M), and let A be a subring of R, such that dim Lg‘ = lforalla ¢ M. Then
at, A) <cf, ;.

Proof. We can assume that dimLé = ] for some & ¢ M, since otherwise the lemma would be reduced

to the case of a smaller . We take o for the coordinate origin.dim L{',X =1, so we can choose g, ..., gl€A,
sufh that dg; (0), dg;(0), ..., dg; (0) are linearly independent. Changing coordinates and subtracting the appro-
priate constants from g;, we find that dg;(0) = dY;, g;(0) =0(i=1). The condition dim LQS_I isequivalenttio
the condition da (DA ... Ada(@) Adan.(@ =0foray,...,a141€A, @ €M (here A\ is the outer pro-
duct). Since this equation is true for all @ € M, it is true in the polynomial sense, i.e., the coefficient of
dYi A\ ... AdYy,, is a polynomial that is identically equal to 0 for any setiy,..., if+. Let [r]j with T €R

denote a homogeneous polynomial composed of lower-order terms in r. Then

da, Nda, N\ ... Ndan=dlgIA ... Adla)
-4 terms with higher-degree coefficients,

Thus, dfag]) A --- A dlag+] =0foray, ..., a7+ €A. Let A denote the linear space generated by [a] with
a€A. It is easy to see that a(t, A) = aft, A) K¥ae A then, since Yj = [gl]eA i=Dn,

dY, A ... /\dY,/\de:Z‘,-aﬁiil-dY,/\ e NAYIAAY =0,

i>t1 ¢
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i.e., 83/9Yj = 0 for i > 7. This means that T is a polynomial in Yy, ..., Y;. Since the number of polynom-
ials of I variables of degree =t is C:+l , we have a(t, A) = CE+Z , and a fortiori a(t, A) = C%H. This com-

pletes the proof of Theorems 1 and 2.
We can similarly prove

~ THEOCREM 3. Let L be a finite dimensional Lie algebra over a field K of characteristic 0. U() is
an-algebra containing L, and A is a commutative subring of U(L). Then dim A =n + k, where k is the co-
dimension of the orbits of common position in the representation conjugate to the associated representa-
tion, 2n + k = dim L.
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