Selecta Mathematica, New Series

The Cohen-Macaulay property of the category of (\mathfrak{g}, K) -modules

Joseph Bernstein, Alexander Braverman and Dennis Gaitsgory

Abstract. Let (\mathfrak{g}, K) be a Harish-Chandra pair. In this paper we prove that if P and P' are two projective (\mathfrak{g}, K) -modules, then $\operatorname{Hom}(P, P')$ is a Cohen-Macaulay module over the algebra $\mathcal{Z}(\mathfrak{g}, K)$ of K-invariant elements in the center of $U(\mathfrak{g})$. This fact implies that the category of (\mathfrak{g}, K) -modules is locally equivalent to the category of modules over a Cohen-Macaulay algebra, where by a Cohen-Macaulay algebra we mean an associative algebra that is a free finitely generated module over a polynomial subalgebra of its center.

Mathematics Subject Classification (1991). 20G05, 13C14.

Key words. (\mathfrak{g}, K) -modules, Cohen-Macaulay categories, Grothendieck duality.

1. Introduction

1.1. Let (\mathfrak{g}, K) be a Harish-Chandra pair, i.e.

- 1) \mathfrak{g} is a reductive Lie algebra over \mathbb{C} endowed with an involution θ ;
- K is a complex reductive algebraic group acting by automorphisms of the pair (g, θ);
- 3) the Lie algebra $\mathfrak{k} = Lie(K)$ is identified with \mathfrak{g}^{θ} in such a way that the adjoint action of \mathfrak{k} on \mathfrak{g} coincides with the differential of the K-action on \mathfrak{g} .

Let $U(\mathfrak{g})$ (resp. $U(\mathfrak{k})$) be the universal enveloping algebra of \mathfrak{g} (resp. of \mathfrak{k}). We shall denote by $\mathcal{Z}(\mathfrak{g})$ the center of $U(\mathfrak{g})$ and let us set $\mathcal{Z}(\mathfrak{g}, K) = \mathcal{Z}(\mathfrak{g})^K$. Note that $\mathcal{Z}(\mathfrak{g}, K)$ may be different from $\mathcal{Z}(\mathfrak{g})$ in the case when K is disconnected.

Our main object of study is the category $\mathcal{M}(\mathfrak{g}, K)$ of (\mathfrak{g}, K) -modules. By definition, a (\mathfrak{g}, K) -module is a vector space V, endowed with an algebraic action of the group K and an action of the Lie algebra \mathfrak{g} ; these two actions are compatible in the following way:

1) the two natural actions of the Lie algebra \mathfrak{k} on V coincide;

2) the action map $\mathfrak{g} \otimes V \to V$ is a morphism of K-modules (the second condition follows from the first one when K is connected).

1.2. The main result

Let P, P' be two (\mathfrak{g}, K) -modules. Then $\operatorname{Hom}_{\mathfrak{g}, K}(P, P')$ is naturally a $\mathcal{Z}(\mathfrak{g}, K)$ -module. Our main result is the following

Theorem. Let P and P' be two projective finitely generated (\mathfrak{g}, K) -modules. Then the space $\operatorname{Hom}_{\mathfrak{g},K}(P,P')$ is a Cohen-Macaulay module over $\mathcal{Z}(\mathfrak{g},K)$ of dimension ℓ (here ℓ is the split rank of the pair (\mathfrak{g}, K) — cf. 1.5).

We will review the theory of Cohen-Macaulay modules in section 2.

The geometric meaning of this theorem is that it allows us to give a relatively simple local description of the category $\mathcal{M}(\mathfrak{g}, K)$. Namely, in section 4 we will show that this category is locally equivalent to the category of modules over a Cohen-Macaulay algebra (cf. 4.2).

1.3. Harish-Chandra modules

There is a local description of the category $\mathcal{H}(\mathfrak{g}, K)$ of Harish-Chandra modules over the pair (\mathfrak{g}, K) , which is probably more transparent.

By a Harish-Chandra module we mean a finitely generated (\mathfrak{g}, K) -module V whose annihilator in $\mathcal{Z}(\mathfrak{g}, K)$ has finite codimension (this is equivalent to the fact that $\operatorname{Hom}_{K}(\sigma, V)$ is finite-dimensional for every finite-dimensional representation σ of K).

Now let U be any subset of Specmax($\mathcal{Z}(\mathfrak{g}, K)$). Denote by $\mathcal{H}(\mathfrak{g}, K, U)$ the full subcategory of $\mathcal{H}(\mathfrak{g}, K)$ consisting of Harish-Chandra modules supported inside U when viewed as sheaves over Specmax($\mathcal{Z}(\mathfrak{g}, K)$).

Theorem. Every $\chi \in \text{Specmax}(\mathcal{Z}(\mathfrak{g}, K))$ has a neighborhood U in the analytic topology such that the category $\mathcal{H}(\mathfrak{g}, K, U)$ is equivalent to the category of finite-dimensional modules over an algebra B that has the following properties:

- 1) B is an algebra over the ring $\mathcal{O}(D)$ of holomorphic functions on the unit ball $D \subset \mathbb{C}^{\ell}$;
- 2) as an $\mathcal{O}(D)$ -module, B is free and finitely generated.

Intuitively, the algebra B of the above theorem can be thought of as a holomorphic family of algebras of the same dimension, parameterized by points of D. Thus the theorem shows that a Harish-Chandra module can be thought of as a family of modules over this family of algebras, which is concentrated at a finite number of points of D.

The question of describing the freeness properties of the category $\mathcal{M}(\mathfrak{g}, K)$ over the center was raised in [BGG1] and [BGG2]. We consider Theorem 1.3 as answer to some questions posed in [BGG2].

304

1.4. Remark. It seems that the appearence of categories of Cohen-Macaulay type is a common phenomenon in representation theory. For example, Theorem 1.2 has the following analogue for p-adic groups, which in fact was one of our main motivations. Namely, let G be a reductive p-adic group and let P and P' be two smooth finitely generated projective G-modules. Then it can be shown that $\operatorname{Hom}_G(P, P')$ is a Cohen-Macaulay module over Bernstein's center (cf. [Ber]). This result is due to J. Bernstein (unpublished; see the proof in [Bez]). In the case of p-adic groups this theorem enables us to define some duality on the derived category of smooth G-modules which has a very interesting interplay with other dualities on the same category (cf. [Bez]). It is not clear whether an analogous theory can be developed for real groups as well.

1.5. Notations. Let \mathfrak{p} denote the space $\{x \in \mathfrak{g} | \theta(x) = -x\}$. We have $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$. The action of K on \mathfrak{g} endows \mathfrak{p} with the structure of a K-module.

Let ℓ be the split rank of the pair (\mathfrak{g}, K) , i.e the dimension of a maximal abelian reductive subalgebra \mathfrak{a} of \mathfrak{g} , contained in \mathfrak{p} .

For any vector space V, S(V) will denote its symmetric algebra.

A filtered vector space is a space N equipped with an increasing filtration F_iN . We always assume that $F_iN = 0$ for $i \ll 0$ and $\bigcup F_iN = N$. We denote by gr(N) the associated graded space.

1.6. The Kostant-Rallis theorem

The proof of Theorem 1.2 is based on the following result of Kostant and Rallis.

Let K_0 be the identity component of K. Consider the natural action of the group K on symmetric algebra $S(\mathfrak{p})$ and denote by I the subalgebra of all elements invariant with respect to the subgroup K_0 ; in other words, $I = S(\mathfrak{p})^{\mathfrak{k}}$.

Theorem. $S(\mathfrak{p})$ is a free module over subalgebra $I = S(\mathfrak{p})^{\mathfrak{k}}$.

This statement is proven in [KR] (cf. also [BL]). Formally the statement in [KR] is slightly different (see [KR], Theorem 15). Namely they work with a slightly bigger group K_{θ} defined as the group of θ -invariant elements of the adjoint group G_{ad} . They consider the subalgebra J of K_{θ} invariants and show that $S(\mathfrak{p})$ is a free module over J.

However, we claim that the subalgebra J in fact coincides with I. Indeed, let us identify the algebra $S(\mathfrak{p})$ with the algebra of polynomial functions on \mathfrak{p} using the Killing form. Then any K_0 -invariant polynomial function $f \in I$ is completely determined by its restriction to the subalgebra $\mathfrak{a} \subset \mathfrak{p}$ — maximal abelian reductive subalgebra in \mathfrak{p} . As shown in [KR], Proposition 1, we have $K_{\theta} = FK_0$, where F is a finite subgroup which normalizes K_0 and acts trivially on \mathfrak{a} . This implies that the function f is K_{θ} -invariant, i.e. I = J.

1.7. Let ρ be a finite dimensional representation of \mathfrak{k} . Consider the natural $S(\mathfrak{p})^{\mathfrak{k}}$

action on $(\rho \otimes S(\mathfrak{p}))^{\mathfrak{k}}$.

Corollary. The space $R = (\rho \otimes S(\mathfrak{p}))^{\mathfrak{k}}$ is a finitely generated free $I = S(\mathfrak{p})^{\mathfrak{k}}$ -module.

The fact that *I*-module *R* is finitely generated is standard (see e.g. [KR], Theorems 18, 19). The module *R* is a direct summand of an *I*-module $\rho \otimes S(\mathfrak{p})$ which is free by Theorem 1.6. Hence *R* is projective; since it is graded, this implies that it is a free *I*-module.

1.8. We would like to thank the referee for several useful remarks.

2. Cohen-Macaulay modules

2.0. Let A be a commutative finitely generated algebra over a field F. Let M be a finitely generated A-module.

According to the traditional definition (cf. [AK], [Ha], [Se]), the module M is said to be Cohen-Macaulay over A of dimension k if depth $(M) = \dim \operatorname{supp} M = k$.

In this section we will review basic properties of Cohen-Macaulay modules and, in particular, describe some criteria for a module to be Cohen-Macaulay which have clear intuitive meaning.

2.1. We will be using the following property of Cohen-Macaulay modules

Theorem. Let M be a module over two commutative F-algebras A and B as above, whose actions on M commute. Assume that M is finitely generated over each of them. Then M is Cohen-Macaulay of dimension k over one of them if and only if it is Cohen-Macaulay of dimension k over the other.

In some sense the meaning of the theorem is that the module itself knows that it is Cohen-Macaulay of dimension k and the choice of a particular algebra acting on it does not change this fact.

2.2. We will deduce the theorem from the following

Lemma. Let $\nu : B \to A$ be a morphism of commutative finitely generated algebras over the field F. Suppose A is finitely generated as a B-module. Then a finitely generated A-module M is Cohen-Macaulay of dimension k over algebra A if and only if it is Cohen-Macaulay of dimension k over B.

See [Se], Chapter 5, Proposition 11.

2.3. Proof of Theorem 2.1. Let C be the F-algebra of endomorphisms of M generated by A and B. Clearly C is a finitely generated commutative F-algebra. Since C lies in a finitely generated A-module $\operatorname{End}_A(M)$ it is finitely generated as an A-module.

According to Lemma 2.2 M is Cohen-Macaulay of dimension k over A iff it is Cohen-Macaulay of dimension k over C. The same argument, with A replaced by B, shows that this holds iff M is Cohen-Macaulay of dimension k over B.

2.4. Using the theorem we can formulate a convenient criterion which allows us to check whether a given finitely generated A-module M is Cohen-Macaulay. Namely, we can always write A as a quotient of a regular algebra C (we can take C to be a polynomial algebra) and thus reduce the problem to the case of a regular algebra.

Moreover, using the Noether normalization lemma, we can find a polynomial subalgebra $B \subset C$ of dimension $k = \dim \operatorname{supp} M$ such that M is a finitely generated B-module. Thus we reduced the question to the case when A is a regular algebra of pure dimension k. Now we can use the following

Lemma. Suppose that A is a regular algebra of pure dimension k and M is a finitely generated A-module. Then M is Cohen-Macaulay of dimension k if and only if it is locally free over A.

See [Se], Chapter 4, Corollary 2.

2.5. Results of 2.1–2.4 can be summarized as the following convenient and very intuitive criterion for a module to be Cohen-Macaulay.

Criterion. Let M be a nonzero finitely generated module over an algebra A as above.

- (1) The following conditions are equivalent:
 - (i) M is Cohen-Macaulay of dimension k.
 - (ii) There exists a regular subalgebra $B \subset A$ of pure dimension k such that M is a locally free B-module of finite rank.
- (2) Suppose these conditions hold. Choose any commutative finitely generated F-algebra of endomorphisms B of the A-module M such that M is finitely generated as a B-module and B is a regular algebra of pure dimension k = dim supp M. Then M will be locally free as a B-module.

2.6. Sometimes it is convenient to use the following generalization of 2.4

Lemma. Suppose that B is a regular algebra of pure dimension n and M a finitely generated B-module. Then M is Cohen-Macaulay of dimension k if and only if $\operatorname{Ext}_B^i(M, B) = 0$ for $i \neq n - k$.

This lemma is proven in [AK], Chapter 3, Corollary 5.22. For some reason it is formulated in [AK] in a slightly weaker form, though the proof proves exactly this statement. We will discuss the meaning of this condition in 2.7–2.8.

2.7. Grothendieck duality and Cohen-Macaulay modules

The most understandable definition of Cohen-Macaulay modules can be obtained using Grothendieck duality for coherent sheaves (see [Ha]).

We will need just basic properties of this duality in the simplest case of finitely generated modules over algebras, which corresponds to affine schemes.

Let A be a commutative finitely generated F-algebra. For any finitely generated A-module M, we denote by $\mathbb{D}(M)$ the dual complex which is an object of the derived category D(A) of A-modules. It is defined as $\mathbb{D}(M) := \operatorname{RHom}(M, \mathbb{D}(A))$, where $\mathbb{D}(A)$ is the dualizing complex of A.

The dualizing complex $\mathbb{D}(A)$ we normalize as follows: $\mathbb{D}(A) = p^!(\mathcal{O})$, where p is the natural morphism of F-schemes p: Specmax $(A) \to$ Specmax(F) and the functor $p^!$ is defined in [Ha] (see Chapter 3, section 8 or Appendix by P. Deligne).

Theorem. Functor \mathbb{D} commutes with direct images for finite morphisms.

This theorem is proven in [Ha], Chapter 7, Corollary 3.4 (c). In our case it just means that if A is a B-algebra which is finitely generated as a B-module, then the restriction functor $R: D(A) \to D(B)$ commutes with duality.

Proposition. Let A be a finitely generated F-algebra and M a finitely generated A-module. Then the following conditions are equivalent:

- (1) Module M is Cohen-Macaulay of dimension k.
- (2) The dual complex $\mathbb{D}(M)$ has nonzero cohomologies only in dimension -k.

In fact the property (2) should be considered as a definition of Cohen-Macaulay modules. With this definition all the properties 2.1–2.6 become transparent in view of Theorem 2.7.

2.8. Proof of Proposition. Using the same arguments as in 2.4, we can reduce the proof to the case when A is a regular algebra of pure dimension n. In this case the dualizing complex $\mathbb{D}(A)$ is a locally free A module shifted to degree -n, so the condition (2) of the Proposition is equivalent to $\operatorname{Ext}_{A}^{i}(M, A) = 0$ for $i \neq n - k$.

Using the same arguments as in 2.3 and 2.4 we can reduce the proof to the case when $n = \dim \text{supp } M$. In this case we have $\text{Ext}_A^0(M, A) = \text{Hom}_A(M, A) \neq 0$, so the condition (2) may hold only when n = k.

Now the proof follows from the following standard lemma (see [AK], chapter 3, Proposition 5.21)

Lemma. Let M be a finitely generated module over an algebra A as in 2.0. Suppose that A is a regular algebra of pure dimension n. Then M is locally free over A iff $\operatorname{Ext}_{A}^{i}(M, A) = 0$ for $i \neq 0$.

Remark. This proof also gives the proof of Lemma 2.6.

2.9. Duality on the category of Cohen-Macaulay modules

Let $\mathcal{CM}_k(A)$ denote the category of Cohen-Macaulay modules of dimension k over the algebra A. This is a full additive (but not abelian) subcategory of the category $\mathcal{M}(A)$ of all A-modules.

The definition 2.7 shows that on this category there is a natural duality functor \mathcal{D} which is defined by $\mathcal{D}(M) = \mathbb{D}(M)[-k]$. The following results follow easily from proofs above:

Theorem.

- (1) Functor \mathcal{D} defines a perfect duality on the category \mathcal{CM}_k , i.e. it is a contravariant functor and we have functorial isomorphisms $\operatorname{Hom}(M, \mathcal{D}(N)) \simeq$ $\operatorname{Hom}(N, \mathcal{D}(M))$ and $\mathcal{DD}(M) \simeq M$.
- (2) Suppose that M is a Cohen-Macaulay module of dimension k over two commuting algebras A and B like in 2.1. Then the dual modules of M constructed over A and over B are canonically isomorphic.
- (3) Let μ : M → N be a morphism of Cohen-Macaulay modules of dimension k. Suppose that it is an isomorphism in dimension k, i.e. its kernel and cokernel have smaller dimension.

Then Ker $\mu = 0$ and Coker μ is a Cohen-Macaulay module of dimension k - 1. Moreover, the dual morphism $\mathcal{D}(\mu) : \mathcal{D}(N) \to \mathcal{D}(M)$ has the same properties and there exists a canonical isomorphism $\mathcal{D}(\text{Coker } \mu) \simeq$ Coker $(\mathcal{D}(\mu))$.

(4) When k = 0 the dual module D(M) is canonically isomorphic to the dual space M* with the natural action of A.

2.10. The next assertion is used in the proof of Theorem 1.2.

Proposition. Let A be a filtered commutative algebra over a field F and let M be a filtered module over A. Suppose that the associated graded algebra gr(A) is a finitely generated F-algebra and gr(M) is a Cohen-Macaulay module of dimension k over the algebra gr(A). Then M is a Cohen-Macaulay module of dimension k over the algebra A.

Proof of the Proposition. Standard arguments show that M is a finitely generated A-module.

We can easily construct a polynomial algebra B with filtration and a morphism of filtered algebras $\nu : B \to A$ such that the algebra $\operatorname{gr}(B)$ is also a polynomial algebra and the morphisms $\operatorname{gr}(\nu) : \operatorname{gr}(B) \to \operatorname{gr}(A)$ and $\nu : B \to A$ are epimorphic. Using Lemma 2.2 we can replace everywhere A by B and thus assume that algebras A and $\operatorname{gr}(A)$ are polynomial algebras of the same dimension (say n).

According to 2.6, we must check that $\operatorname{Ext}^{i}(M, A) = 0$ if $i \neq n - k$.

Sel. math., New ser.

However, by a standard spectral sequence argument, $\operatorname{Ext}_{A}^{i}(M, A) = 0$ if the same is true for $\operatorname{Ext}_{\operatorname{gr}(A)}^{i}(\operatorname{gr}(M), \operatorname{gr}(A))$ and the latter holds by our assumptions and Lemma 2.6.

Remark. It is possible to prove this Proposition directly, without using Lemma 2.6. Namely, using a graded version of Noether's normalization lemma we can find a graded polynomial subalgebra $C' \subset \operatorname{gr}(A)$ of dimension k such that the module $\operatorname{gr}(M)$ is finitely generated over C'. Then we can lift this subalgebra to A, i.e. find a polynomial subalgebra $C \subset A$ such that $\operatorname{gr}(C) = C'$.

By Criterion 2.5, the C'-module gr(M) is locally free, and hence free since it is a graded module. This implies that M is a free C-module. By Criterion 2.5, M is a Cohen-Macaulay module over A of dimension k.

3. Proof of Theorem 1.2

3.1. The modules P_{σ}

Let σ be a finite dimensional representation of K. Let \mathfrak{Vec} denote the category of complex vector spaces. Consider the functor $F_{\sigma} : \mathcal{M}(\mathfrak{g}, K) \to \mathfrak{Vec}$, defined by $F_{\sigma}(V) = \operatorname{Hom}_{K}(\sigma, V)$ for any $V \in \mathcal{M}(\mathfrak{g}, K)$. This functor is representable by a module $P_{\sigma} \in \mathcal{M}(\mathfrak{g}, K)$, where P_{σ} can be constructed as $U(\mathfrak{g}) \otimes_{U(\mathfrak{k})} \sigma$. One can easily see that each P_{σ} is projective and that any finitely generated (\mathfrak{g}, K) -module is a quotient of P_{σ} for some σ . Hence the modules P_{σ} form a system of projective generators for the category $\mathcal{M}(\mathfrak{g}, K)$. Therefore, any projective finitely generated (\mathfrak{g}, K) -module is a direct summand of some P_{σ} , and since the property of being Cohen-Macaulay is stable under taking direct summands, it is sufficient to prove our assertion for $P = P_{\sigma}$ and $P' = P_{\sigma'}$.

3.2. By definition of P_{σ} 's we have $\operatorname{Hom}_{\mathfrak{g},K}(P_{\sigma},P_{\sigma'}) = \operatorname{Hom}_{K}(\sigma,P_{\sigma'})$ as $\mathcal{Z}(\mathfrak{g},K)$ -modules (here $\mathcal{Z}(\mathfrak{g},K)$ acts on the right hand side via its action on $P_{\sigma'}$). Hence by 3.1, Theorem 1.2 is equivalent to the following proposition.

Proposition. The space $M = \operatorname{Hom}_{K}(\sigma, P_{\sigma'})$ is a Cohen-Macaulay module of dimension ℓ over the algebra $\mathcal{Z}(\mathfrak{g}, K)$.

3.3. Consider a $\mathcal{Z}(\mathfrak{g})$ -module $M' = \operatorname{Hom}_{\mathfrak{k}}(\sigma, P_{\sigma'})$. As a $\mathcal{Z}(\mathfrak{g}, K)$ -module M identifies with the space of invariants of a finite group K/K^0 of components of the group K acting on M'. Thus M is a direct summand of M' and hence it is enough to check that M' is Cohen-Macaulay over $\mathcal{Z}(\mathfrak{g}, K)$. However, by Lemma 2.2 this is equivalent to the fact that M' is Cohen-Macaulay over $\mathcal{Z}(\mathfrak{g})$, and this is what we are going to prove.

3.4. We will apply Lemma 2.10 to M' as above and $A = \mathcal{Z}(\mathfrak{g})$. The algebra $\mathcal{Z}(\mathfrak{g})$

carries the natural filtration induced from that of $U(\mathfrak{g})$ and $\operatorname{gr}(\mathcal{Z}(\mathfrak{g}))$ is isomorphic to $S(\mathfrak{g})^{\mathfrak{g}}$. The latter is isomorphic to a polynomial algebra by Chevalley's theorem.

The module $P_{\sigma'} = U(\mathfrak{g}) \otimes_{U(\mathfrak{k})} \sigma'$ is also endowed with a filtration coming from $U(\mathfrak{g})$ and this filtration is preserved by the action of K. Therefore $M' = \text{Hom}_{\mathfrak{k}}(\sigma, P_{\sigma'})$ is a filtered $\mathcal{Z}(\mathfrak{g})$ -module and we must ensure that gr(M') is Cohen-Macaulay of dimension l over $S(\mathfrak{g})^{\mathfrak{g}}$.

3.5. Using the splitting $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$ we can identify $S(\mathfrak{p})$ with the quotient $S(\mathfrak{g})/\mathfrak{k}S(\mathfrak{g})$. This defines a *K*-equivariant morphism $S(\mathfrak{g}) \to S(\mathfrak{p})$ and by restriction a morphism $\nu : S(\mathfrak{g})^{\mathfrak{g}} \to S(p)^{\mathfrak{k}}$. The following assertion is well-known (cf. [KR], [Wa]):

Lemma.

- (1) $I = S(\mathfrak{p})^{\mathfrak{k}}$ is a polynomial algebra in ℓ variables.
- (2) $S(\mathfrak{p})^{\mathfrak{k}}$ is finitely generated as a module over $S(\mathfrak{g})^{\mathfrak{g}}$.

It is easy to see that $\operatorname{gr}(P_{\sigma'})$ is isomorphic to $S(\mathfrak{p}) \otimes \sigma'$. This implies that the module $\operatorname{gr}(M')$ is isomorphic to $\operatorname{Hom}_{\mathfrak{k}}(\sigma, S(\mathfrak{p}) \otimes \sigma') = (\operatorname{Hom}(\sigma, \sigma') \otimes S(\mathfrak{p}))^{\mathfrak{k}}$. It is easily checked that the algebra $S(\mathfrak{g})^{\mathfrak{g}} = \operatorname{gr}(\mathcal{Z}(\mathfrak{g}))$ is acting on this module via the above homomorphism $\nu : S(\mathfrak{g})^{\mathfrak{g}} \to S(\mathfrak{p})^{\mathfrak{k}}$.

3.6. We must show that $\operatorname{gr}(M') \simeq (\operatorname{Hom}(\sigma, \sigma') \otimes S(\mathfrak{p}))^{\mathfrak{k}}$ is a Cohen-Macaulay module of dimension ℓ over $S(\mathfrak{g})^{\mathfrak{g}}$. By Lemma 3.5(2) and Theorem 2.1 this is equivalent to showing that $(\operatorname{Hom}(\sigma, \sigma') \otimes S(p))^{\mathfrak{k}}$ is Cohen-Macaulay of dimension ℓ over $S(\mathfrak{p})^{\mathfrak{k}}$.

However, by Corollary 1.7 the latter module is free over $S(\mathfrak{p})^{\mathfrak{k}}$. This concludes the proof in light of Lemmas 2.4 and 3.5(1).

4. Cohen-Macaulay categories

4.0. In this section we will try to explain the categorical meaning of Theorem 1.2.

4.1. Localization of categories

Let C be an abelian category closed under inductive limits. Let Z be a commutative algebra mapping to the center of C. In other words, we are given a homomorphism $\phi: Z \to \text{End}(\text{Id}_C)$, where Id_C denotes the identity functor on C. For any object $X \in C$ we denote by ϕ_X the corresponding morphism $Z \to \text{End}_C(X)$.

Let \mathfrak{f} be a multiplicatively closed subset in Z and let $Z_{\mathfrak{f}}$ denote the localization of Z with respect to \mathfrak{f} . We would like to describe the localization $C_{\mathfrak{f}}$ of the category C with respect to \mathfrak{f} .

We say that a functor $L: C \to C'$ from C to another abelian category C' is f-inverting if for every $X \in C$ and $z \in \mathfrak{f}$, $L(\phi_X(z))$ is invertible in $\operatorname{End}_{C'}(L(X))$. **Lemma-Definition.** A localization of C with respect to \mathfrak{f} is a category $C_{\mathfrak{f}}$ endowed with an \mathfrak{f} -inverting functor $L_{can}: C \to C_{\mathfrak{f}}$, which is universal in the following sense:

For each pair (C', L), where C' is an abelian category and L is an \mathfrak{f} -inverting functor $C \to C'$, there exists a functor $G : C_{\mathfrak{f}} \to C'$ together with an isomorphism of functors $L \simeq G \circ L_{can}$. Such $C_{\mathfrak{f}}$ exists and is unique up to a canonical equivalence.

Proof-Construction. To construct such $C_{\mathfrak{f}}$, put the objects of $C_{\mathfrak{f}}$ to be the objects of C and for $X, Y \in C$, set $\operatorname{Hom}_{C_{\mathfrak{f}}}(X,Y) := \operatorname{Hom}_{C}(X,Y) \otimes_{Z} Z_{\mathfrak{f}}$.

The functor L_{can} is now the obvious one: it sends $X \in C$ to X viewed as an object of $C_{\mathfrak{f}}$ and $L_{can} : \operatorname{Hom}_{C}(X, Y) \to \operatorname{Hom}_{C_{\mathfrak{f}}}(X, Y)$ is the natural embedding. \Box

The next assertion is straightforward.

Proposition. Consider the full subcategory $C'_{\mathfrak{f}}$ of C consisting of objects $X \in C$ such that for every $z \in \mathfrak{f}$, $\phi_X(z)$ is invertible in End $_C(X)$. Then the natural functor $C'_{\mathfrak{f}} \to C_{\mathfrak{f}}$ is an equivalence of categories.

Example. Let C be the category of modules over an associative algebra E and let Z be a central subalgebra of E. Then for every multiplicatively closed subset $\mathfrak{f} \subset Z$ the category $C_{\mathfrak{f}}$ is equivalent to the category of modules over $E \otimes_Z Z_{\mathfrak{f}}$.

Definition. Let $L : C \to C_1$ be a functor between abelian categories. The category C_1 is said to be a central localization of C if there exists a pair (Z, \mathfrak{f}) as above, such that the pair (C_1, L) is equivalent to the pair $(C_{\mathfrak{f}}, L_{can})$.

4.2. Definition. Let F be a field. A Cohen-Macaulay algebra over F is an associative F-algebra E such that there exists a subalgebra \mathcal{O} of the center of E with the following properties:

- (1) \mathcal{O} is a finitely generated algebra over F and is a regular domain;
- (2) As an \mathcal{O} -module, E is finitely generated and locally free.

Now we can give a definition of a Cohen-Macaulay category.

Definition. Let C be an abelian category over a field F closed under inductive limits. We say that C is of a Cohen-Macaulay type if there exists an algebra Z mapping to the center of C (as in 4.1) with the following property:

For every maximal ideal \mathfrak{m} of Z, the localization $C_{\mathfrak{f}}$ of C with respect to $\mathfrak{f} := Z \setminus \mathfrak{m}$ is equivalent to a central localization in the sense of 4.1 of the category of modules over a Cohen-Macaulay algebra.

4.3. Theorem. The category $\mathcal{M}(\mathfrak{g}, K)$ is a Cohen-Macaulay category over \mathbb{C} .

Proof. Step 1. Let Z be equal to $\mathcal{Z}(\mathfrak{g}, K)$. Let also \mathfrak{m} be a maximal ideal of $\mathcal{Z}(\mathfrak{g}, K)$. By a theorem of Harish-Chandra (cf. [Vo, 5.4]) there are finitely many isomorphism classes of simple (\mathfrak{g}, K) -modules with the central character corresponding to \mathfrak{m} . Therefore, there exists a finite-dimensional K-module σ such that $\operatorname{Hom}_K(\sigma, V) \neq 0$ for every non zero (\mathfrak{g}, K) -module V annihilated by \mathfrak{m} . **Claim.** Let $\mathfrak{f} = \mathcal{Z}(\mathfrak{g}, K) \setminus \mathfrak{m}$. Then the category $\mathcal{M}(\mathfrak{g}, K)_{\mathfrak{f}}$ is equivalent to the category of right modules over the algebra $\operatorname{End}_{\mathcal{M}(\mathfrak{g}, K)}(P_{\sigma}) \underset{\mathcal{Z}(\mathfrak{g}, K)}{\otimes} \mathcal{Z}(\mathfrak{g}, K)_{\mathfrak{f}}$.

Proof of the claim. To prove the assertion, it is enough to show that $L_{can}(P_{\sigma})$ is a projective generator of the category $\mathcal{M}(\mathfrak{g}, K)_{\mathfrak{f}}$.

It is clear that the functor L_{can} of 4.1 sends projective objects to projective ones. This implies that $L_{can}(P_{\sigma})$ is a projective object of $\mathcal{M}(\mathfrak{g}, K)_{\mathfrak{f}}$. Let us show that it is a generator of the category. In other words, we have to show that for any (\mathfrak{g}, K) -module V, the equality $\operatorname{Hom}_{\mathcal{M}(\mathfrak{g}, K)_{\mathfrak{f}}}(L_{can}(P_{\sigma}), L_{can}(V)) = 0$ implies that $L_{can}(V) = 0$.

We can assume that V is finitely generated. For any finite dimensional Kmodule τ consider $\mathcal{Z}(\mathfrak{g}, K)$ -module $F_{\tau}(V) := \operatorname{Hom}_{K}(\tau, V)$ defined in 3.1. This module is finitely generated and it is easy to see that

(i) $F_{\tau}(V/\mathfrak{m}V) = F_{\tau}(V)/\mathfrak{m}F_{\tau}(V),$

(ii) $\operatorname{Hom}_{\mathcal{M}(\mathfrak{g},K)_{\mathfrak{f}}}(L_{can}(P_{\tau}),L_{can}(V)) = (F_{\tau}(V))_{\mathfrak{f}}.$

According to the Nakayama lemma, for every finitely generated $\mathcal{Z}(\mathfrak{g}, K)$ -module M the equality $M/\mathfrak{m}M = 0$ is equivalent to $M_{\mathfrak{f}} = 0$. From this we see that if $\operatorname{Hom}_{\mathcal{M}(\mathfrak{g},K)_{\mathfrak{f}}}(L_{can}(P_{\sigma}), L_{can}(V)) = 0$ then $F_{\sigma}(V/\mathfrak{m}V) = 0$.

But σ was chosen in such a way that this implies that $V/\mathfrak{m}V = 0$. Now reversing the argument we see that for any τ Hom_{$\mathcal{M}(\mathfrak{g},K)_{\mathfrak{f}}(L_{can}(P_{\tau}), L_{can}(V)) = 0$, which implies that $L_{can}(V) = 0$.}

Step 2. By Theorem 1.2, the algebra $\operatorname{End}_{\mathcal{M}(\mathfrak{g},K)}(P_{\sigma})$ is a Cohen-Macaulay module over $\mathcal{Z}(\mathfrak{g},K)$ of dimension ℓ . Criterion 2.5 then implies that it is a locally free finitely generated module over some regular subalgebra \mathcal{O} in $\mathcal{Z}(\mathfrak{g},K)$, i.e. that $\operatorname{End}_{\mathcal{M}(\mathfrak{g},K)}(P_{\sigma})$ is a Cohen-Macaulay algebra. Thus, we have shown that for every maximal ideal $\mathfrak{m} \in \operatorname{Spec}(\mathcal{Z}(\mathfrak{g},K))$, the localization of the category $\mathcal{M}(\mathfrak{g},K)$ with respect to multiplicative subset $\mathfrak{f} = \mathcal{Z}(\mathfrak{g},K) \setminus \mathfrak{m}$ is equivalent to a localization of the category of modules over a Cohen-Macaulay algebra. \Box

4.4. Theorem 4.3 proved above has an analytic analog (Theorem 1.3), when the localization of $\mathcal{Z}(\mathfrak{g}, K)$ with respect to a subset $\mathcal{Z}(\mathfrak{g}, K) \setminus \mathfrak{m}$ is replaced by the algebra of holomorphic functions on a small ball in $\operatorname{Specmax}(\mathcal{Z}(\mathfrak{g}, K))$ around the point corresponding to \mathfrak{m} .

Its proof goes along the same lines as the one of Theorem 4.3 after adopting the following strengthening of Harish-Chandra's theorem (cf. [Vo, 5.4]):

Theorem. Let U be a compact subset of $\operatorname{Specmax}(\mathcal{Z}(\mathfrak{g}, K))$. Then there exists a finite-dimensional K-representation σ such that for every irreducible (\mathfrak{g}, K) -module V with a central character belonging to U, one has $\operatorname{Hom}_K(\sigma, V) \neq 0$.

References

- [AK] A. Altman and S. Kleiman. Introduction to Grothendieck duality theory, vol. 146. Lecture Notes in Math., Springer-Verlag, Heidelberg, 1970.
- [Ber] J. Bernstein, rédigé par P. Deligne. Le centre de Bernstein. in: Représentations des groups réductifs sur un corps local. Travaux en cours, Paris, Hermann, 1984.
- [Bez] R. Bezrukavnikov. Sheaves on the building and some dualities on the derived category of representations of a reductive *p*-adic group. *Preprint, Tel Aviv University* (1997).
- [BGG1] J. Bernstein, I. Gelfand, S. Gelfand. Structure locale de la catégorie des modules de Harish-Chandra, I. C. R. Acad. Sc. Paris 286 (1978), 435–437.
- [BGG2] J. Bernstein, I. Gelfand, S. Gelfand. Structure locale de la catégorie des modules de Harish-Chandra, II. C. R. Acad. Sc. Paris 286 (1978), 495–497.
- [BL] J. Bernstein and V. Lunts. A simple proof of Kostant's theorem that $U(\mathfrak{g})$ is free over its center. Amer. Jour. of Math. **118** (1996), 979–987.
- [KR] B. Kostant and S. Rallis. Orbits and representations associated with symmetric pairs. Amer. Jour. of Math. 93 (1971), 753–809.
- [Ha] R. Hartshorne. Residues and Duality, vol. 20. Lecture Notes in Math., Springer-Verlag, Heidelberg, 1966.
- [Se] J-P. Serre. Algèbre locale. Multiplicités (rédigé par P. Gabriel), vol. 11. Lecture Notes in Math., Springer-Verlag, Heidelberg, 1965.
- [Vo] D. A. Vogan. Representations of real reductive Lie groups, Progress in Math., Birkhäuser, 1981.
- [Wa] N. Wallach. Real Reductive Groups 1, vol. 132. Pure and Applied Math. (Academic Press), Boston, 1988.

J. Bernstein

- A. Braverman
- D. Gaitsgory
- School of Mathematical Sciences

Tel-Aviv University

Ramat-Aviv69978

Israel

e-mail: bernstei@math.tau.ac.il braval@math.tau.ac.il gaitsgde@math.tau.ac.il