$f^{\lambda}+$ FOR CERTAIN POLYNOMIALS f

I. N. Bernshtein

In a lecture by I. M. Gel'fand at the Amsterdam Congress the following problem was posed.
Let $f\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{k}}\right)$ be a polynomial with real coefficients. Consider the function $f_{+0}^{\lambda}=f^{\lambda}, f>0$, $f_{+0}^{\lambda}=0$, for $f \leq 0$ (λ is a complex number). For $\operatorname{Re} \lambda>0 f_{+0}^{\lambda}$ is a locally integrable function. Denote by f^{λ} the corresponding generalized function. It depends analytically on λ. It is required to show that f_{+}^{λ} is analytically continuable, as a meromorphic function of λ, to the whole complex plane, and that its poles lie on a finite number of arithmetic progressions (see [1], p. 58, and [2] Chapter 3, Section 2, 4). We prove this assertion for a certain class of polynomials f.

Let M be a real linear space with coordinates $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{k}} ; f\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}}\right)$, a polynomial with real coefficients; x, a point of M; A, the ring of rational functions a on M satisfying $a(x) \neq \infty$ (the local ring at the point x$) ; \mathrm{m}=\{\mathrm{a} \in \mathrm{A}, \mathrm{a}(\mathrm{x})=0\}$, a maximal ideal in $\mathrm{A} ; f_{i}=\frac{\partial f}{\partial x_{i}}$ the partial derivatives of the function $f ; \mathrm{I}=\left(f_{1}, \ldots, f_{\mathrm{k}}\right) \mathrm{A}$, an ideal in the ring A .

Definition. A point x is called simple with respect to the polynomial f if the following conditions are fulfilled:

1. $f(x)=0$.
2. In some neighborhood of the point x in complex space the differerential of f is everywhere different from zero; moreover, this may be true at the point x.

It is well-known that this is equivalent to the condition
2a. $I \supset m^{N}$ for some N, or equivalently, A / I is a finite-dimensional space.
3. The function f admits the representation $f=\sum \alpha_{i} f_{i}$,where $\alpha_{i} \in A, \alpha_{1}(x)=0$.

Examples. a) f is a non-singular homogeneous form, b) $f=\sum x_{i}^{n_{i}}$.
Remark 1. Condition 3 does not allow from conditions 1 and 2; e.g., $f\left(\mathrm{X}_{1}, \mathrm{x}_{2}\right)=x_{1}^{5}+x_{2}^{5}+x_{1}^{2} \cdot x_{2}^{2}$.
THEOREM 1. If x is a simple point with respect to f, then in some neighborhood U of the point x , f_{+}^{λ} is a meromorphic function of λ.

Let R denote the ring of differential operators with coefficients from A.

LEMMA 1. There is a differential operator $D \in R$ and a nonzero polynomial $H(n)$ with constant coefficients, such that $D \circ f^{n+1}=H(n) \cdot f^{n}$ for any natural number n .

Proof of the Theorem from the Lemma. Let U be a neighborhood of x in which all coefficient of D are regular. The equation $D \circ f_{+}^{n+1}=H(n) \cdot f_{+}^{n}$ follows easily from Lemma 1 for sufficiently large natural numbers n, since there are sufficiently smooth functions on both sides. Now we apply the following theorem due to Carlson: If $g(\lambda)$ is an analytic function for $\operatorname{Re} \lambda>0$, if $|g(\lambda)|<c_{1} e^{c \operatorname{Re\lambda }}$, and $g(n)=0$ for all sufficiently large natural numbers n, then $g(\lambda) \equiv 0$. For a proof see, e.g., [3], Chapter 9, Section 3. (In order

Moscow State University. Translated from Funktsional'nyi Analiz i Ego Prilozheniya, Vol. 2, No. 1, pp. 92-93, January-March, 1968. Original article submitted November 4, 1967.
to investigate this case we must multiply $g(\lambda)$ by $e^{-c \lambda}$ and transform the right half-plane into the unit disk). Consider the function $g(\lambda)=\left(\left(D \circ f_{+}^{\lambda+1}-H(\lambda) \cdot f_{+}^{\lambda}\right), \varphi\right)$, where φ is an infinitely differential function with compact support. It is easily seen that the conditions of Carlson's theorem are fulfilled, and thus that $g(\lambda) \equiv 0$. Whence it follows that $D \circ f_{+}^{\lambda+1}=H(\lambda) \cdot f_{+}^{\lambda}$ or $f_{+}^{\lambda}=f_{+}^{\lambda}=\frac{D \circ f_{+}^{\lambda+1}}{H(\lambda)}$. We show that f_{+}^{λ} is meromorphic for $\operatorname{Re} \lambda>-\mathrm{n}$. This is so far $n=0$. If it is true for $n=l-1$, then the function on the right is meromorphic for $\operatorname{Re} \lambda>-l$, and so f_{+}^{λ} is meromorphic for $\operatorname{Re} \lambda>-l$. By induction, the theorem is proved.

Remark 2. The poles of $f^{\lambda}+$ are concentrated on a finite number of arithmetic progressions $\lambda_{i}, \lambda_{i}-1$, $\lambda_{i}-2, \ldots$, where λ_{i} is a root of the polynomial $H(\lambda)$. If distinct progressions overlap, multiple poles may arise.

Proof of Lemma 1. Consider the following elements of the ring R: $\mathrm{D}_{\mathrm{i}}=\frac{\partial}{\partial x_{i}}, P=\sum \alpha_{i} D_{i}$ (see item 3 of the definition), $\mathrm{S}_{\mathrm{i}}=f_{\mathrm{i}} \mathrm{P}-f \mathrm{D}_{\mathrm{i}}=f_{\mathrm{i}}(\mathrm{P}+1)-\mathrm{D}_{\mathrm{i}} f . \quad$ In this connection $P \circ f=\sum \alpha_{i} f_{i}=f, s_{i} \circ f=f_{i} f-f f_{i}=0$. . Since P and S_{i} give vector fields Leibnitz's formula holds for them, and thus, $P \circ f^{n}=n f^{n}, S_{i} \circ f^{n}=0$.

LEMMA 2. There exists a nonzero polynomial $M(P)$ with constant coefficients, such that $M(P)$ is representable in the form $M(P)=\sum J_{i} f_{i} ; \quad$ where $J_{i} \in R$ and the equation is considered on the ring R.

Proof. Let $\mathrm{I}=\left(l_{1}, l_{2}, \ldots, l_{\mathrm{k}}\right)$ denote a multiple-index $\mathrm{D}^{l}=D_{1}^{l_{1}} \cdot D_{2}^{l_{2}} \ldots \ldots \cdot D_{k}^{l_{k}} \in R,|l|=l_{1}+\ldots+l_{k}$. For any natural number L, we depict P^{L} in the form $\mathrm{P}^{\mathrm{L}}=\sum_{|l| \leqslant L} D^{l} \gamma_{l}^{L}$, where $\gamma_{0} \mathrm{~L}$ is some function from A; i.e., we transfer all coefficients in differentiations to the right. It is easy to see that the $\gamma_{0} \frac{L}{l}$ are polynomials in the α_{i} and their derivatives, where in each term $\gamma_{0 l}^{\mathrm{L}}$ has at least an $|l|$-multiple zero, $\gamma_{0}^{\mathrm{L}} \in \mathrm{m}|l|$. If we look at $M(P)$ in the form $M(P)=\sum_{L=0}^{q} b_{L} p^{L}=\sum D^{l} b_{L} \dot{\gamma}_{l}^{L}$, then in order that the condition of the lemma be satisfied, it is necessary that $\sum b_{L} r_{i}^{L} \in I \quad$ for all l. If $|l| \geq \mathrm{N}\left(\mathbb{N}\right.$ is such that $\left.I \supset m^{N}\right)$, then this condition is automatically satisfied. Thus, there remain a finite number of conditions of the form $\sum_{L=0}^{q} b_{i} \bar{T} L=0,|1|<N$, where $\gamma_{l}^{-\mathrm{L}}$ is the image of γ_{0}^{L} in A / l. Since A / l is finite-dimensional, this results in a finite number of linear homogeneous equations in b_{L} (namely, there are K of these equations where K is equal to dim A / I times \{the number of multiple-indices l with the condition $|l|<\mathrm{N}\}$), and by taking $\mathrm{q}=\mathrm{K}$, we can find a nontrivial solution $\left\{b_{L}\right\}$. The lemma is proven.

$$
M(P)(P+1)=\sum J_{i} f_{i}(P+1)=\sum J_{i} S_{i}+\sum J_{i} D_{i} f .
$$

Denoting $\mathrm{H}(\mathrm{P})$ by $H(P)=M(P)(P+1), D=\sum d_{t} D_{i}$, we obtain

$$
D \cdot f^{n+1}=\left(\sum J_{i} D_{i} f\right) \circ f^{n}=H(P) \circ f^{n}=H(n) \cdot f^{n}
$$

since $S_{i} \circ f^{n}=0, P^{L} \circ f^{n}=n^{L} \cdot f^{n}$. The proof is completed.

THEOREM 2. If all real solutions of the equation $f(x)=0$ are simple points with respect to f, then f_{+}^{λ} is a meromorphic function of λ in the whole complex plane.

Proof. Each point may be covered by a neighborhood U (defined by the algebraic conditions $a_{i} \neq \infty$, where a_{i} are rational functions) in which f_{+}^{λ} is meromorphic. From each covering a finite subcovering U_{j} may be chosen (this follows easily from a theorem due to Hilbert concerning the zeros). Then by standard means a partition of unity φ_{j} is constructed in such a way that φ_{j} is infinitely differentiable, $\varphi_{\mathrm{j}} \geq 0$, $\sum \varphi_{j}=1, \varphi_{\mathrm{j}}=0$ on the complement of U_{j}. Then $f_{+}^{\lambda}=\sum\left(f_{+}^{\lambda} \varphi_{j}\right)$. On the right side is the sum of a finite number of meromorphic functions, which proves the theorem.

LITERATURE CITED

1. Internal Mathematical Congress in Amsterdam [in Russian], Fizmatgiz, Moscow (1963).
2. I. M. Gel'fand and G. E. Shilov, Generalized Functions and Operations on Them [in Russian], Fizmatgiz, Moscow (1959).
3. I. I. Privalov, Introduction to the Theory of Functions of a Complex Variable [in Russian], Fizmatgiz, Moscow (1960).
