
Part I. Derived category De(X) and functors.  

0. S o m e  preliminaries.  

0.1. Let G be a topological group and X be a topological space. We say that  X is 

a G-space  if G acts continously on X. This means that the multiplication map 

m: G•  (g,x) F-~,gx 

is continuous. 

Let X, Y be G-spaces. A continuous map f : X ~ Y is called a G - m a p  if it 

commutes with the action of G on X and Y. 

More generally, let r : H --* G be a homomorphism of topological groups. Let 

X be an H-space and Y be a G-space and f : X --* Y be a continuous map. We 

call f a C-map  if 

f (hz)  = r  

for a l l x E X ,  h E H .  

Let X be a G-space. We denote by X := G\X  the quotient space (the space 

of G-orbits) of X and by q : X --- X the natural  projection. By definition q is a 

continuous and open map. 

0.2.  Let X be a G-space. Consider the diagram of spaces 

do Jo 
G x G x X ~ . ~  G x X ~ . ~  X 

where 

a 0 ( g l , . . . ,  g , ,  z )  = ( 9 2 , . . . ,  g , ,  e l ' X )  

di(gl , . . . ,gn,x)  = (gl , . . . ,g igi+l , . . . ,gn,x) ,  l < i < n - 1  

dn(gl,. . .  ,gn,x) -- ( e l , . . .  ,gn--1, x) 

s0(x) = (~, x) 

A G - e q u i v a r i a n t  s h e a f  on X is a pair (F, 8), where F E Sh(X)  and 8 is an 

isomorphism 

8 : d~F ~ d~F, 

satisfying the cocycle condition 

d~Ood;O=d;O, a~O=idF. 

We will always assume that F is an abelian sheaf or, more generally, a sheaf of 

R - modules for some fixed ring R. 

A morphi sm of equivariant sheaves is a morphism of sheaves F --+ F '  which 

commutes with O. 



Equivariant  sheaves form an abelian category which we denote by ShG(X). 

Examples .  
1. She(G) ~- R - rood. 
2. If G is a connected group, then Shv(pt) ~- R - rood. 

R e m a r k .  In case G is a discrete group, a G-equivariant sheaf is simply a sheaf F 

together  with an action of G which is compatible with its action on X (cf. [Groth]). 

0.3.  Consider the quotient map q : X --* X.  Let H E Sh(-,~). Then q*(H) E Sh(X)  
is na tura l ly  a G-equivaxiant sheaf. This defines a functor 

q*: Sh(X) - ,  S h e ( X )  

m 

Let F E She(X) .  Then the direct image q,F E Sh(X)  has a natura l  action of 

G. Denote by qa, F = (q,F) e the subsheaf of G-invariants of q,F. This defines a 

functor 

qa, : S h e ( X )  -* Sh(-X). 

Definit ion.  A G-space X is free if 

a) the stabilizer G~ = {g E Glgx = x} of every point x E X is trivial,  and 

b) the quotient map  q : X ~ X- is a locally trivial  f ibration with fibre G. 

X.  

A free G-space X is sometimes called a principal  G-homogeneous space over 

The following lemma is well known. 

L e m m a .  Let X be a free G-space. Then the functor q* : Sh(X)  ~ S h e ( X )  is an 

equivalence of categories. The inverse functor is q,a : S h e ( X )  --* Sh(X).  

0.4.  The  last lemma shows that  in case of a free G-space we may identify the 

equivariant category S h e ( X )  with the sheaves on the quotient Sh(X).  Hence in 

this case one may define the d e r i v e d  c a t e g o r y  D e ( X )  of equivariant sheaves on 

X to be the derived category of the abelian category She(X) ,  i. e. 

D e ( X )  :=  D(ShG(X)) = D(Sh(X)) .  

If X is not a free G-space, the category D(Sha(X) )  does not make much sense 

in general. (However, it is still the right object  in case G is a discrete group (see 

section 8 below)). 

It turns  out that  in order to give a good definition of D e ( X )  one has first of 

all to resolve the G-space X,  i.e. replace X by a free C-space, and then to use the 



above naive construction of De for a free space. This allows us to define all usual 

functors in Da with all usual properties.  

It is possible to give a more abstract  definition of Da using simplicial topological 

spaces (see Appendix B). However, we do not know how to define funetors using 

this definition and hence never use it. 



1. R e v i e w  o f  s h e a v e s  a n d  f u n c t o r s .  

This section is a review of the usual sheaf theory on locally compact  spaces 

and on pseudomanifolds.  The subsections on the smooth base change (1.8) and on 

acyclic maps  (1.9) will be especially impor tant  to us. We will mostly follow [Bol]. 

1.1. Let X be a topological space. We fix a commutat ive ring R with 1 and denote 

by Cx the constant  sheaf of rings on X with stalk R. We denote by Sh(X) the 

abelian category of Cx-modules  (i.e., sheaves of R-modules) on X.  

Let f : X --~ Y be a continuous map of topological spaces. We denote by 

f* : Sh(Y) --* Sh(X) the inverse image functor and by f ,  : Sh(X) ---* Sh(Y) the 

direct image functor. The functor f* is exact and f*(Cy) = Cx. The functor f ,  is 

left exact and we denote by Rif, its right derived functors. 

Our  main object  of s tudy is the category Db(X) - the bounded derived category 

of Sh(X). We also consider the bounded below derived category D+(X). 
A continuous map f : X ~ Y defines functors 

f * :  Db(Y) -~ Db(X) and Rf, : D+(X) --~ D+(Y). 

R e m a r k .  Since we mostly work with derived categories, we usually omit  the sign 
L 

of the derived functor and write f ,  instead of R f,, | instead of | and so on. 

1.2. T r u n c a t e d  derived categories (see [BBD]) 

For any integer a we denote by D<-a(x) the full subcategory of objects  A E 

D+(X) which satisfy Hi(A) = 0 for i > a. The natura l  imbedding D<-a(X) 
D+(X) has a right adjoint  functor T_<a : D(X) + ~ D<-a(X), which is called the 

t runcat ion functor. 

Similarly we define the subcategory D>-~(X) C D+(X) and the t runcat ion  

functor T>~: D+(X) ~ D>'~(X). 
Given a segment I = [a, b] C_ Z we denote by DI(x) the full subcategory 

D>-~(X) A D<-b(X) C Oh(X). 
Subcategories D>-a(X), n<b(X) and nI (x )  are closed under  extensions (i.e. 

if in an exact tr iangle A --- B + C objects A and C lie in a subcategory, then B 

also lies in the subcategory).  All these subcategories are preserved by inverse image 

functors. 

If J C I ,  we have a natura l  fully faithful funetor D J ( x )  ---* DI(x). The 

category Db(x) can be reconstructed from the system of finite categories DI(x), 
namely 

Db(X) = lim DI(X). 
I 

Since all functors DJ(x) ---* DI(x) are fully faithful, there are no difficulties in 

defining this limit. 



In the case when I = [0, 0] the subcategory DZ(X) is naturally equivalent to 

Sh(X) .  This is the heart of the category Db(X) with respect to t-structure defined 

by truncation functors r (see [BBD]). 

1.3. We assume that  the coefficient ring R is noetherian of finite homological dimen- 

sion (in fact we are mostly interested in the case when R is a field, usually of char- 

acteristic 0). Then we can define functors of tensor product | : Db(x)  x Db(X) 
Db(X) and Horn: Db(X) ~ x D+(X)  ~ D+(X)  (see [Bol], V.6.2 and V.7.9 ). 

1.4. For locally compact spaces one has additional functors f,, f! and the Verdier 

duality functor D. In order to define these functors we will work only with a special 

class of topological spaces. Namely, we say that a topological space X is nice if it 

is Hausdorff and locally homeomorphic to a pseudomanifold of dimension bounded 

by d = d(X) (see [Bol]). 

Every nice topological space is locally compact, locally completely paracompact 

and has finite cohomological dimension (see [Bol]). In particular every object in 

Db(X) can be realized by a bounded complex of injective sheaves. In fact we could 

consider instead of nice spaces the category of topological spaces satisfying these 

properties. 

Let f : X ~ Y be a continuous map of nice topological spaces. Then following 

[Bol] we define functors f , ,  f! : Oh(X) ~ Oh(y),  and f*, f! : Oh(y)  --~ Oh(X). 
Functors described above are connected by some natural morphisms. We will 

describe some of them; one can find a pretty complete list in [GoMa]. These proper- 

ties are important  for us since we would like them to hold in the equivariant situation 

as  well. 

We denote by 7" the category of topological spaces. 

In the rest of this section 1 (except for 1.9) we assume that all spaces are nice. 

1.4.1.  We have the following natural functorial isomorphisms. 

Hom(A | B, C) "~ Horn(A, Horn(B, C)), 

f*(A | B) ~_ f*(A) @ f*(B). 

1.4.2.  C o m p o s i t i o n .  Given continuous maps f : X ~ Y and g : Y ~ Z there are 

natural  isomorphismsof functors ( f g )* = g*. f*, ( f g ): = g!. f!, ( f g ), = f , .g , ,  ( f g )! = 

f! " g!. 

1.4.3. ~ d j o i n t  f n n c t o r s .  The functor f* is naturally left adjoint to f ,  and the 

functor f! is naturally left adjoint to f!.  



1.4.4. There is a canonical morphism of functors f! ~ f ,  which is an isomorphism 

when f is proper. 

1.4.5. E x a c t  triangle of  an open  s u b s e t .  Let U C X be an open subset, Y = 

X \ U, i : Y --~ X and j : U ---r X natural  inclusions. Then for every F E Db(X) 

adjunction morphisms give exact triangles 

i!i'F ---* F ~ j , j * F  

and 

j , j !F  --* F --* i.i*F. 

In this case i! = i .  and j! are extensions by zero, j* = j! is the restriction to an 

open subset, i,i ! is the derived functor of sections with support in Y. 

1.4.6. Base  change .  In applications we usually fix a topological space S (a base) 

and consider the category T / S  of topological spaces over the base S. An object of 

this category is a pair X E T and a map X --* S. 

Every continuous map v : T --* S defines a base change ~:  T / S  ~ T / T  by 

X ~ . ~  = X x s T .  
Given a space X / S  we will use the projection v : )(  ~ X to define a base 

change functor v* : Db(x)  --~ Db(X). This functor commutes with functors f* and 

f.,, i.e. there are natural  functorial isomorphisms 

v ' f *  = f ' v *  and v ' f !  = f:v*. 

Similarly, there are natural  isomorphisms 

J f ! = f ! v  ! and v ' f . = f . v  !. 

1.4.7. Propert ies  of  the  functor f!. 
The object Df := f ! (Cy)  E Db(x)  is called the dualizing object of f .  

1. We say that the map f is locally fibered if for every point x E X there exist 

neighbourhoods U of x in X and V of y = f (x)  in Y such that the map f : X ~ Y 

is homeomorphic to a projection F x V ~ V. 

Assume that f is locally fibered. Then for every A E Db(y) there is a natura l  

isomorphism 

f!(A) ~- i f (A )  |  

(see [Ve2]). 

2. Let f : X r Y be a closed embedding. We say that f is relatively smooth if 

there exists an open neighbourhood U of X in Y, such that U = X • I t  d and f is the 



embedding of the zero section f (x)  = (x, 0). Let p : U -+ X be the projection. An 

object  F E Db(Y) is called smooth relative to X if Fu = p*F' for some F' C Db(x).  

Assume f : X --* Y is a relatively smooth embedding. Then D I E Db(X) is 

invertible (see 1.5 below). Let F E Db(y) be smooth relative to X.  Then we have 

a na tu ra l  isomorphism in Db(x)  

f F  = f * F  | D I. 

In par t icular  the dualizing object D y  (see 1.6.1 below) of Y is smooth relative 

to X and we have 

Dx = f !Dy  = f*Dy  | Dr. 

3. Let 

zp J ~ z  
~ f  ~ f  

{p}& w 

be a pullback square, where f : Z --+ W is a locally trivial fibration, and j : Zp ~ Z 

is the  inclusion of the fiber. Then we have a canonical isomorphism of functors 

/ .  f* = f* .i !. 

1.5. T w i s t .  An object  L E Db(x)  is called i n v e r t i b l e  if it is locally isomorphic to 

Cx[n] - the constant  sheaf Cx placed in degree - n .  Then for L -1 := Horn(L, Cx)  
the na tura l  morphism L | L -1 -* Cx is an isomorphism. Every invertible object  L 

defines a twist functor L : Db(X) ~ Db(X) by A J ) L | A. If L, M are invertible 

objects,  then N = L | M is also invertible and the twist by N is isomorphic to the 

product  of twists by L and M. In part icular ,  the twist functor by L has an inverse 

given by the twist by L -1. 

The twist is compatible  with all basic functors. For example L | (A @ B) 

(L @ A) | B and L @ Horn(A, B) = Horn(A, L | B) = Horn(L -1 @ A, B). 
Fix a base S and an invertible object  L in Db(s). It defines a family of twist 

functors L in categories Db(X) for all spaces X/S;  namely if p : X --* S and 

A E Db(X), then L(A) = p*(L) @ A. This twist is compatible with all our functors, 

i.e., for every continuous map  f : X ~ Y over the base S there are canonical 

isomorphisms of functors 

f*L  = L f*, f !L = L f:, f . L  = L f . ,  f~L = L f:. 

These isomorphisms are compatible with isomorphisms in 1.4. 



1.6. V e r d i e r  d u a l i t y  

1.6.1.  Let us fix an invertible object  Dpt in Db(pt) and call it a dualizing object  over 

the point.  For any nice topological space X we define its d u a l i z i n g  o b j e c t  Dx E 
Db(x)  to be p~(Dpt), where p : X --* pt. If X is a smooth manifold of dimension d 

the dualizing object  Dx is invertible (1.5) and locally isomorphic to Cx[c~. Using 

this dualizing object  we define the Verdier duali ty functor D : Db(X) ~ Db(X) by 

D(A) -= Horn(A, Dx).  

For any object  A E Db(X) we have a canonical functorial bidual i ty  morphism 

A---~D(D(A)). 

1.6.2.  T h e o r e m  (Verdier duality).  For any continuous map f there are canonical 
functorial isomorphisms 

Df! = f . D  and f ! D =  Df*. 

1.6.3.  Different choices of the object  Dpt give rise to different duali ty functors, 

which differ by a twist. We will choose the s tandard  normalizat ion Dpt = Cpt (see 

[Boll). 

R e m a r k .  This s tandard  normalization is not always natural .  For example,  if 

R = k(M) is an algebra of functions on a nonsingular algebraic variety M,  the 

na tura l  choice for Dpt is a dualizing module for M,  equal to ~M [dimM]. 

1.7. S m o o t h  m a p s .  Let f : X --~ Y be a continuous map of topological spaces. 

We say that  f is smooth of relative dimension d if for every point x C X there 

exist neighborhoods U of x in X and V of f (x)  in Y such that  the restr icted map  

f : U ~ V is homeomorphic to the projection V x R d ~ V. 

For a smooth map f the dualizing object Df E Db(X) is invertible and is locally 

isomorphic to C• [ d] . 

1.8. S m o o t h  b a s e  c h a n g e .  Consider a smooth base change u : T --* S. If X is a 

nice topological space (see 1.4.), then the space .X = X • sT  is also nice. The crucial 

observation, which makes our approach possible, is that  in this s i tuat ion the base 

change functor u* : Db(X) ~ Db(X) essentially commutes with all other functors. 

T h e o r e m  (Smooth base change). 

(i) We have canonical functorial isomorphisms 

v*(A| B) = ~*(A) | L,*(B), 
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u*(Hom(A,B)) = Hom(u*(A),v*(B)).  

(ii) Let f : X ---* Y be any map of spaces over S. Let us denote by the same symbol 
the corresponding map X --* Y.  Then for A E Db(x) ,  B E Db(y)  we have canonical 
isomorphisms 

•*f,(A) ~_ f , ,* (A) ,  v*f:(A) ~_ f!~*(A) 

~*f*(B) ~- f* ,*(B) ,  v * f ( B )  ~_ f ! ,*(B) .  

These isomorphisms are compatible with isomorphisms in 1. 4. 
(iii) The Verdier duality commutes with z/* up to a twist by the (invertible) dualizing 

object D~ of v : T --~ S. Namely 

D(u*(A)) = Dv | l/*(D(A)). 

This isomorphism is compatible with the identities in 1.6. For example, if we 
identify u*(DD(A)) ~_ DD(u*A) using the last isomorphism then ~/* preserves the 

biduality morphism (1.6. I). 

We will discuss this theorem in Appendix A.  

1.9. A c y c l i c  m a p s .  Fix n > 0. In this section we consider general topological 

spaces. The proofs are given in Appendix A below. 

1.9.1.  D e f i n i t i o n .  We say that  a continuous map f : X ---} Y is n - a c y c l i c  if it 

satisfies the following conditions: 

R f , f  (B) is an a) For any sheaf B E Sh(Y)  the adjunction morphism B ---} 0 �9 

isomorphism and Ri f ,  f*(B)  = 0 for i = 1, 2 , . . . ,  n. 

b) For any base change Y --+ Y the induced map f : )C = X xyY ---} Y satisfies 

the proper ty  a). 

We say tha t  f is c(~-acyclic if it is n-acyclic for all n. 

It is convenient to rewrite the condition a) in terms of derived categories. 

Namely, consider the functor a = r<n �9 f ,  : Db(X) ---} Db(y). Then the ad- 

junct ion morphisms B ~ f , f * (B )  and f* f , (A)  ~ A define functorial  morphisms 

v<_,(B) --* a f*(B)  and f*a(A)  ~ r<n(A).  

The  condit ion a) can be now wri t ten as 

a ~) For any sheaf B E Sh(Y)  C oh (y )  the na tura l  morphism B --} a f* (B)  is 

an isomorphism. 

1.9.2.  It turns  out  that  for an n-acyclic map  f : X --+ Y large pieces of the category 

Db(y) can be realized as full subcategories in Db(x) .  Namely, let us say tha t  an 

object  A E D + (X)  c o m e s  f r o m  Y if it is isomorphic to an object  of the form f* (B) 
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for some B E D+(Y). We denote by D+(X[ Y) c D+(X) the full subcategory of 

objects which come from Y. 

Let us fix a segment I = [a, b] C Z and consider the truncated subcategory 

DI( x I  Y )  = D I ( x )  t3 D+(XIY).  

Proposit ion (see Appendix A). Let f : X --~ Y be an n-acyclic map, where n > 

III = b - a (resp oo-acyclic). Then 

(i) The functor f* : DI (Y)  --* DI(XIY)  (resp. f* : D+(Y) --+ D+(XIY) )  is an 
equivalence of categories. The inverse functor is given by a = r<_b o f .  : Db(x)  --* 
Oh(Y) (resp. f .  : D+(Z)  --* D+(Y)). 

(ii) The functor f* gives a bijection of the sets of equivalence classes of exact tri- 
angles in D I ( y )  and D I ( x [ Y )  (resp. in D+(Y) and D+(X[Y)).  In other words a 

diagram (T) in D l ( y )  is an exact triangle iff the diagram f*(T) in D1(X) is an 

exact triangle. 
Oii) The subcategory DZ(X[Y) C D~(X) (resp. D+(X[Y) C D+(X))  is closed 

under extensions and taking direct summands. 

1.9.3.  The following lemma gives a criterion, when an object A E DI (X)  comes 

from Y. 

L e m m a .  Suppose we have a base change q : 9 ~ Y in which q is epimorphic and 

admits local sections. Set f(  = X • 9 and consider the induced map f :  X --* Y.  

Then 
(i) The induced map f is n-acyclic if and only if f is n-acyclic. 

(ii) Suppose f,  f are n-acyclic. Let A E DI(X) ,  where III <_ n. Then A comes from 

Y if and only if its base change A = q*(A) E DI(.~) comes from Y.  
(iii) The above assertions hold if we replace "n-acyclic" by "oo-acyclic" and D I by 

D + . 

1.9.4.  The following criterion, which is a version of the Vietoris-Begle theorem, 

gives us a tool for constructing n-acyclic maps. 
We say that a topological space M is n-acyclic ,  if it is non-empty, connected, 

locally connected (i.e. every point has a fundamental system of connected neigh- 

borhoods) and for any R-module A we have H~ ~- A and Hi (M,A)  -- 0 for 

i -- 1 , 2 , . . . , n .  

C r i t e r i o n .  Let f : X --* Y be a locally fibered map (1.4.7). Suppose that all fibers 

of f are n-acyclic. Then f is n-acyclic. 

1.10. Constructible complexes. 
Suppose that X is a pseudomanifold with a given stratification S (see [Bol] 1.1). 

We denote by D~(X; S) the full subcategory of S-constructible complexes in Db(X), 
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i.e. complexes whose cohomology sheaves are constructible with respect to $ (see 

[Boll). Then D~(X; $) is a t r iangulated subcategory of Db(x), closed with respect 

to extensions and taking direct summands.  It is also preserved by functors r ,  | 

Horn and D. For a constructible complex A the biduali ty morphism A ~ DD(A) 
is an isomorphism. If f : (X,S)  ~ (KS ' )  is a stratified map of pseudomanifolds,  

then functors f*,  f ! ,  f .  and f! preserve constructibil i ty (see [Bol]). 

Consider the natura l  part ia l  order on the set of all stratifications of X (S > T if 

s t ra ta  of $ lie inside s t ra ta  of T).  If S _> T we have a natural  fully faithful inclusion 

functor Db(X; T) ~ Db(X; S). 
We define a c o n s t r u c t i b l e  s p a c e  to be a topological space X together with 

a system {$} of stratifications of X (allowable stratifications), which is a directed 

system with respect to >_. For constructible space X we define 

Dbc(X) = li~aD~(X,S). 

Let (X,S)  and (Y,T) be constructible spaces. A continuous map f : X ~ Y is 

called constructible if for any allowable stratifications S and T there exist allowable 

stratif ications $ '  >_ $ and T' > T such that  f : (X,S')  ---* (Y,T') is a stratified 

map.  For a constructible map f functors f*,  f! ,  f . ,  and f! preserve constructibility. 

E x a m p l e s .  1. Let X be a complex algebraic variety. Then as a topological space 

X has a canonical s tructure of a construetible space. Namely a stratification S is al- 

lowable if all its s t ra ta  are algebraic. Any algebraic map f : X --* Y is constructible. 

2. Similarly every real semialgebraie set has a canonical s tructure of a con- 

s truct ible space. 
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A p p e n d i x  A.  

A1 .  P r o o f  of  T h e o r e m  1.8 

(i) See [Boll, V.10.1,10.21. 

(ii) Consider the pullback diagram 

,~ Z-+ X 

S f  ~.f 
y --~+ y 

The isomorphism for f* follows from 1.4.2 and for f! is a base change isomor- 

phism 1.4.6 (here we do not use that  v is smooth).  

By 1.4.7 the functor v ! is obtained from v* by the twist (see 1.5) by the relative 

dualizing sheaf D~, E Db(T), i.e., we have canonical isomorphisms v ! ~_ D~ | v* on 

both  .~ and Y. Since all functors commute with the twist ( see 1.5) it suffices to 

find canonical isomorphisms v!f  ! "-" f ' v  ! and ~!f,  _~ f , v  ! . Again this follows from 

1.4.2 and 1.4.6. 

The  proof of the fact that  smooth base change preserves all functorial identi t ies 

ment ioned in the theorem is quite lengthy and is based on case by case considera- 

tions. We omit  the details. 

(iii) This follows from 1.4.7 and 1.7. 

A2. P r o o f  of  propos i t ion 1.9.2 
(i) Consider the functor a : Db(x)  ~ Oh(Y) given by o(A) = T<_bf,(A). Using 

adjunct ion morphisms Id ---* f ,  f* and f ' f ,  ---* Id in combination with the t runcat ion  

functor r<b we construct  morphisms of functors a : r<b ~ a f* and/3 : f * a  --+ r<b. 

Let C C Db(y) be the full subcategory of objects B for which the morphism a 

is an isomorpism. This subcategory is closed under extensions and by the acyclicity 

condit ion it contains subcategories Sh(Y)[-i]  for i > a. Hence C contains D >-a. 

In par t icular  on the category DI(y )  we have a functorial isomorphism B --+ 

of*(B) ,  which shows that  the functor a on this subcategory is left inverse to f*.  

Let B C DZ(Y). Propert ies  of adjunction morphisms imply that  the com- 

posi t ion morphism f*(B)  ~ f*a f*(B)  ~ f*(B) is an identity. This implies the 

following 

Criterion. An object  A E Dr(X)  lies in DX(XIY) if and only if the morphism 

/3 : f* a( A ) ~ A is an isomorphism. 

This criterion shows that  the functors f and a are inverse equivalences of cat- 

egories D I ( y )  and DI(XlY) .  

(ii) This follows from the fact that  inverse functors f* and a are exact. 

(iii) This follows from the criterion in (i). 

The assertions about  D+(Y) and D+(XIY)  in case f is oo-acyclic are proved 

similarly. 
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A 3 .  P r o o f  o f  L e m m a  1 .9 .3 .  

(i) Since f i s  obtained from f by a base change, the n-acyclicity of f implies tha t  of 

f ( s e e  1.9.1). Conversely, suppose jTis n-acyclic. Locally on Y the map q :  Y ~ Y 

has a section s and the map f can be obtained from f by the base change with s. 

Thus f is n-acyclic locally on Y and hence is n-acyclic. 

(ii) If A comes from Y then clearly .4 comes from Y. Let us show that  if A comes 

from Y then A comes from Y. 

Using the criterion in A2(i) it is enough to check this locally on Y. But locally 

A is obta ined from A by the base change with the morphism s, and hence it comes 

from Y. 

(iii) Is proved similarly. 

A 4 .  P r o o f  o f  c r i t e r i o n  1 .9 .4  

Our proof is a refined version of the argument in [Bol],pp.80-82. 

Step 1. Let f : X = Y x F ---* Y be a projection with a nonempty connected 

fiber F .  Then for any B E S h ( Y )  one has F(X,S*B) ~_ F(Y ,B) .  

Step 2. If f : X --* Y is locally fibered with locally connected fibers, then the 

functor f* preserves direct products  of sheaves. 

Indeed, let B = l-I B~ be a product  of sheaves on Y. Consider the na tura l  

morpism 3' : f * ( B )  ~ rI f*(B,~). We claim that  ~/is an isomorphism. It is enough to 

check that  ~ induces isomorphisms on sections over small enough open sets U C X.  

By our assumption we can choose open subsets U C X and V C Y such tha t  the 

map f : U ~ V is homeomorphic to a projection V • F --* V with a non-empty 

connected fiber F .  Then by Step 1 

F(U,f*(B)) = r(V,B) = I I  F(V,B~) 

and 

r(u, 1-I f'(B.)) = 1-I r (u,  f*(B.))  = 1-I r (y ,  B . )  

which implies that  "y is an isomorphism. 

Step 3. Let i : y --~ Y be an imbedding of a point (not necessarily closed), 

j : F = f - l ( y )  ~ X the corresponding imbedding of the fiber over y. Then 

functors i ,  and j ,  are exact and we have the base change f * i , (A )  ~- j , f * ( A )  for 

A E Sh(y) .  

Indeed, since the s ta tement  is local, we can assume that  X -- Y x S. Consider 

a point  x = (y', s) E X and a sheaf B E Sh(S) .  Then it is easy to see that  the stalk 

of j , ( B )  at the point  x equals the stalk of B at the point s if y~ lies in the closure 

of y and equals 0 otherwise, and similarly for the map i. This implies the exactness 

of functors i , ,  j , .  Comparison of stalks proves the base change. 
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Step 4. As in A2(i) let us consider the functor a = r<bf. : D(X)  b ~ Db(Y) 

and the functorial  morphism a : B ~ crf*(B). 

Let C = C(Y)  C Sh(Y)  be the subcategory of sheaves B such tha t  a is an 

isomorphism a : B ~- af*(B).  
Let i : y ~ Y be an imbedding of a point and B E Sh(y). Then by the 

assumption on fibers of the map  f ,  the sheaf B lies in C(y). Using step 3 we deduce 

that  its image i . (B)  lies in C(Y).  Since the functor f ,  preserves direct products ,  

s tep 2 implies that  C(Y)  is closed under direct product .  Hence any sheaf B E Sh(Y)  
can be imbedded in a sheaf E which lies in C(Y). 

Step 5. Using s tandard  devissage one shows by induction on n that  all sheaves 

on Y lie in C(Y).  
Step 6. For any base change Y --~ Y the corresponding map A" --~ Y satisfies 

the same conditions as f .  Hence f is n-acyclic. 



2. E q u i v a r i a n t  de r i ved  ca tegor ies .  

This section contains the definition of our main object - the derived category 

DG(X). This is not a derived category in the usual sense, i.e. it is not the derived 

category of an abelian category. However, D e ( X )  is a triangulated category with a 

t-structure, whose heart is equivalent to the abelian category S h e ( X )  of equlvariant 

sheaves on X. We give several equivalent definitions of DG(X) - each one appears 

to be useful. 

We start with the bounded derived category D~(X)  - definition 2.2.4. Other 

definitions of D~(X)  are given in 2.4 and 2.7. The bounded below category D+(X)  

is defined in 2.9 in a similar way. One notices that there is a quick definition of 

categories D~, D + using oc- dimensional spaces (2.7, 2.9.9). However, the most 

part of this section is devoted to showing that in the case of the bounded category 

D ~ ( X )  we may work only with finite dimensional spaces. This is important  for the 

definition of functors in section 3 below. On the other hand, a -d imens iona l  spaces 

appear to be convenient for D +. In particular the definition (in section 6) of our 

main functor Q f ,  - the general direct image - essentially uses oc-dimensional spaces. 

In this section we work with arbitrary topological spaces; in particular we do 

not assume that they are Hausdorff. 

We fix a topological group G and consider the category of G-spaces. 

2.1. C a t e g o r i e s  D a ( X , P ) .  

Let us recall some definitions from section 0. 

2.1.1.  D e f i n i t i o n .  a) A G-space is a topological space X together with a continuous 

(left) action of G on X. A G-map f : X -~ Y is a continuous G-equivariant map. 

For a G-space X we denote by X- the quotient space X = G \ X and by q the 

quotient map q : X --* X. 

b) A G-space X is called free if G acts freely on X and the quotient map q : X --~ 

is a locally trivial fibration with fiber G. 

L e m m a .  Let v : P -~ X be a G-map. 

P = X x w P  and in particular P is free. 

This lemma is proved in 2.3.1. 

Suppose the G-space X is free. Then 

2.1.2.  D e f i n i t i o n .  Let X be a G-space. A reso lut ion  of X is a G-map p : P --~ X 

in which the G-space P is free. A morphism of resolutions is a G-map over X. 

We denote the category of resolutions of X by Ties(X) or Res(X,  G). 

We will be mostly interested in resolutions which are epimorphic and moreover 
n-acyclie for large n. 

E x a m p l e s .  1. Let T = G • X be a G-space with the diagonal action of G. Then 

the projection p : T --* X is a resolution of X, which we call the t r i v i a l  resolution 
of X. 
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2. More  generally,  let M be any free G-space. T h e n  the  pro jec t ion  p : X x M -+ 

X is a resolut ion  of X .  

3. If P -+ X and R -+ X are two resolut ions of X ,  then  their  p roduc t  S = 

P x x  R also is a resolut ion of X ,  which has na tura l  project ions  on P and R ( this 

is the  p roduc t  of P and R in the category Rcs(X)). 
4. Let  f : X -+ Y be a G-map.  T h e n  every resolut ion P --+ X can be considered 

as a resolut ion  of Y. This  defines a functor  Res(X) -+ Rcs(Y).  
This  func tor  has a right adjoint  functor  f0 : Res(Y) -+ Res(X). Namely  for 

any resolut ion  R -+ Y we set f~  = R x y  X (it is called the i n d u c e d  resolut ion 

of X ) .  

2 .1 .3 .  For  any resolut ion p : P -+ X of a G-space X we consider  the following 

d i ag ram of topological  spaces 

Q ( p ) :  X A P q P = G \ P .  

D e f i n i t i o n .  We define the  ca tegory Dba(X, P)  as follows: 

an  objec t  F of n ~ ( x ,  P) is a t r iple  (Fx,-F, ~) where F= E Db(X), -F e nb(-fi) 
and f l :  p*(Fx) ~ q*(-F) is an i somorphism in Db(P). 

a m o r p h i s m  (~: F -+ g in DbG(Z, P) is a pair  a = (c~x, ~) ,  where c~x : Fx ---* 
Hx  and K :  F ~ g satisfy ~ .  p*(ax) = q*(-5). ~. 

E x a m p l e s .  If G = {e}, the ca tegory Dbo(x,P) is canonical ly  equivalent  to the  

ca tegory  Db(x).  If X is free and P = X ,  the category D b ( x , P )  is canonical ly  

equivalent  to the  ca tegory  D(X).  

2 .1 .4 .  For  any G-space X we define the forgetful  functor  For : D~(X,  P) ---* Db(x)  
by For(F) = Fx. 

2 .1 .5 .  Let  r, : P ~ R be  a morph i sm of two resolut ions of a G-space X .  T h e n  

we define the  inverse image functor  v * :  D~(X, R) ~ D~(Z,  P) by v * ( F x , F ,  3)  = 

(Fx,-~*(-F),3'), where  P : P ~ R is the  quot ient  map  and 3+ = v*(/~) : p*(Fx) = 
- -  I 

~*r*(Fx) ---+ y*q*(F) = q*-g*(F). 

2 .1 .6 .  More  generally, let f : X ~ Y be a G-map.  Suppose  we are given two 

resolut ions  p : P ~ X and r : R ---* Y and a morph i sm u : P ~ R compat ib le  

wi th  f (i.e., f - p = r �9 u). In this s i tua t ion  we define the  inverse image  func tor  

f* : D~(Y, R) ~ D~(X,  P) by f*(Fy,-F, ~) = ( f*(Fy ), F * ( F ) ,  7), where ~ :  P ~ R 

is the  quot ien t  m a p  and 7 = u*(3) : p*(f*(Fy)) = u*r*(Fy) ~ u*q*(F) = q*P*(F). 
We will use this func tor  mos t ly  in two si tuat ions:  when R = P and when 

R = fo (p )  is the  induced resolut ion (see 2.1.2, example  4). 
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2.1.7.  Let p : P ~ X be a resolution of a G-space X and X be the quotient 

space of X. We define the quotient functor q* : Db(-X) --~ Dba(X, P) by q*(A) = 
(q*(A),~*(A),'y), where q : X ~ X- is the quotient map, ~ :  P --4 X the natural  

projection and ~ the natural  isomorphism p*q*x(A) ~ q*~*(A). 

2.2. Categories DI(x) and D~(X). 
2.2.1.  We want to define the equivariant derived category Dba(X) as a limit of 

categories Dba(X, P) when resolutions P --~ X become more and more acyclic. 

We fix a segment I -- [a, b] C Z and first define the category D l i X ) .  

D e f i n i t i o n .  For any resolution p : P --~ X we define a full subcategory D I ( x ,  P) C 
Dba(X, P) using the forgetful functor, i.e., F e D I ( Z ,  P) if Fx e DI(X)  (see 1.2). 

For an epimorphic map p this is equivalent to the condition F E D ; ( P ) .  

We say that a resolution p : P ~ X is n-acyclic if the continuous map p is 

n-acyclic (see 1.9). The following proposition, which we prove in 2.3.3. is central 

for our purposes. 

Proposit ion.  Let p : P --~ X be an n-acyclic resolution, where n >_ [I[. Suppose 
that X is a free G-space. Then the quotient functor q* : DI(-X) --* D I ( x ,  P) is an 
equivalence of categories (2.1.7). 

2.2.2.  We will mostly work with the following corollary of the proposition, which 

describes how the category D I ( x ,  P) depends on the resolution. Let P, R be two 

resolutions of a G-space X, S = P •  R their product and prR : S ~ R the natura l  

projection. 

Coro l l a ry .  Suppose that the resolution P --. X is n-acyelic, where n > [I[. Then 
the f*netor pr*~ : D~(X, R) -~ D~(X, S) is an equivalence of categories. 

2.2.3.  Fix an n-acyclic resolution p : P ~ X, where n > [I[. For any resolution 

R ~ X we define the functor CR,p : D~(X, P) --+ D I ( x ,  R) as a composition 

CR, P = (pr~) -1 "pr~ : D~(X,P)  --. D I ( X , S )  ~_ D~(X,R) ,  where S = P x x  n 

and prp, prR - projections of S on P and R. This functor is defined up to a canonical 

isomorphism. 

Let us list some properties of this functor, which immediately follow from the 
definition. 

(i) If v : R --~ R s is a morphism of resolutions, we have the canonical isomorphism 

of functors CR,p ~-- v* �9 CR,,p (2.1.5). 

In particular, for any morphism v : R ~ P we have the canonical isomorphism 
CR,p ~ Y*. 
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(ii) Let Q be another  n-acyclic resolution. Then we have a canonical isomorphism 

of functors CR,p ~-- CR,Q �9 CQ,p; since the functor Cp, p is the identity, in this case 

the functor CQ,p is an equivalence of categories ( the inverse functor is Cp, Q). 

2.2 .4 .  From now on we assume the following proper ty  of a G-space X:  

(*) For every n > 0 there exists an n - a c y c l i c  resolution p : P ~ X. 

D e f i n i t i o n .  For every segment I C Z we define the category D~(X) to be D I ( x ,  P), 
where P is some n-acyclic resolution of X with n _> ]I]. As follows from 2.2.3 this 

category is defined up to a canonical equivalence. If J C I ,  we have a fully faithful 

functor i : DJ(x )  ~ DI(X), defined uniquely up to a canonical isomorphism. We 

define the equivariant derived category D b ( x )  to be the limit 

Db(X ) = l i p  D~(X) 

(compare with 1.2). 

Passing to the l imit  in constructions defined in 2.1.4, 2.1.6 and 2.1.7 we define 

the following functors: 

(i) The  forgetful functor For: Db(X) ~ Db(Z) 
(ii) The  inverse image functor f * :  DbG(Y) ~ Db(X) for a G-map f :  X ~ Y. 

(iii) The  quotient functor q*: Db(-X) --* Db(X). 
For example,  let us describe the inverse image functor. Let F E Db(y) .  Choose 

a segment I C Z such that  F E DI(y ) .  Fix n > ]I] and find an n-acyclic resolution 

R --~ Y. Then by definition F is an object  of D~(Y, R). Consider the induced 

resolution P = f~ ~ X with the na tura l  project ion v : P ~ R. Using the 

construct ion from 2.1.6 we define the inverse image v*(F)  �9 D I ( x , P ) .  Since P is 

an n-acyclic resolution of X this gives an object  f*(F) �9 D I ( x ) .  
These constructions are compatible,  which means that  we have canonical iso- 

morphisms of functors For. f* ~_ f*.  For, q*. f* ~- f*" q*, where f : X --* Y is the 

quotient map,  and For �9 q* ~- q*, where q : X ~ X is the quotient map.  

2 .2 .5 .  P r o p o s i t i o n .  Let X be a Fee G-space. Then the quotient functor q* : 
Db(-X) ----* D~(X) is an equivalence of categories. 

Indeed, in this r  x is an oo-acyclic resolution of X,  so D~(X) ~- D~(X, X) ~- 
Db(X). 

2.3 .  P r o o f s .  

2.3 .1 .  P r o o f  o f  l e m m a  2.1.1.  Set Y = X and consider the na tura l  map  a : P --~ 

S = X •  P .  Since G acts freely on X,  a is a bijection and G acts freely on 
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P. In order to prove that a is a homeomorphism we can replace Y by its small 

open subset. Since X ---* Y is a locally trivial fibration with fiber G we can assume 

X = G •  

Let zr : X ~ G be the projection and # = ~rr, : P ~ G. Consider the continuous 

map r : P ---* P given by T(p) = #(p)-l(p). Since # is a G-map, T is constant on 

G-orbits. Hence 7 induces a continuous map Y- : P --+ P,  such that r = Tq. The 

action of G then defines a continuous map ~3 : G • P ~ P. Identifying G • P with 

X •  P we see that t3 is the inverse to a. This proves lemma 2.1.1. 

2.3.2.  L e m m a .  Let I C Z be a segment and p : P --~ X be an n-acycIic resolution 

of a G-space X,  where n > [I I. Let DI(P[p)  be the full subcategory of DI(-fi) defined 
by 

DI(Plp)  = {H E J(P)[q*(H)  E J ( P I X ) }  

(i.e. it consists of objects H for which p*(H) comes from X,  see 1.9.2). 

Then the restriction functor D I ( x , P )  ---* Dx(Pip), F ,  ~ -F, is an equivalence 
of categories. The subcategory DZ(PIp) C D(P) is closed under extensions and 
taking direct summands. 

Indeed, by definition an object F E DIa(X,P) is a triple ( F x ,F , / 3 )  with Fx E 
DI(X),  F E D I ( P )  and /~ : p*(Fx) ~- q*(-ff). By Proposition 1.9.2 the functor 

p* : DI(X)  ---+ DX(PIX) is an equivalence of categories. Hence we can describe F 

by a triple ( g  E Dr(PiX),-F E DZ(P), ~3: g _~ q*(F)). 

Such a triple is determined by T up to a canonical isomorphism, so F can be 

described by an object F E Dz(P) such that q*(F) E DI(pIz ) .  

Since the subcategory DI(PI X)  C DI(P) is closed under extensions and taking 

direct summands (1.9.2), the subcategory DI(Tip)  C D(P)  also has these proper- 

ties. This proves the lemma. 

2.3.3.  P r o o f  of  p r o p o s i t i o n  2.2.1. 

By lemma 2.1.1 we have P = X •  Since the resolution map p : P ~ X 

is n-acyclic and q : X ~ X is epimorphic and admits local sections, we can apply 

lemma 1.9.3. In particular, we see that the map ~ : P --* X is n-acyclic and hence 

Dx(-X) "~ DI(PIX) = {H E DZ(P)tH comes from X}. By Lemma 1.9.3 this last 

category equals {H E DZ(-fi)lq*(H) E D~(PIX)} ~- DX(PIp). It remains to apply 

lemma 2.3.2. This proves the proposition. 

2.3.4.  P r o o f  of  co ro l l a ry  2.2.2. Let F E D~(X, R). By definition F is described 

by a triple Fx E DZ(X), T E DI(R)  and fl : q*(F) ~_ v*(Fx). Applying proposition 

2.2.1 to the n-acyclic resolution p : S ~ R of a free G-space R we can replace the 

object F E D/ (R)  by an object H of an equivalent category D~(R, S). Thus F can 
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be described by the 5-tuple 

(Fx ,HR,H,~  : r*(Fx) ~- HR, ")': p*(HR) ~ q*(H)). 

Clearly the triple (Fx, HR,/3) is determined by the object Fx up to a canonical 

isomorphism. Replacing in our 5-tuple this triple by Fx, we see that F can be 

described by a triple (Fx ,H,5  : s*(Fx) ~- q*(H)), where 5 = "y .p*(/3). But the 

category of such triples is by definition D~(X, S). This proves the corollary. 

2.4. D e s c r i p t i o n  o f  the  ca tegory  DbG(X) in t e r m s  o f  f ibered categories .  
We will mostly work with another description of the equivariant derived cat- 

egory D b ( x ) ,  which uses the notion of a fibered category over the category 7" of 

topological spaces. Let us recall this notion. 

2.4.1.  D e f i n i t i o n .  A f ibered ca tegory  C/T  is a correspondence which assigns to 

every object X E 7" a category C(X), and to every continuous map f : X -o y a 

functor f* : C(Y) -* C(X), and to every pair of composable maps f : X --* Y and 

h : Y --~ Z an isomorphism (h f)* ~_ f 'h*, which satisfy the natural  compatibility 

conditions. 

We will work with the following two examples of fibered categories: C(X) = 
Sh(X) and C(X) = Db(X). 

Usually the fibered category C/7" is described in a slightly different way. Namely, 

consider the category C defined as follows: 

An object of C is a pair (X, A), X E 7", A E C(X). 
A morphism r : (Y, B) --* (X, A) in C is a pa i r ,  consisting of a continuous map 

f :  X --~ Y and a morphism r  f*(B) --* A in C(X). 
A composition of morphisms is defined in a natural  way. 

By definition we have the natural  contravariant projection functor ~r : C --~ 

T.  This functor completely describes the fibered category C/7-, since one can 

reconstruct the category C(X) as the fiber of ~r over an object X (see [Gi]). 

A morphism r : (Y, B) --+ (X, A) in C is called c a r t e s i a n  if the corresponding 

morphism r : f*(B) --, A is an isomorphism. This notion can be described directly 

in terms of the functor ~r: C --* 7- (see [Gi]). 

Let K be any category . We call a func to r  �9 : K ~ C c a r t e s i a n  if for any 

morphism a E Mor(K) its image r  E Mot(C) is Cartesian. 

2.4.2.  Fix a fibered category ~r : C --* T. Let K be any category and �9 : K --* 7- 

be a covariant functor. We want to define the category C(~)  which is the f iber of 

the fibered category C over the functor ~. 

By definition, an object F E C((b) is a cartesian functor F : K ~ ~ C, such 

that zr �9 F = (I'. A morphism in C(F) is a morphism of functors a : F --* H such 

that ~r(a) is the identity morphism of the functor ~. 
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In other  words, an object  F E C(ff)  is a correspondence which assigns to every 

object  a E K an object  F(a) E C(q~(a)) and to every morphism a :  a ~ b in K an 

isomorphism F(c~) : r ~_ F(a) in C(r such that  

a) If a = id, then F(a) = id. 
b) For any pair  of morphisms a : a ~ b, fl : b -* c in K we have 

F(fla) = F(a).~(a)*(F(fl)).  

E x a m p l e s .  1. Let K be the trivial  category (one object,  one morphism).  Then a 

functor r : K -~ 7- is nothing else but  a topological space X and C(O) = C(X). 
2. Let K be the category with 3 objects  in which morphisms are described by the 

following diagram 
o P,2- o 2 - ,  o .  

For any resolution p : P + X of a G-space X the diagram Q(p) (2.1.3) repre- 

sents a functor r : K + 7- and the category Db(~)  is equivalent to D~(X, P). 

2.4.3.  Let X be a G-space. Consider the category K = Res(X,  G) of resolutions of 

X and the functor ~ : K ~ 7-, ~ ( P )  = P = G \ P.  

P r o p o s i t i o n .  The fiber Db( ~ ) of the fibered category Db /7- is naturally equivalent 
to the category D~(X). 

In other  words, we can think of an object  F E D~(X) = Db(r as a collection 

of objects  F(P) E Db(-fi) for all resolutions P ~ X together with a collection of 

isomorphisms u*(F(R)) ~_ F(P) for morphisms of r e s o l u t i o n s ,  : P --~ R, satisfying 

na tura l  compat ibi l i ty  conditions. 

P r o o f .  (i) Suppose we are given an object F E Db(x) .  For any resolution p : P --* 

X consider the object  p*(F) E Db(P). Since P is a free G-space, by proposi t ion 

2.2.5 we can find an object  F(P) E Oh(P)  and an isomorphism p*(F) ~- q*(F(P)). 
For any morphism of resolutions u : P ~ R we have a canonical isomorphism 

u*(F(R)) ~_ F(P) in D~(P) ,  which corresponds to a na tura l  isomorphism u*r*(F) ~- 
p*(r) in D~(P). This collection defines an object  F E Oh(C). 

(ii) Conversely, let g -- { g ( P )  E Db(P) ,  H(u)} be an object  of Db(~).  Denote by 

T the tr ivial  resolution T = G x X ~ X.  For any resolution P consider a d iagram 

of resolutions 

T *--- P+ = T x x P , P, 

in which morphisms are projections. Note that  the d iagram 

~ ~__ -p+ ___~ -p 

in T coincides with the diagram Q(p) in 2.1.3. Thus H defines objects  Hx = H(T) E 
Oh(X), -H = H(P) E Oh(P)  and an isomorphism p*(Hx) ~- H(P+) ~- q*(H), i.e., 
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an object  H(P) E Da(X,P) .  It is clear that  the collection of objects  H(P) is 

compat ible  with morphisms of resolutions. 

Chose a segment I C Z such that  H(T) E DI(x ) .  Choose an n-acyclic resolu- 

t ion P --+ X where n > ]II. Then the object  H(P) E DIa(X, P) by definition can 

be considered as an object  of DI(X) .  

If R is another  n-acyclic resolution and S = P • xR ,  then the objects  pr*p(H(P)) 
and pr*R(H(R)) in D~(X, S) are canonically isomorphic to H(S), which shows that  

the objects  H(P) and H(R) in D1a(X) are canonically isomorphic. This defines the 

inverse functor O h ( t )  ~ Dba(X). 

R e m a r k .  Let us describe explicitly the functor Dba(X) --+ Db(r 
Given an object  F E D I ( x )  we can find an n-acyclic resolution P ---* X 

with n > I I I  and realize F as an object  in Dl(-fi). For any resolution R ~ X 

consider the product  resolution S = P •  R and define an object  F(R) E DI(-R) 
by F(R) = (pr*R)-lpr*p(F) (here we use the fact that  the functor pr* R gives an 

equivalence of categories since the map prR : S --+ R is n-acyclic; see also 2.2.3). 

This construct ion gives us a collection of objects F(R) E Db(-R), i.e., an object  in 
Oh(t). 

2.4.4.  Analyzing the proof  of proposit ion 2.4.3 we see that  in  order to reconstruct  

the category Dba(X) we do not need to consider all resolutions and all morphisms 

between them. We can work with a smaller family of resolutions and their  mor- 

phisms, provided it is rich enough. The following proposit ion,  whose proof is jus t  a 

repet i t ion of the proof in 2.4.3, gives the precise s ta tement  of the result. 

Proposition. Let J be a category and j : J ~ K = Res(X,G) be a functor. 
Consider the composed functor ~2 = r  j : J --+ :l" and denote by j the fiber functor 
j :  Db(q~) ~ Db(q~). 

Suppose that the pair J , j  has the following properties: 
a) The category J has direct products and the functor j preserves direct products. 
b) The image j(  J) contains the trivial resolution T. 
c) For every n > O,j( J) contains an n-acyclic resolution. 
Then j :  Dba(x) ~_ o h ( t )  --+ Db(~) is an equivalence of categories. 

E x a m p l e .  Let f : X --+ Y be a G-map.  Set J = Res(Y), j = fo : Res(Y) --+ 
Res(X) (2.1.2 example 4), if2 = j .  r  Then Db(q~) "~ Oh(t).  In other words in 

order to compute  Dba(X) it is enough to use only those resolutions which come from 

Y. 

2 .4 .5 .  Summarizing,  in order to describe an object  F E D~(X)  it is enough to do 

the following: 
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(i) To fix some sufficiently rich category J of resolutions of X closed with respect 

to direct products .  

(ii) For every resolution P �9 J to describe an object r ( P )  E Db(-fi). 
(iii) For every morphism of resolutions v : P --+ R in J to construct  an isomor- 

phism a ~ :  v*(F(R)) "~ F(P). 

(iv) To check that  the system of isomorphisms constructed in (iii) is compat ible  

with the composit ion of morphisms in J.  Namely, given a composition of two 
v tt 

morphisms P---~R--+S, we should have an equality a~ - ~*a ,  = a ,~ .  

R e m a r k .  Similar results hold for the fibered category Sh/T.  Namely, the category 

Sh(~2), and more generally Sh(ff2) as in 2.4.4, is natural ly  equivalent to the category 

Sha(X)  of G-equivariant sheaves on X (0.2,2.5.3). We will prove a slightly stronger 

s ta tement  in Appendix  B. 

We will construct the category D+(X) in 2.9 by the same method.  

2 .4 .6 .  Let us describe some basic functors for the equivariant derived category using 

the language of fibered categories. 

(i) The forgetful functor For : Dba(x) C Db(x) (2.1.4). Identifying Dba(X) 
with the category oh(a2) we can describe this functor by For(F) = F(T) C Db(T) = 
Db(x), where T = G • X is the trivial resolution of X. 

(ii) The inverse image functor (2.1.6). Let f : X --+ Y be a G-map.  It defines 

a functor Res(X) ~ Res(Y), P H P (see 2.1.2, example 4). Using this functor 

we define the inverse image functor f* : Db(y)  ~ Db(x )  by f*(F)(P) = F(P) e 
D~(P).  

We also have another description of this functor, which uses induced resolutions. 

Namely, consider the category Res(Y) of resolutions of Y and the functor f0 : 

Res(Y) ---* Res(X), R ~-+ f~ (2.1.2, example 4). For every resolution R --* Y 

we have the canonical map f : f~ --+ R. We define the inverse image functor 

f* : Dba(Y) -~ Dba(X) by f*(F)(f~ = f*(F(R)) E Db(f~ Note that  this 

formula defines the value of the functor f*(F) C Db(O) not on all resolutions of X ,  

but  only on resolutions of the form fo(p). However the proposi t ion 2.4.4 shows, 

that  this gives a well defined object in D~(X) = oh(o). 
(iii) The quotient functor (2.1.7). The quotient functor q* : Oh(X) e Dba(X) 

is defined by q*(A)(P) = ~*(A) E Oh(P),  where ~ :  P ~ X is the na tura l  map.  

2.5. Truncation and the structure o f  a triangulated category on  Dba(X). 

2.5.1.  Let F E D~(X). We will interpret  F as a functor P ~-+ F(P) on the 

category Res(X) as in 2.4. 

Fix  an interval I C Z and suppose that  for some resolution P for which the 

map P --+ X is epimorphic we have F(P) E D I. Then for any other resolution R, 
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F(R) also lies in D I, since for S = P • R the projection of S on R is epimorphic 

and inverse images of F(P) and F(R) are isomorphic. 

It is clear that  the full subcategory of objects F E Db(x)  satisfying this con- 

dit ion is the subcategory DIn(X) described in 2.2.1. 

Similarly we define subcategories D<a(X), >a D~ (X) and t runcat ion functors 

~-<a and T>~ (for example, T<_~(F)(P) = T<,(F(P))). 

2.5.2.  D e f i n i t i o n .  A diagram F ~ F '  ~ F "  --* F[1] in Da(X) is called an e x a c t  

t r i a n g l e  if for any resolution P --* X the diagram F(P) ~ F'(P) ~ F"(P) --~ 
F(P)[1]  is an exact tr iangle in D(P) .  

P r o p o s i t i o n .  (i) The collection of exact triangles makes D~( X) into a triangulated 
category. 

(ii) The truncation functors r< and v> define a t-structure on the category 
D (X) (see [BBD]). 
P r o o f .  (i) We have to check the axioms of t r iangulated categories. Each axiom 

deals with a finite number  of objects Ai E Db(x).  Let us choose a segment I C Z 

such tha t  all objects Ai[k] for k -- - 1 , 0 , 1  lie in DI(x) .  Then choose n > III, fix 

an n-acyclic resolution P --* X and identify D I ( x )  with DIG(X, P). 
As was proved in 2.3.2, the natura l  restriction functor Dl(Z ,  P) --* DI(-P) gives 

an equivalence of the category DI(X,  P) with the full subcategory DI(-p]p) C Db(-P) 
which is closed under extensions. 

Each axiom of t r iangulated categories asserts the existence of some objects  and 

morphisms,  such tha t  certain diagrams are commutat ive and certain diagrams are 

exact triangles. We find the corresponding objects and morphisms in the category 

DI(p) and extend these diagrams to other resolutions of X as in remark in 2.4.3. 

Using proposi t ion 1.9.2 we see that  this extension preserves commutat ive diagrams 

and exact triangles. 

(ii) Since all the functors in the definition of the category Db(x)  commute 

with t runcat ion functors, the assertion is obvious. 

2.5.3.  P r o p o s i t i o n .  The heart C = D<~ N D>~ of the t-category D~(X) 
is naturally equivalent to the category ShG(X). 

We will prove this result in Appendix B. 

By defni t ion,  an object  F E D~(X) lies in C iff F(P) is a sheaf for every 

resolution P .  In other words, we can identify the category Sha(X) with the fiber 

Sh(r of the fibered category Sh/T over the functor (I) : Res(X) --* T (or with the 

fiber Sh(q) as in 2.4.4). 

2 .5 .4 .  There is a na tura l  functor i : D~(Sha(X)) --* Db(X) from the bounded 

derived category of equivariant sheaves to the equivariant derived category. Namely, 
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if F is a complex of equivariant sheaves on X,  then for any resolution p : P --~ X 

it defines a complex p*(F) of equivariant sheaves on P . We denote by i(F)(P) 
the corresponding object  in Db(-fi) (use lemma 0.3). This functor i induces an 

equivalence of abelian categories i : ShG(X) ~_ D<~ M D>~ (2.5.3), but  

in general  is not an equivalence of the t r iangulated categories. However, it  is an 

equivalence if the group G is discrete (8.3.1). 

2.6.  C h a n g e  o f  g r o u p s .  T h e  q u o t i e n t  a n d  the induction e q u i v a l e n c e s .  

2 .6 .1 .  Let H C G be a subgroup and X be a G-space. Then it is intui t ively 

clear tha t  restr ict ing the action of G to H one should get a restr ict ion functor 

ResH,V : Db~(X) --* DbH(X). 
Here is an explicit description of this restr ict ion functor. 

For any H-resolut ion p : P --, X we consider the induced G-resolution ind(P) = 
G • with the morphism u : ind(P) --* X given by u(g, l) = g(p(l)), where l E P .  

Note tha t  we have a canonical isomorphism ind(P) = P. 
Let F E D b ( x )  be an object,  which we interpret  as a functor P --* E(P) 

like in 2.4.3. Then we define the object  Resi-i,G(F) E DbH(X) by ResI4,G(F)(P) --- 
F(ind(P)) E Db(-fi). 

In case when H is a trivial  group this functor is natural ly  isomorphic to the  

forgetful functor F o r :  D~(X)  -.-* DbH(X) = nb(x) .  
More generally, let X be an H-space and Y be a G-space. Let f : X ~ Y be 

a C-map, where r : H --~ G is the embedding (0.1). In this s i tuat ion we define the 

inverse image functor 

f * :  D b ( y ) - *  DbH(X) by f*(F)(P) = (r(ind(P)). 

(Here ind(P) = G • P and the G-map u :  ind(P) --* Y is given by u(g, l) = gfp(l) 
for g E G and l E P) .  

By definition the functor f* preserves the t-structure.  

2 .6 .2 .  Quotient equivalence. We saw in proposi t ion 2.2.5. tha t  for a free G-space 

X we have the equivalence Dba(X) ~ Db(-X). This is also clear from the descript ion 

of the  category D b ( x )  in terms of fibered categories, since in this case the category 

Res(X, G) has a final object  X.  

Similar arguments  prove the following more general result.  

Let H C G be a normal  subgroup, B = G/H the quotient group. Then for any 

G-space X the space Z = H \ X is a B-space and the project ion q : X --+ Z is a 

e -map,  where r : G --* B is the quotient homomorphism. 

Theorem. If  X is free as an H-space then the t-categories Db( H \ X)  and D~(X)  
are naturally equivalent. 
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P r o o f .  Let P ~ X be a resolution of a G-space X.  Then Po = H \ P  is a resolution 

of the B-space Z. This defines a functor Res(X ,  G) ~ Res(Z,  B).  Since X is free as 

an H-space,  lemma 2.1.1 implies that  this functor is an equivalence of categories (the 

inverse functor is P0 ~-* P = X •  Since P0 -- P we see that  this equivalence is 

compat ible  with quotient functors ~ x  : ResCX) --~ 7" and 4)z : Res (Z )  --* 7". This 

implies that  the fiber categories Db(~z )  and D b ( ~ x )  are equivalent. 

2 .6 .3 .  Induction equivalence. Let r : H --* G be a embedding of a subgroup. 

For an H-space  X consider the induced G-space i nd (X)  = G • X .  We have a 

canonical C-map v : X ~ ind(X) ,  x ~-~ (e, x). It induces an inverse image functor 

~*:  D ~ ( i n d ( X ) )  ~ DbH(X) (2.6.1). 

Theorem. The functor u* is an equivalence of t-categories. 

P r o o f .  The functor P ~ ind(P)  is an equivalence of categories ind : Res (X ,  H)  --~ 

Res ( ind (X) ,  G) such tha t  P = ind(P).  Hence by definition of the functor u* in 

2.6.1 it is an equivalence of categories. 

Remark. Let X be a G-space and H C G be a subgroup. Then X can be considered 

as an H-space  and we have a canonical G-map 7r : i nd (X)  --* X . Using the inverse 

image functor and the induction equivalence we get a functor 

r * :  Dba(x) ~ Dba(ind(X)) ~_ DbH(X). 

It  is easy to see that  this functor is canonically isomorphic to the restr ict ion functor 

ReSG,H (2.6.1). 

2.7. Other descriptions of the category D~(X). 
We are going to give two more al ternative descriptions of the category D ~ ( X ) .  

2.7 .1 .  F ix  a sequence of resolutions P0 ~ P1 ~ "'" -'-* Pn ~ " "  of X where P,~ is an 

n-acyclic resolution (if G is a Lie group, we can take Pi -- X x Mi, where {Mi} is the 
sequence of free G-manifolds constructed using the Stiefel manifolds as in section 3.1. 

below). Then we can define DbG(X) as the 2-limit of the categories D ~ ( X ,  Pi). In 

other  words, an object  F E D ~ ( X )  is a sequence F = {Fx  E Db(X),-F,~ E Db(P-'~)}, 

together  with a system of isomorphisms pT,(Fx) ~_ q~(-F,,), v~,,(-F,) ~- Fi ,  where 
pn : Pn --* X ,  qn : Pn --~ - f  n and vi, ,  : Pi ~ Pn, satisfying obvious compat ib i l i ty  

conditions.  Corollary 2.2.2 implies that  this category is equivalent to the category 

D ~ ( X ) .  

2.7 .2 .  The  following description of the category D ~ ( X )  probably  provides the  most 

sat isfactory intuit ive picture. 
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Let us fix an oo-acyclic locally connected free G-space M (for exampIe, take 

M = lira Mn 

as in section 3.1. below). Then P = X • M is an oo-acyclic resolution of X and by 

definition Db ( X ) = Dba( x ,  P ). 

Note that if M is in addition contractible, then the fibration P ~ M is nothing 

else but  the s tandard fibration Xa  ---+ BG over the classifying space of G with the 

fiber X. By definition an object F E Dba(Z,P) is essentially an object in Db(P) 

whose restrictions to all fibers are isomorphic. 

For example, let us describe the category Dba(pt). 

P r o p o s i t i o n .  Let M be a contractible locally connected free G-space, BG := G \ M 

- the classifying space for G. Then the category Dba(pt) is equivalent to the full 

subcategory of Db(BG) which consists of complexes with locally constant cohomology 
sheaves. If G is a connected Lie group, then this subeategory consists of complexes 

with constant cohomology sheaves. 

P r o o f .  By the criterion 1.9.4 the map p : M ~ pt is ~-acyclic.  Hence by 2.3.2 

Db(pt) is equivalent to the full subcategory Db(BGIp) C Db(BG). We claim that 

an object F E Db(BG) lies in this subcategory iff its cohomology sheaves are locally 

constant. Indeed, consider the object H = q*(F) E Db(M), where q : M ~ BG is 

the quotient map. If F 6 Db(BGIp), then H comes from pt and hence its cohomology 

sheaves are constant. Therefore the cohomology sheaves of F are locally constant. 

Conversely, suppose that F has locally constant cohomology sheaves. Let us 

show that F E Db(BG[p). Since by 2.3.2 this subcategory is closed under extensions 

we can assume that F is a sheaf. Then H is a locally constant sheaf on a contractible 

space M. Hence it is constant, i.e. comes from pt. 

If G is a connected Lie group, then BG is simply connected and hence every 

locally constant sheaf on BG is constant. This proves the proposition. 

This picture will be used for example to describe the behavior of the equivariant 

derived category when we change the group. Unfortunately the space M in this case 

is usually infinite-dimensional, so it is difficult to define functors like f '  or the Verdier 

duality using this picture. However we will use oo-acyclic resolutions in section 2.9 

below in the discussion of the category D+(X). 

2.8 .  C o n s t r u c t i b l e  o b j e c t s .  

Suppose that a G-space X is a stratified pseudomanifold with a given stratifi- 

cation S. 

D e f i n i t i o n .  We say that an object F 6 Dba(x) is S-constructible if the object 

Fx C Db(x)  is S-constructible. We denote the full subcategory of $-constructible 

objects in Dba(x) by Db,c(X). 
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R e m a r k .  We do not assume that  the stratif ication ,~ is G-invariaat .  

2.9. C a t e g o r y  D+(X).  

Let G be a topological group with the following property:  

(**) There exists a oo - acyclic free G - space M. 

For example,  any Lie group satisfies this condition. It follows tha t  every G- 

space X has an ~ -acyc l i c  resolution X • M ~ X (1.9.4). 

We now proceed exactly as in section 2.4 replacing everywhere D b (or D r) 

by D + and n-acyclic resolutions by c~-acyclic ones. Namely, fix a G-space X.  

Consider the category K -- Res(X,  G) of resolutions of X and the functor @ : K ---* 

7,  @(P) = P = G\P.  

2.9.1.  D e f i n i t i o n .  Define D+(X)  := D + ( ~ )  - the fiber of the fibered category 

D + / T  over the functor r (2.4.1, 2.4.2). 

In other words to define an object F C . D + ( X )  mcans for every resolution 

P --* X to give an element F(P)  E D+(-fi) a n d  for every morphism of resolutions 

u : P ---* R to give an isomorphism u*F(R) ~- F(P)  satisfying na tura l  compat ibi l i ty  

conditions (2.4.2). 

2 .9 .2 .  Given a resolution P --~ X we define the category D+(X, P) replacing D b 

by D + in the definition 2.1.3. 

L e m m a .  (A D+-version of lemma 2.3.2.) Let p : P ---+ X be an oo-acyclic 

resolution. Let D+(-filp) C D+(-fi) be the full subcategory consisting of objects g 

such that q*g comes from X .  Then the restriction functor D + ( X , P )  --* D+(P[p) 

is an equivalence of categories. 

2.9.3.  Let X be the quotient space. We have the obvious quotient functor q* : 

D+(-X) ---* D+(X, P) as in 2.1.7. 

The following D+-analogues of proposit ion 2.2.1 and corollary 2.2.2 are proved 

similarly using proposi t ionl .9.2,  lemma 1.9.3 and lemma 2.9.2 above. 

Proposition. Let P --* X be an oo-acyclie resolution. Suppose that X is a free 

G-space. Then the quotient functor q* : D + ( X )  --* D+(X,P)  is an equivalence of 

categories. 

Corollary. Let P ---* X and R ---* X be two resolutions and S = P • x R be 

their product. Assume that P is oo-aeyclic. Then the functor pr* R : D+(X , R)  --~ 

D+ ( X,  S) is an equivalence of categories. 
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2.9.4.  The following proposition provides a "realization" of the categoty D+(X) 
as in 2.7.2. 

P r o p o s i t i o n .  Let P --+ X be an oo-acyclic resolution. Then the categories D+(X) 
and D+(X, P) are naturally equivalent. 

The proof is similar to the proof of the proposition 2.4.3 above. 

2.9.5.  Combining the above proposition with lemma 2.9.2 we get the following 

geometric realization of the category DG+(pt). 
P r o p o s i t i o n .  Let M be a contractible locally connected free G-space, BG := G\M 
- the classifying space for G. Then the category D+(pt) is naturally equivalent to 
the lull subcategory of D+(BG) which consists o] complexes with locally constant 
cohomology sheaves. If G is a connected Lie group, then this subcategory consist~ of 
complexes with constant cohomology sheaves. 

The proof is the same as in proposition 2.7.2. 

2.9.6.  The proposition 2.4.4 remains true if we replace D b by D + and require 

that j ( J )  contains an r resolution. For example, if P --+ X is co-acyclic 

and T = G • X ~ X is the trivial resolution, then the following subcategory of 

Res(X, G) is rich enough to define D+(X):  

T+--TxxP--+P 

(cf. example 2.4.2 and the proof of proposition 2.4.3). 

Also the discussion in 2.4.5 is valid for D + 

2.9.7.  We define exact triangles and truncation functors r<, r> in D+(X) exactly 

as in 2.5.1, 2.5.2. The same proof (using co-acyclic resolutions) shows that  D + is a 

triangulated category with a t-structure given by the functors r. 

2.9.8.  All constructions and results of section 2.6 are valid for the category D +. 

Namely, just replace the symbol D b by D + everywhere. 

2.9.9.  R e m a r k .  We see that using eo-acyclic resolutions P --* X one gets a quick 

and "geometric" definition of the category D+(X) "" D+(X,P)  C D+(-P) (2.9.4, 

2.9.2). We could do the same with the bounded category Db(x) .  However, as was 

already mentioned, the space P is usually oo-dimensional, which makes it difficult 

to apply this construction in the algebraic situation or in the case of functors like 

f! or the Verdier duality. 
The category D + is needed in order to define the general direct image functor Q.  

(when the group changes) (section 6). Although we did not use eo-acyclic resolutions 
in the definition of D + (2.9.1), they become essential in the definition of the direct 
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image Q,. This is unpleasant in the algebraic setting. 
problem in some special cases (see section 9 below). 

We manage to avoid this 



32 

A p p e n d i x  B.  A S i m p l i c i a l  d e s c r i p t i o n  o f  t h e  c a t e g o r y  D~(X).  

B1.  Let us describe the category D b ( x )  in the simplicial language. For a discussion 

of simplicial  spaces and simplicial sheaves we refer to [D1]. 

Let X be a G-space. Following [D1], we denote by [G\X]. the usual simplicial 

space 

[G\X] . . . . .  a x a x X  ~ ~ a x X  ~ X. 

Recall that  a s i m p l i c i a l  s h e a f  F" on [G\X]. is a collection of sheaves F = 

{F n 6 Sh(G '~ x X)}n_>0 with the following addit ional  structure. Let h : G n x X --+ 

G 'n x X be a composit ion of arrows in [G\X].. Then h defines a s tructure morphism 

O~h : h*F m --+ F n, such that  

OLh,h =- OLh �9 h*o~h,, 

whenever the composition h'h makes sense. 

The abelian category of simplicial sheaves on [G\X]. is denoted by Sh([G\X].). 

B2.  D e f i n i t i o n .  Denote by Sheq([G\X].) the full subcategory of Sh([G\X].) con- 

sisting of simplicial sheaves F for which all s tructure morphisms are isomorphisms. 

B3.  F a c t .  The category Sheq([G\X].) is natural ly  equivalent to the category 

Sha(X)  of G-equivariant sheaves on X (see [D1](6.1.2,b)). 

In proposi t ion B 4  below we extend this equivalence to derived categories. 

Let D b ( [G\X] . )  be the bounded derived category of simplicial sheaves on [G\X].. 
Denote by D~q([G\X].) the full subcategory of Db([G\X].) consisting of complexes 

A, such that  Hi(A) 6 Sh~q([G\X].). 

B4.  P r o p o s i t i o n .  Triangulated categories Dbq([G\X].) and D~(X) are naturally 
equivalent. 

P r o o f .  Let us first prove a special case. 

Bb .  L e m m a .  The proposition holds if X is a free G-space. 
P r o o f  o f  t h e  l e m m a .  Consider the quotient map q : X ~ X.  Then q defines an 

augmenta t ion  of the simplicial space [G\X]. and hence defines two functors 

(1) q*: Sh(X) -* Sh~q([G\X].), 

(2) q*: Db(X) ~ D~q([G\XI.). 

We know that  D~(X)  ~_ Db(-R) (2.2.5). Hence it suffices to prove that  the 

second functor is an equivalence. 

It is known (see [D1]) that  the first functor is an equivalence. So it suffices to 

show that  for any two sheaves A, B 6 Sh(-X) we have 

Exti(-~)(A,B], . . =  E t i . . . .  B" x D([G\X].)[q 2%q ). 
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Using the standard method (see [H],7.1) we reduce the proof to the case of an 

elementary sheaf A = Cu for an open set U C S. Then we may assume that X = U 

and the above equality becomes 

Hi(X, B) = Hi([G\X]., q'B), 

which is well known (see[Dll(6.1.2,c)). This proves the lemma. 

Let X be any G-space. Let P --* X be an oo-acyclic resolution. It defines a 

map of simplicial spaces p : [G\X]. ---* [G\P]. and hence induces the functor 

p*: D~q([G\X].) --* D~q([G\P].). 

By the lemma this last category is equivalent to Db(P). So we get the functor 

q , -1 .  p , :  D~q([G\X].) ---* Db(P). 

It is clear that  for F C D~a([G\X].) its image q*-lp*F lies in the subcategory 

Db(-filp) "" D~(PIp ) " D~(X) (lemmas 2.3.2, 2.9.2, proposition 2.9.4). So we 

actually have the functor 

( ,)  q , -1 .  p , :  D~q([GXXI.) ~ D~(X). 

We claim that it is an equivalence. 

Indeed, by a simplicial version of section 1.9 we conclude that the map p : 

[G\P]. ~ [G\X]. is oo-acyclic, that is the functor p* : Db([G\X].) --* Db([G\P].) 
is fully faithful and its right inverse is p,. This implies that the functor (*) is fully 

faithful. On the other hand, it is clear that  if F C Sh(X) is such that p*F C 
Sha(P), then also canonically F E Sha(X) (use again the acyclicity of the map p). 

Therefore the functor (*) induces the equivalence of abelian categories Sha(X) and 

D<~ N D>(X) and hence is an equivalence. This proves the proposition. 

B6.  R e m a r k .  Note that the last argument also proves the proposition 2.5.3 



3. Functors .  

In this section we consider a G-map f : X ~ Y and describe functors | 
f , f ' , f . , f !  and D in the categories Dba(X) and Dba(Y). We also s tudy relations 

between these functors and the ones introduced earlier in 2.6. In section 3.7 we 

define the integrat ion functors DbH(X) --* Dba(X) which are (left and right) adjoint  

to the restr ict ion functor D~(X) ~ DbH(X) for a closed subgroup H C G. 

3.1.  In this section 3 we assume that  G is a Lie group, satisfying the following 

condit ion 

(*+)  For every n there exists an n-acyclic free G-space M which is a manifold. 

It follows that  every G-space X has an n-acyclic smooth resolution M x X ~ X 

(see 1.7, 1.9, 2.1.2). 

Let us show that  this proper ty  holds in most interesting cases. 

L e m m a .  Let G be a Lie group with one of the following properties: 
a) G is a linear group, i.e., a closed subgroup of GL(k,R)  for some k, 
b) G has a finite number of connected components. 

Then the property (*+) holds for G. 
P r o o f .  a) The Stiefel manifold Mn of k-frames in R "+k is an n-acyclic free G- 

manifold. 

b) By a result of G.Mostow there exists a compact Lie subgroup K C G such tha t  

the manifold G / K  is contractible. By Peter-Weyl theorem K is a linear group, so 

by a) it  has an n-acyclic free K-manifold  M ~. Then M = G • g M ~ is an n-acyclic 

free G-manifold.  This proves the lemma. 

For a G-space X we denote by SRes(X) the category of smooth resolutions of 

X and smooth morphisms between them. It follows from the proper ty  (*+)  tha t  this 

category is sufficiently rich, so we can define D~(X) to be the fiber of 7r : D b --~ 7- 
over the functor (I'x : SRes(X) ~ 7-, P ~ -P (see 2.4.5). This is the definition of the 

category D~(X)  which we use in order to define all functors. The main reason for 

sticking to smooth resolutions is the fact that  all functors commute with a smooth 

base change (see 1.8). 

3.2.  Functors  | and Horn.  

Let F,  H G Dba(X). We will consider F and H as functors on the category 

SRes(X)  of smooth resolutions of X (see 2.4.5). 

Now define objects  F | H and Horn(F, H) in D~(X)  by 

F | H(P) := F(P) | H(P), 
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Horn(F, H)(P) : =  Hom(F(P), H(P)) 

for every smooth resolution P. For any smooth morphism of smooth resolutions 
: S --+ P we define isomorphisms 

F(S)  | H(S)  ~_ v*(F(P) | H(P)) ,  

Hom(F(S) ,  H(S))  ~_ v*(Hom(F(P),  H(P)))  

using the smooth base change (see 1.8). 

3.3. Func to r s  f * , f ! , f ,  and  f!. 
Let f : X ~ Y be a G-map of nice topological spaces. Then P ~ fo (p)  

defines the functor f0 : SRes(Y)  --* SRes(X)  (see 2.1.2, example 4), which takes 

n-acyclic resolutions into n-acyclic ones. Hence the category f~  is rich 
enough to define objects in D~(X).  

We will define the above functors using the smooth base change. For example, 
consider the functor f , .  

Given an object F �9 Dba(X) we define f , (F )  �9 D b (y )  by 

f , (F ) (P)  := f , (F( f~  

for P E SRes(Y) ,  where f : fo (p)  .__, p is the natural projection. 

Given a smooth morphism u : S ~ P in SRcs(Y)  we define the isomorphism 

f , (F) (u)  : u*(f , (F)(P))  ~ f , (F ) (S )  as f , (F)(u)  :-- f , (F (v ) )  using the smooth 
base change applied to the pullback diagram 

fo(s ) ~ fo(p) 

~,f ~.f 
--%-: 

The collection of objects f , (F ) (P )  and isomorphisms .f.(F)(v) defines an object 

f , ( F )  e D~(Y) .  

Similarly we define functors f*, f!,  fT. Note that functors f* and f! can be 
defined using arbitrary (not necessarily smooth) resolutions. 

3 . 4 .  P r o p e r t i e s  o f  f u n c t o r s  . t | , /  ,I,,l~. 

3.4.1. T h e o r e m .  (i) Let H C G be a subgroup of G. Then the above functors 
co m m ute  with the restriction functor ReSH,G (~.6.I). This means that there ezist 

canonical isomorphisms of functors ReSH,G �9 f ,  "~ f ,  �9 ReSH,G, etc. In particular, 
these l~nctors commute with the lorgetl~l l~nctor For: D~(X) -~ Db(X). 
(ii) Let H C G be a normal subgroup, B = G/H.  Let f : X ~ Y be a G-map of 
G-spaces which are free as H-spaces. Then the above functors commute with the 
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quotient equivalences q*: Db(H \ X )  --* D~(X)  and q*: Db(H \ Y)  ~ DbG(Y) in 

theorem 2.6.2. In particular, when H = G these functors commute with the quotient 
equivalences q*: Db(X) - .  DbG(X) and q*: Db(F) ~ D~(Y).  
(iii) Let H C G be a subgroup. Then the above functors commute with the induction 

~ n c t o r  n~(Y) ~_ D~(G •  Y)  for an H-space Y as in theore.~ 2.6.S. 

P r o o f .  Immediately follows from definitions. 

3.4.2. Examples. 
1. We want to show that the constant sheaf Cx and the dualizing object Dx 

for a G-space X always have a natural structure of a G-equivariant object. Let 

p : X --+ pt be a map to a point. 

We define the equivariant constant sheaf Cx = CX,G C D~(X)  by Cx(P)  := 

C~. Clearly Cx,a = p*(Cpt,G) and For(Cx,c) = Cx. 
Define the equivariant dualizing object on X to be Dx,c  = p~(Cpt,c) �9 D~(X).  

By theorem 3.4.1 we have For(Dx,v)  = Dx.  

More generally, for a G-map f : X ~ Y we define the equivariant relative 

dualizing object Df, a := f ( C y )  �9 D b ( x ) .  Again by theorem 3.4.1 it corresponds 

to the usual relative dualizing object under the forgetful functor. 

2. Let Y C X be a closed G-subspace, U = X \ Y. Consider the natural imbeddings 

i : Y ---+ X and j : U ~ X. Then for F �9 D~(X)  we have the exact triangles 

i!i!(F) --+ F --* j . j* (F)  and j!j!(F) ~ F --* i.i*(F). 

These triangles are functorial in F. They are compatible with the forgetful func- 

tor, the restriction functor Resu,c (2.6.1) and with the quotient and the induction 

equivalences of theorems 2.6.2 and 2.6.3. 

3.4.3.  T h e o r e m .  All properties of the functors | Horn, f*, f . ,  f ' ,  f! listed in 1.4 
hold in the equivariant case. 

P r o o f .  Since the functorial identities listed in 1.4 commute with the smooth base 

change (theorem 1.8), they automatically lift to the equivariant category (see the 

argument in 3.3). 

3.5. The equivariant Verdier dual i ty .  

Assume that X is a nice G-space (1.4). 

3.5.1.  Def in i t ion .  Consider the equivariant dualizing object Dx,a = p!Cpt,G C 
D~(X)  (3.4.2 example 1). For F E D~(X)  define its Verdier dual as 

D(F) = Horn(F, Dx,a).  
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3.5.2.  T h e o r e m  (The equivariant Verdier duality). 

(i) There exists a canonical biduality morphism 

F ~ D(D(F)) 

in D~(X) .  

(ii) For a G-map f : X --~ Y we have canonical isomorphisms of functors between 
the categories D~(X)  and D~(Y)  

Dr! ~_ f . D  and f !D ~_ D f*. 

(iii) The Verdier duality commutes with the forgetul functor For: D~(X)  ~ n b (x ) .  

P r o o f .  As in section 3.3 we work with the category SRes(X,  G) of smooth resolu- 
tions of X.  

(i). Let us first of all analize the equivariant dualizing object Dx,G. 
Let P ~ pt be a smooth resolution of the point pt, i. e. a smooth free G-space. 

Consider the induced resolution of X: 

pO(p) = p • X ~ X 

and the corresponding map  of quotient spaces 

p : p0(p)  __, p .  

By definition nx,a(p~ = ~C-f  C Db(p~ Since P is a smooth free 
G-space, the quotient space P is also smooth. Hence the dualizing object D-f  is 

invertible (1.6.1). Since ~ is a locally trivial fibration, by 1.4.7 we have 

i i * - 1  
nx,G(p~ := p'C-f = p'n-fi | p*Dp -1 = np~(p) | p D-f . 

Therefore, for F E D~(X),  the object D(E)(P) is canonically isomorphic to 
the usual Verdier dual D(F(P))  of F(P)  E Db(-P) twisted by n p  1 (1.5). In particu- 

lar, n ( n ( F ) ) ( P )  is canonically isomorphic to D(D(F(P))).  So the usual biduality 

morphism 

E(P)  -~ D(D(F(P)))  

(1.6.1) induces the desired biduality morphism 

F(P)  --* D(D(F))(P).  

It remains to check that  this morphism is compatible with the smooth base 

change by smooth maps R --+ P of smooth resolutions of pt. This follows from 

theorem 1.8(iii). This proves (i). 
(ii) is proved similarly. 
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(iii) follows immediately from theorem 3.4.1(i). 

The theorem is proved. 

Some further properties of the Verdier duality (in particular its behavior under 

the quotient and the induction equivalences) will be studied in section 7 below. 

3.6.  Equivariant constructible sheaves .  

Let X be a G-space, which is a pseudomanifold with a stratification S. Let 

Db,c(X) C Dba(X) be the full subcategory of G-equivariant S-constructible objects 

(2.8). Then it is preserved by functors | Horn and D and the biduality morphism 

F ~ D(D(F)) is an isomorphism for F �9 D~,c(X). 
If f : X ~ Y is a stratified G-map of pseudomanifolds, functors f * , f ! , f ,  and 

f., preserve constructibility. This follows from the corresponding properties of the 

category D~(X) (see 1.10), the definition of Dba,r in terms of D b (see 2.8) and the 

fact that  all functors commute with the forgetful functor (theorem 3.4.1(i)). 

Similarly for a constructible G-space X,  as described in 1.10, we define the 

full subcategory Dba,c(X) C Dba(x) of G-equivariant constructible objects. This 

category is preserved by all functors for constructible G-maps. 

3.7. Integration functors. 

Let X be a nice G-space (1.4) and H C G be a closed subgroup. 

3.7.1.  T h e o r e m .  The restriction functor Resg,a : D~(X)  ~ DbH(X) has a right 
adjoint functor Ind. and a left adjoint functor Ind!. 

In particular, in case of a trivial subgroup H we have a right and a left adjoint 
/~ctors to the forget~l fu~ctor For: O~(X) --* Db(X). 

P r o o f .  Consider X as an H-space, and denote by Z the induced G-space Z = 

ind(X) = G x n X  and by 7r : Z ~ X the natural G-map. Denote by u : X 

Z, x ~-* (e, x) the natural embedding. By theorem 2.6.3 we have an equivalence of 

categories u* : D~(Z) ~_ DbH(X). As was remarked in 2.6.3 the restriction functor 

Resn,a:  Dba(X) ~ D~(X)  is naturally isomorphic to u*. ~r*. 
Let us put I n d . =  rr.. v *-1 : Db(X)  ~ Dba(X). By theorem 3.4.3 this functor 

is the right adjoint to ResH,G. 
Consider the equivariant dualizing object D~ = D~,G E D~(Z) of the smooth 

map 7r (1.4.7, 1.7, 3.4.2). Then we have the canonical isomorphism of functors 

7r* _~ D~ -1 �9 7r !, where D~ "1 stands for the twist functor by D~ 1 (1.4.7, 1.5, 3.4.3). 

Let us put Ind, = re,. D,~. v *-1 : DbH(X) ~ Dba(X). Then by theorem 3.4.3 

this functor is left adjoint to ReaH,G. 
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3.7.2.  P r o p o s i t i o n .  Let f : X --* Y be a G-map of nice topological. Then the 

functor Ind,  commutes with functors f ,  and f!,  and the functor Ind! commutes 
with functors f! and f*. 

P r o o f .  This follows from 3.4.1, 3.4.3, 1.4.6. 

3.7.3.  T h e o r e m .  Suppose that the space G/H is cx)-acyclic (1.9), for ezample 
contractible. Then the restriction functor ReSH,G is fully faithful and its left inverse 
is the functor Ind, .  

In particular, if G is an cr group and H is trivial, then the forgetful 

functor F o r :  D~(X)  -~ Oh(X) is fully faithful. 
P r o o f .  Since the functor Ind,  is the right adjoint to Res it is enough to check that 

Ind,  �9 Res is isomorphic to the identity functor. Using the explicit description of 

the functor Ind,  in the proof of 3.7.1 we see that it amounts to an isomorphism 

r ,r* ~_ Id. Since the map r : Z --* X is a fibration with the oo-acyclic fiber G /H  
it is ~-acycl ic  (see 1.9.4). Then the statement follows from 1.9.2 and 3.4.3. 



4. V a r i a n t s .  

In sections 2, 3 we have shown that  the s tandard  theory of constructible sheaves 

on topological spaces has a natura l  extension to the eqivariant si tuation. The reason 

for this was the existence of the smooth base change (see 1.8). 

There are several theories which are parallel  to the theory of constructible 

sheaves - @tale sheaves on algebraic varietes, mixed sheaves on varieties over a finite 

field, D-modules  on complex varieties. In all these situations there exists a smooth 

base change, so they have natura l  equivariant extensions. In this section we briefly 

discuss some of them. 

4.1.  Let X be a complex algebraic variety, D~(X) be the category of complexes 

on the topological space X which are constructible with respect to some algebraic 

stratif ication. If X is acted upon by a linear algebraic group G we can define 

the equivariant category Dba,r in the same way as in section 2. All propert ies  

discussed in sections 2 and 3 hold in this case. 

4.2. Let X be a complex algebraic variety. Consider the derived category Db(Dx) 
of D-modules  on X and full subcategories Dbh(Dx) and D~h (Dx) of holonomic and 

regular holonomic complexes (see [Bo2]). 

These categories have functors and propert ies similar to category Db(x) in 

section 1. In par t icular  the smooth base change holds for D-modules (this easily 

follows from the definition of the functor f~ in [Bo2]). 

Let G be a linear algebraic group acting algebraically on X.  Using smooth 

(complex) resolutions as in section 3 we define the equivariant derived categories 

D~ ( Dx ), Dba,h ( Dx ) and Dba,,.h ( Dx ) and functors between them. 

Let Db,c(X) be the category described in 4.1. Then the de Rham functor DR, 
described in [Bo2], establishes the equivariant Riemann-Hilbert  correspondence 

DR: D~,,.h(Dx ) " Dba,c(X). 

R e m a r k .  A. Beilinson has shown that  the category Db(Dx) can be described di- 

rectly in terms of D-modules  on X in a language analogous to [DV]. We will discuss 

this in terpre ta t ion elsewhere. 

4.3.  Let k be an algebraically closed field. Fix  a prime number l prime to char(k). 
For an algebraic variety X over k we denote by D~(X) the bounded derived cate- 

gory of constructible Ql-sheaves on X (see [D2]). This category has all functorial  

propert ies  listed in section 1. 

Let G be a linear algebraic group defined over k which acts on X.  Then using 

smooth resolutions as in section 3 we can define the eqivariant derived category 

D~,c(X ) and corresponding functors. 



5. Equivariant  perverse  sheaves .  

In this section we assume that G is a complex linear algebraic group acting 

algebraically on a complex variety X. We are interested in the category Db,c(X) 

of equivariant constructible objects on X, defined in 4.1. For a complex variety M 

we denote by dM its complex dimension. In the algebraic setting we always assume 

that the basic ring R is a field of characteristic 0. 

5.1 Equivariant  perverse  sheaves .  
We want to define the subcategory of equivariant perverse sheaves Perva (X)  C 

D~,c(X). 

Def in i t ion .  An object F e Db,c(X) lies in the subcategory Perva(X)  if Fx  lies 

in Perv(X) .  

It is clear from this definition that all the elementary results about perverse 

sheaves hold in the equivariant situation. For example, this category is the heart 

of the "perverse" t-structure on the category Db,c(X); in particular it is an abelian 

category. Every object in Perva(X)  has finite length and we can describe simple 

objects in PervG(X) in the usual way (see 5.2 below). 

P r o p o s i t i o n .  (i) D(Perv~(X))  = PervG(X).  

(ii) Let H C G be a closed complex normal subgroup, acting freely on X ,  
B = H\G.  Then the quotient equivalence q* : D ~ ( H \ X )  ~ Dba(Z) induces the 

equivalence q*:  Pervs (  g \ x )  --~ PervG(X)[--du] (2.6.2). 

(iii) Let H C G be a closed complex subgroup, X - a complex H-variety, Y = 

G • Z and v : X --~ Y the obvious inclusion. Then the induction equivalence 

v* : Dba(Y) ~ DbH(X) induces the equivalence PervG(Y) ---+ PervH(X)[dv -- dH] 

Proof .  (i) and (ii) are obvious, since all functors commute with the forgetful functor 

and the category Perva(X)  is defined in terms of Perv(X).  

(iii) Note that  it suffices to work only with complex smooth resolutions P --+ X 

(for example using complex Stiefel manifolds as in 3.1). If P is such a resolution, 

then an object F E DbH,c(X) lies in PervH(X) iff the object F(P)  E Db(-fi) lies in 

Perv(P)[dx + dH -- dR]. This implies (iii). 

5.2. T h e  equivariant  intersect ion c o h o m o l o g y  sheaf .  
Let j : V ~-+ X be the inclusion of a smooth locally closed irreducible G- 

invariant subset, and s E ShG(V) be a G-equivariant local system on V. Consider 

the intermediate extension j~.s E Pervc(X) ,  where dy is the complex dimen- 

sion of V ([BBD]). We call this extension the equivariant intersection cohomology 
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sheaf ICa(V, s In case V = X and the local system is trivial s = Cv E ShG(V) 
we denote it by ICG(X). As in the nonequivarimat case one can show that  simple 

objects in PervG(X) are exactly the intersection cohomology sheaves ICa(V, s 
for an irreducible local system/~ E Sha(V). 

R e m a r k .  Note that the quotient and the induction equivalences of proposition 5.1 

(ii),(iii) preserve the equivariant intersection cohomology sheaves (up to a shift). 

5.3. Decompos i t i on  theorem.  
An object F E Db(X) is called semisimple if it is isomorphic to a direct sum 

of objects Li [nl], for some irreducible perverse sheaves Li E Db(x).  

Theorem.  Let f : X --.* Y be a proper G-map of complex algebraic varieties. Let 
F E D~(X) be a semisimple object. Then its direct image H = f ,(F) E Db(y)  is 
semisimple. 

P r o o f .  Choose a large enough segment [ C Z such that H E DZG(Y) (see 2.2). 

Choose a smooth complex n-acyclic resolution p : P ~ Y with n > [I[. Then the 

category D~(Y) is by definition equivalent to the category D I ( x ,  P). By lemma 

2.3.2 this category is equivalent to the full subcategory DI(-fflp) C DX(-ff). 
Using the usual decomposition theorem (see [BDD]), we deduce that the object 

H E DZ(P) is semisimple, i.e. is of the form @Hi, Hi ~- Li[ni], where Li are simple 

perverse sheaves in Oh(P). Since the subcategory DI(-plp) C D~(-ff) is closed with 

respect to direct summands, all objects Hi lie in this subcategory, which gives the 

decomposition H ~- $Hi in D~(X, P) ~- D~(X). It is clear that  every Hi in D~(X) 
has the form Hi ~- Li[n~]~ where Li are irreducible perverse sheaves. This proves 

the theorem. 



6. G e n e r a l  inverse and d i r e c t  i m a g e  f u n c t o r s  Q*, Q. .  

6.0.  Let r : H --, G be a homomorphism of topological groups and f : X -+ Y 

be a C-map of of topological spaces (0.1). In this s i tuat ion we will define functors 

Q* : Db(y)  --, DbH(X) (D+(Y) --* D+H(X)) and Q . :  D+(X) --* D+(Y). Many of 

the functors defined earlier are special cases of these general functors (see 6.6, 6.12 

below). 

6.1. Assume that  the groups H , G  satisfy the condition (*) in 2.2.4 (for exam- 

ple, they may be Lie groups). As usual, denote by Res(X) = Res(X,H) and 

Res(Y) = Res(Y, G) the categories of resolutions of X and Y (2.1.2). We interpret  

the categories DbH(X) and Db(y) as fibers of the fibered category Db/7 - over the 

functor �9 (2.4.3). 

6 .2.  D e f i n i t i o n .  Let P ~ X,  R --+ Y be resolutions, and f : P --, R be a C-map, 

such tha t  the d iagram 
X ~ - - - P  

$ f  $ f  
Y ~ - - - R  

is commutat ive.  Then we call resolutions P and R c o m p a t i b l e .  

The  following construction produces many compatible resolutions. 

Consider the bifunctor 

•  Res(X) x Res(Y) --* Res(X), (S,R) ~-* S • i f(R).  

Indeed, f~ = X • is natural ly  an H-space and the project ion f~ --* X 
is an H-map .  Note that  if R --+ Y is n-acyclic then i f (R)  ~ X is also n-acyclic. 

However, i f (R)  is not a free H-space  in general, hence not a resolution of X.  

We have the obvious map of quotients f : S x f R ---, R, induced by the projec- 

t ion f : S x f  R--* R. 

R e m a r k s .  1. If S,R are n-acyclic, then S x f  R is also such. 

2. The  tr ivial  resolutions H • X -* X and G • Y --* Y are natura l ly  compatible.  

3. If Pa ---* R1 and P2 ---* R2 are compatible  resolutions then Pa • x P2 --+ R1 • y R2 

are also compatible.  

6.3.  D e f i n i t i o n .  A resolution P E Res(X) is compatible (with the map f : X --* Y) 

if it fits into a compat ible  pair  P -* R (6.2). A morphism P1 --* P2 between 

compat ible  resolutions is compatible if it fits into a commutat ive square 

P1 ---~ P2 

R1 ~ R2 
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where columns are compatible pairs. Denote by CRes(X) C Res(X) the subcate- 

gory of compat ible  resolutions and compatible morphisms. 

6.4.  R e m a r k .  It follows from remarks in 6.2 and proposit ion 2.4.4 that  the category 

CRes(X) is rich enough to define an object in DbH(X). 

6.5.  D e f i n i t i o n  o f  Q~. Let F E D~(Y) and P E CRes(X). Let P ~ R be a 
compatible  pair  of resolutions and f : P ~ R be the induced map of quotients. 

Define 

Q*fF(P) := -]* F(R). 

We must  check that  the value of Q~F on P is well defined (i.e. is independent  

of the choice of R), and that  Q}F is an object on DbH(X). 

Let P --* R'  be a different compatible pair with the induced map f '  : P -* ~ .  

Then P --~ R • y R'  is also a compatible pair, which shows that  objects f*F(R) and 
-/*F(R') in Db(P)  are canonically isomorphic. 

Let ~ : P1 --~ P2 be a morphism in CRes(X). We can complete it to a d iagram 

P1----* P2 

R1 ----* R~ 

as in definition 6.3 above. This shows that  objects v*(Q*fF(P2)) and Q*~F(P1 are 
canonically isomorphic. Hence Q*fF is a well defined object  in Db(x) .  

6.6. Properties of Q*. 
The propert ies  listed below follow immediately from the definitions. 

1. The functor Q*:  Dba(Y) --. DbH(X) is exact and preserves the t-s tructure,  i.e. 

Q*:  Sha(Y) ~ ShH(X). 

2. Let B be another topological group satisfying the condition (*) in 2.2.4. Let 

r : G --~ B be a h o m o m o r p h i s m a n d  g : Y ~ Z be a V-map. Then we have a 

canonical isomorphism of functors 

Q*f " Qg = QgI" 

3. Suppose that  H = G and r = id. Then Q* is canonically isomorphic to the 

inverse image functor f* in 2.2.4, 3.3. 

4. Suppose that  r : H '---* G is an embedding of a subgroup. Then Q* is canonically 

isomorphic to the inverse image f* in 2.6.1. In par t icular  if X = Y, we have 

Q* = ResH,a, and if moreover H = {e}, then Q* = For. 
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5. Suppose that  r : H ~ G is surjective with the kernel K ,  such that  X is a free 

K-space  and q : X --, Y is the quotient map by the action of K.  Then Qq is 

na tura l ly  isomorphic to the quotient equivalence q* : DbG(Y) "" DbH(X) in 2.6.2. 

6. Suppose that  r : H ---* G is injective, Y = G XH X and v : X -* Y, x ~-* (e ,x) .  

Then Q* is natural ly  isomorphic to the induction equivalence u*:  D~(Y) "~ DbH(Z). 

6.7.  Let us assume that  the groups H,  G satisfy the condition (**) in (2.9). Then 

we can use the definition of D+H, D + in 2.9.1 to define the inverse image functor 

Q'I: D+(Y) ~ D+H(X), 

by replacing everywhere in 6.5 the category D b by D +. 

Alternatively,  let P ~ R be compatible oo-acyclic resolutions of X and Y 

respectively, and f : P ~ R be the induced map of quotients. By lemma 2.9.2 the 

categories D+(X) and D+(Y) are natural ly  identified as certain full subcategories 

in D + (P)  and D + (R) respectively. Under this identification we have 

Q~ = ] * :  D+(R)  ~ D + ( P ) .  

All the remarks  in 6.6 apply also to D +. 

6.8.  Let us define the direct image QI* :~ D+H(X) --* D+(Y) �9 For simplicity we 

assume tha t  H, G are Lie groups (and hence satisfy the condition (**) in 2.9). 

F i rs t  we need some local terminology. 

Let p : W ~ Z be a continuous map of topological spaces. We call p a g o o d  

map  if p is locally fibered (1.4.7) with a locally acyclic fiber. This means tha t  for 

every point  w E W there exist neighbourhoods U of w in W and V of z = p(w) in 

Z such tha t  U -~ F x V where F is acyclic and p is the projection. 

Let GRes(Y) C Res(Y,G) be the subcategory consisting of good resolutions 

r : R --* Y (i.e. the map  r is good) and good morphisms between them. It follows 

from our assumptions on the group G that  the category GRes(Y) is rich enough 

to define the category D+(Y) (2.4.4, 2.9.6). Indeed, let N be a locally acyclic free 

C-space. Then the following diagram of resolutions lies in GRes(Y): 

G x Y ~ G x Y x N - - + Y x N ,  

(all maps  are projections).  

Note tha t  if R1 --~ R2 

RI -* R2 is also good. 

is a morphism in GRes(Y), then the induced map 

6.9.  D e f i n i t i o n  o f  Q I , .  Let F E D+H(X) and R E GRes(Y). Choose an c~-acyclic 

resolution P --+ X.  Consider the compatible  pair  of resolutions (6.2) 

P •  R 
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and the induced map of quotients 

f : P x s R ~ R .  

We define 

QI, F(R) := ] , F ( P  x I R). 

We must  check that  the value of QI, F on R is well defined (i.e. does not 

depend on the choice of P) ,  and that  Q I , F  is an object in D+(Y). 
Let P '  ~ X be a different ~ -acyc l i c  resolution. Consider the commutat ive 

d iagram 

( P x x P ' )  x S R  t p ,  x l R  

P x f R  7___ -~ 
I 

where all maps are induced by the obvious projections. Put  Fp = F(P  x f  R), 

Fp, = F(P '  x f R). By definition, we have a canonical isomorphism 

s*Fp = t*Fp,. 

Note that  morphisms s, t are oo-acyclic, and hence t ,  - t* = id, s, �9 s* = id (Propo- 

sition 1.9.2(i)). So we have canonical isomorphisms 

D 

t .s*Fp = Fp,, 

_ _  I 

s .s*Fp = Fp,  

and therefore a canonical isomorphism 

f , F p  = f ' ,Fp , ,  

which shows that  QI,F(R)  is independent of the choice of P .  

: S ~ R be a good morphism of resolutions. Consider the pullback Let g 

d iagram 

P x s S  fi-~ P x s R  

In order for Qs, F to be a well defined object  in D+(Y) it suffices to show that  

the base change morphism 

y * f , F  ~ f , y * F  

is an isomorphism, where F = F(P  x S R) 6 D + ( P  x I R). Since y is a good map 

this follows from the good base change lemma C.1 proved in Appendix C below. So 

QI, F is an object  in D+(Y). 



47 

6.10.  Let us give an alternative description of the functor QI*. Choose a compatible 

pair S ---* R of c~-acyclic resolutions (6.2) such that R e GRes(Y). Let f : S --~ R 

be the induced map of quotients. Recall that categories D+H(X) and D+(Y) are 

canonically identified as certain full subcategories in D+(S)  and D+(R)  (2.9.2). 

After this identification we have 

Qf,  = f , :  D+(~)  --* D+(~)  

(cf. 6.7 above). 

6.11.  E x a m p l e .  Let X = Y = pt. Let 

-r : BH --* BG 

be the map of classifying spaces induced by the homomorphism r : H ~ G. By 

proposition 2.9.5 the categories D+(pt) and D+(pt) are naturally realized as full 

subcategories of D+(BH) and D+(BG) consisting of complexes with locally con- 

stant cohomology. After this identification we have 

Q* = ~*:  D+(BG) ~ D+(BH), 

Q, = -r : D+(BH) --, D+(BG). 

6.12.  P r o p e r t i e s  o f  Q..  
1. The functor Q.  is the right adjoint to Q*:  D+(Y) ~ D+(X).  

Indeed, this is clear from 6.7 and 6.10. 

2. Let B be another Lie group and r : G ---* B be a homomorphism. Let g : Y --~ Z 

be a e-map.  Then 

Qg*Qf* = Qgf*' 

This is clear. 

3. Let K C H be the kernel of the homomorphism r Assume that X is a free 

K-space. For example, r may be injective. The Q, commutes with the forgetful 

functor. In particular, if X and Y are nice topological spaces, then Q, preserves 

the bounded equivariant category Q , :  D ~ ( X )  --* D~(X).  
Indeed, let R --* Y be a good oo-acyclic resolution. Then the H-space i f ( R )  = 

X • y R is free, and hence is an oc-acyclic resolution of X.  So we can use the map 

f : f~  ~ -R to define the direct image Q, = 3, .  Consider the commutative 

diagram, where both squares are cartesian 

X ~ f~ ~ f~ 

I f  I f  ~? 
Y ~---R - - -*R 
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Since horizontal arrows are good morphisms (6.8) we conclude by the good base 

change lemma C1 that Q. commutes with the forgetful functor. 
4. Suppose that H = G, r = id and f : X ---* Y be a G-map of nice topological 
spaces. Then Q. preserves the bounded category D b and is naturally isomorphic 

to f .  in 3.3. 

This follows immediately from the property 3 above, since both f .  and Q. are 
right adjoint to the same functor f* = Q*: D b ( y )  ---* D b ( x ) .  

5. Suppose that r : H ---* G is injective. Let X = Y and f = id. Then Q. preserves 

the bounded category D b and is canonically isomorphic to the integration functor 

Ind .  (3.7). 

This follows immediately from the properties 1,3 above and from 6.6(4). 

6. In the situation of the quotient or the induction equivalence (6.6 (5,6)) the 
functor Q. preserves the bounded category D b and is equal to Q,-1.  

Indeed, in both cases the functor QI.  preserves the bounded category D b (see 

3 above) and hence is equal to Q~-I by 1 above and 6.6(5, 6). 



7. S o m e  r e l a t i o n s  b e t w e e n  f u n c t o r s .  

We establish some relations between the earlier defined functors that we found 

useful. Roughly speaking, subsections 7.1 - 7.3 contain some commutativity state- 

ments, and in 7.4 -7.6 we discuss the behavior of the quotient and the induction 

equivalences with respect to the Verdier duality. 

In this section we assume for simplicity that all groups are Lie groups satisfying 

the condition (*+) in 3.1 and all spaces are nice (1.4). 

7.1. T h e o r e m .  (Smooth base change) Let r : H ~ G be a homomorphism of 

groups. Consider the pullback diagram 

f( g ) X  

s  I f  
9 y 

where g: 2 --* X (resp. g:  Y --* Y )  is a smooth map of H-spaces (resp. G-spaces) 

and f is a C-map. Then 

(i) All functors | Horn, f*, f*, f', f,, Q*~, Q;* between categories n~, n~, 
(or n+~I, n+.) when defined commute with the smooth base change a*. 

(ii) The functor g* commutes with the Verdier duality n : DbH(X) ~ DbH(X) 

up to the twist by the dualizing object n g , ,  e DbH(X) (3.4.2(1)), i.e. 

D .  g* = Dg,H | g*. D. 

P r o o f .  This is nothing but  the smooth base change (1.8). When c()-dimensional 

spaces are involved (functor QI*) one may use the good base change lemma C1. 

7.2. P r o p o s i t i o n .  Let r : H --, G be a homomorphism of groups and f : X --, Y 

be a G-map of G-spaces. Consider X as an H-space and id : X ---* X as a e-map. 

Let Q* -- Qi*d : D G ( X )  ---* O H ( X )  be the corresponding inverse image. We have a 

similar inverse image ]or the space Y .  
Then all functors | Horn, f*,  f , ,  f! ,  f:, D, Q'I, QI* between categories DG, 

DH when defined commute with the inverse image Q*. In particular Q* preserves 

the dualizing objects. 

For example, if H is a subgroup in G then all the above functors commute with 

the restriction functor ReSH,G = Q*. 
P r o o f .  In this case Q*I = f* '  QI ,  = f , ,  so it suffices to consider the first seven 

functors defined in section 3. 

Let N be a free smooth G-space, M r be a free smooth H-space. Later on we 

can assume that N, M t are sufficiently acyclic. Put  M = M'  • N - free smooth 
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H-space. Denote by PG = N • X ~ X ,  PH = M x X --* X ,  Ra  = N x Y --~ Y ,  

RH = M x Y ~ Y the corresponding smooth G- and H-resolutions of X and Y. 

They form the pullback diagram 

PH----~ Pa 
1 1 
R H  ~ RG 

where horizontal arrows are projections and vertical ones are induced by f. 

This induces the pullback diagram of quotients 

-fin ~ -rio 
lY 17 

where the map g is smooth. By the smooth base change (1.8) the functor g* com- 

mutes with all functors | Horn, 3*, 3., f ' ,  3!- But g* represents the inverse image 

Q* on the given resolutions. Hence Q* commutes with the corresponding functors 

in the equivariant category. 

Let us prove that Q* commutes with the Verdier duality. It suffices to show 

that Q* preserves the dualizing objects. 

Consider the pullback diagram 

PH ~ PG 
~p Iv 

Then by definition Dx,a(PG)  = p!C~, DX,H(Pu)  = p!C~.  Hence again by the 

smooth base change 

g*Dx,a(Pa)  = DX,H(PH) 

and so Q*Dx,a  = DX,H. This proves the proposition. 

7.3. Let us prove another base change theorem. Let r : H --~ G be a homomorphism 

of groups. Let G I C G be a closed subgroup, and H'  = r C H be its preimage 

in H. So we get a commutative diagram of group homomorphisms 

H ' - - - ~ H  

G' ---~G 

Let f : X --~ Y be a @map. We get a diagram of functors 

D ~ , ( X )  n~,~,,~ D~,(X)  

1 Qs.  l Q f ,  
D+, (y )  n~sa__j_.a n + ( y  ) 



5 1  

T h e o r e m .  Assume that r induces an isomorphism H/H'  ~- G/G'. Then there is a 

natural isomorphism of functors 

QI* " ReSH,,H = Resa,,a " Qf.  

from D+H(X) to D +, (Y). 
Proof .  Consider the H-space H • H' X with the H-map 

g : H x H ,  X---~X, 

and the Hi-map 

(h, x) H hx, 

v : X - - - + H x H ,  X,  x~--+(e,x). 

Similarly for Y with G and G'. 

The restriction functor ReSH,,H : D+(X)  ~ D+,(X) is isomorphic to the 

composition of the inverse image 

g*: D+(X)  ---* D+(H x H' X)  

with the induction equivalence 

v* = Q* : D+(H • X )  --* D+,(X). 

The induction equivalence Q* commutes with the direct image QI* because 

(Q. ) - I  = Q~.. So it remains to prove that the inverse image g* commutes with 

QI*" 
We have a commutative diagram 

H• X g-~X 

I f  I f  
GxG,  Y J ~  Y 

where f is the C-map and g is an H-map (resp. a G-map). Because of our assumption 

H / H  I = G/G' it follows that this is a pullback diagram. Since g is smooth, the 

assertion follows from 7.1. 

7.4. Definition. Let r : H ~ G be a homomorphism of groups and f : X ~ Y 
be a C-map. Consider Y as an H-space via the homomorphism r and define the 

dualizing object D I = DI, H E DbH(X) of the map f as 

D I := f!Cy, H. 

7.4.1. L e m m a .  In the above notations assume that the map f is smooth. Then the 

inverse image 

Q'I: D~(Y)  ~ DbH(X) 
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commutes with the Verdier duality up to a twist by the invertible object Dr, i.e. 

D .Q* I = Of  | Q*I" D. 

P r o o f .  Follows immediate ly  from 7.1, 7.2. 

7.5.  We know that  the quotient equivalence q* commutes with the flmctors | Horn, 

f*,  f , ,  f ,  f~ (3.4.1). Since q* is the inverse image (and q,-1 is the direct image) it 

also commutes with the functors Q* and Q,  in the appropr ia te  setting. We claim 

that  q* commutes with the Verdier duali ty up to a twist by the invertible dualizing 

object  Dq (7.4). 

Namely, let 0 ---* H ---* G ~6 B ---* 0 be an exact sequence of groups. Let X be 

a G-space which is free as an H-space.  Consider X = H \ X  as a B-space and the 

quotient morphism q : X ~ X as a e-map.  The following proposit ion is a special 

case of lemma 7.4.1 above. 

7 .5 .1 .  P r o p o s i t i o n .  The quotient equivalence 

q*: D~3(X ) --_ D~(X)  

commutes with the Verdier duality D up to a twist by Dq (7.4). Namely 

D . q * =  Dq |  

For a manifold M denote by dM its dimension. 

7.5.2.  P r o p o s i t i o n .  Assume that in the previous proposition the group G is con- 
nected. Then the dualizing object Dq is the constant sheaf shifted by the dimension 

o f g  

Dq = CX,G[dH] 

and hence 

D.  q* = (q*. D)[dH]. 

That is the quotient equivalence commutes with the Verdict duality up to the shift 
by dg. 

P r o o f .  Put  X = Y. Consider both  X, Y as G-spaces and f : X --* Y as a G-map.  

Let P --~ Y be a smooth resolution of Y and fo (p)  __, X the induced resolution of 

X.  Consider the obvious pullback diagram 

fo (p)  ~ fo(p)  

$ f  $-f 
p q-M-p 
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We must show that 
__1 
f c-~ = CF~-f;[d~] 

Since ] is a smooth map we know that ] ! C  T = 9 7 is invertible (1.4.7, 1.6.1) and 

locally isomorphic to C]5(~[dH]. The map q is a smooth fibration with connected 
$--! 

fibers (=G).  Hence it suffices to show that the local system q f'C-fi is trivial. By 

the smooth base change 

*--! f !  q f C - f i = f ! q * C ~ =  Cp. 

But the map f is a principal H-bundle, so f !Cp : Cfo(p)[dH] by the following 

lemma. 

7.5.3.  L e m m a .  Let T be a Lie group and g : Z ~ W be a principal T-bundle. 

Then 

g!Cw = Cz[dT]. 

P r o o f .  The fibers of g are orientable (=T) and we claim that one can orient the 

fibers in a compatible way. Indeed, the transition functions in the principal T- 

bundle are given by the (right) multiplication by elements of T, which preserves the 

orientation of the fibers. 

7.5.4.  Coro l l a ry .  Under the assumptions of the previous proposition 7.5.2 we have 

a canonical isomorphism offunctors 

Qq,. D = (D.  Qq,)[dH]. 

P r o o f .  Indeed, Qq, -- q,-1 (6.12(6)). So apply 7.5.2. 

7.6. We know that  the induction equivalence (2.6.3) commutes with all functors in 

section 3 except for the Verdier duality (3.4.1). Here we prove that it commutes 

with the duality up to a twist by the invertible object D~ (7.4). 

Namely, let r : H "--+ G be an embedding of a closed subgroup and X be 

an H-space. Consider the induced G-space Y = G x H X and the natural e-map 

v:X ' - -~  Y.  

7.6.1.  P r o p o s i t i o n .  The induction equivalence 

Q* : D~(Y)  ~- DbH(X) 
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commutes with the Verdier duality D up to a twist by the invertible dualizing object 

D u e  DbH(X): 

D . Q *  = D ~ |  .D.  

P r o o f .  Since the embedding u : X ~-, Y is relatively smooth (1.4.7(2)), the dualiz- 

ing object D~ is indeed invertible. 

Since Q* commutes with Horn it suffices to prove that  

DX,H : Du | Q*Dv, a. 

By proposition 7.2 Q*Dv, a = Dv, n.  So the desired identity is 

DX,H = D,, | v'*Dy, g ,  

which is the equivariant analogue of 1.4.7(2) (see theorem 3.4.3). This proves the 

proposition. 

7.6.2.  P r o p o s i t i o n .  Assume that in the previous proposition the group H is con- 

nected. Then the dualizing object Du is the constant sheaf shifted by the difference 

of dimensions of H and G 

and hence 

D~ = CX,H[dH -- da] 

D . Q* = (Q* . D)[dH -- da]. 

That is the induction equivalence commutes with the Verdier duality up to the shift 

by dH -- dG. 

P r o o f .  Consider the obvious pullback diagram 

X - ~  Y 

lp  .tp 
pt ~ G / H  

where p : Y --~ G / H  is a locally trivial fibration with fiber X.  By the equivariant 

analogue of 1.4.7(3) we have 

u ! .p*  = p * . i  !. 

Hence it suffices to show that  

i!CG/H,H = Cpt,H[dH -- dG]. 

Note that  G / H  is a manifold of dimension d a - d g .  Hence i ! CG/H,H E DbH(Pt) is 
an invertible equivariant sheaf concentrated in degree da - dH. But H is connected, 
hence it is actually constant. 
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7.6.3. Corollary. Under the assumptions of the previous proposition 7.6.2 we have 

a canonical i3omorphism offunctors 

D .  Q~, = (Q~, .  D)[da - dH]. 

Proof.  Indeed, Q~, = (Q,)-I  (6.12(6)). So apply 7.6.2. 
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A p p e n d i x  C. 

In this appendix we prove the good base change lemma. 

C1.  L e m m a .  Consider a pullback diagram of continuous maps of topological spaces 

2 g , X  

~ f  ~ f  
~z g~ y ,  

where g is a good map (6.8). Then the base change morphism of funetors 

g * . f , - * f , . g *  

is an isomorphism. 

P r o o f .  Let S E D+(X) and z E Y. We must prove that the induced map on stalks 

(g*f.S)~ ~ ( f*g.S) ,  

is an isomorphism. 

Since g is a good map, there exists a fundamental  system of neighbourhoods U 

of z such that U = F • V, where F is acyclic and g : U --~ V is the projection. It 

suffices to show that over such U we have a quasiisomorphism of complexes 

(*) g*f,S(V) ~- f,g*S(V). 

Let us compute both sides in (*). We may assume that the complex S consists 

of injective sheaves and that Y = V, Y = U. Since F is connected the cohomology 

on the left hand side of (*) is 

ni(F(g*f .S))  = H'(F(f .S))  = Hi(X,  S). 

On the other hand, since tha map g : )(  --} X is oo-acyclic (1.9.4, 1.9.2) the 

complex g*S consists of F-acyclic sheaves and we have 

H*(r(f.g*S)) = g ' ( r ( g * S ) )  = Hi(X, S). 

This proves the lemma. 



8. D i s c r e t e  g r o u p s  a n d  f u n c t o r s .  

In this section all groups are assumed to be d i s c r e t e ,  except in subsection 8.7. 

8.0.  Let G be a group and X be a G-space. As we mentioned in section 0, a 

G-equivariant sheaf F on X in this case is simply a sheaf with an action of G which 

is compat ible  with its action on X.  As usual ShG(X) denotes the abelian category 

of G-equivariant sheaves (of R-modules) on X.  This category was s tudied by A. 

Grothendieck in [Groth] who showed in par t icular  that  Sha(X)  has enough injec- 

tives. He also considered some functorial propert ies of Sha(X)  and our discussion 

here is a variat ion on the theme of [Groth]. The main point is that  we have a na tura l  

equivalence of categories 

D(Sha(X))  "~ DG(X),  

where D stands for D b or D + (8.3.1). In other words in the case of a discrete group 

G the "naive" category D(Sha(X) )  is good enough. Our main objective here is to 

give a different description of the direct image Q,  in this case (8.4.2) and to s tudy 

its propert ies  when the action is almost free. In section 9 we apply these results t o  

some actions of algebraic groups. 

Notice that  given a discrete group G and a G-map X --* Y (of locally compact  

G-spaces),  it is not absolutely clear how to extend the usual functors like f! to the 

derived categories Db(Sha(X)),  Db(ShG(Y)). So it may be still useful to work with 

the equivalent category D b and to use the definition of functors in section 3 above. 

8.1.  Let r : H --, G be a homomorphism of groups and f : X --* Y be a C-map. It 

induces a na tura l  inverse image functor 

f ' :  ShG(Y) -~ S h ~ ( X )  

Namely, if F E She(Y) ,  then f *F  E Sh(X)  is a sheaf associated to the presheaf 

f ~  U ~-+ F(f(U)),  U open in X. 

The group G acts na tura l ly  on the presheaf f ~  (and hence on the sheaf f ' F )  by 

the formula 

g: F(f(U))r 

where g(U) = V. 

Assume that  the homomorphism r is surjective with the kernel K.  Let S E 

ShH(X ). Then the direct image f , S  E Sh(Y)  is natural ly  an H-equivar iant  sheaf 

on Y, considered as an H-space.  Hence its subsheaf of K-invar iants  ( f , S )  g = f ~ S  
is na tura l ly  a G-equivariant sheaf on Y. 

8 .1 .1 .  P r o p o s i t i o n .  Let r : H ---, G be a surjective homomorphism of groups with 

the kernel K. Let X be an H-space which is free as a K-space. Let Y = K \ X  and 
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f : X ---* Y be the quotient map. Clearly, Y is a G-space and f is a e-map. Then 

f* : ShG(Y) -~ ShH(X)  is an equivalence of categories, and the inverse functor is 

P r o o f .  One checks immediately that the natural  morphisms of functors 

I d s h ~ ( V ) - ~ f K f  *, 

f*f~---*Idshu(X) 

are isomorphisms. 

8.2. Let H C G be a subgroup and X be a G-space. Consider the natural  restriction 

functor 

R e s g :  Sha(X)  -~ ShH(X).  

8.2.1 D e f i n i t i o n .  Let S E ShH(X).  We say that F E S h a (X)  is i n d u c e d  from 

S, F = I n d , ( S )  if 

(a) S is a subsheaf of F ,  

(b) F -.~ (~seG/H$S. 

Clearly, 

Homsha ( Ind , (S ) ,  F ' )  = Homsh .  (S, ResH F ') 

for every F I E ShG(X). 

8.2.2. L e m m a .  For every S E S h H ( X )  there exists a unique induced sheaf I n d , ( S )  E 

ShG(X). The functor 
Inda  : ShH(X) ---* S h a (X)  

is exact. 
P r o o f .  Consider the G x H-space G x X with the action (g, h ) ( f ,  x) = (gg'h -1, hx) 
and the projection p : G x X ~ X. Then p*S is natural ly a G x H-equivariant 

sheaf on G x X. Since G x X is a free H-space, by proposition 8.1.1 there exists 

a unique G-equivariant sheaf S ~ on the G-space G x g X such that p*S = q*S ~, 

where q : G x X ---* G x H X is the quotient map by H. Let m : G x g X ----+ X 

be the G-map (g,x) ~ gx. Note, that G XH X = ]_IseG/H(S,X), where ( s ,X)  is 

homeomorphic to X. Consider the exact functor m! : ShG(G XH X)  ---* She (X) .  
Then m!S ~ =- ~ s e a / g s S  = Ind~t(S) is the desired induced sheaf. The uniqueness 

of the induced sheaf is obvious, This proves the lemma. 

8.2.3.  Coro l l a ry .  The restriction functor Res H (8.~) has a left adjoint ezact in- 

duction fianctor I n d , .  
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8 .2 .4 .  C o r o l l a r y .  The restriction functor Res H maps injective sheaves to injective. 

In particular, the forgetful functor Res{e}a = For : ShG(X) ---* Sh (X)  preserves 
injectives. 

P r o o f .  Indeed, the functor is the right adjoint  to the exact functor I n d , .  

8.2 .5 .  C o r o l l a r y .  The functor Ind a : D(ShH(X)  --* D(ShG(X))  is the left adjoint 

to Res H : n ( S h a ( i ) )  --* D(ShH(X)) ,  where n denotes n b or D +, and the functors 

are the trivial extensions of the corresponding exact functors between the abelian 
categories. 

P r o o f .  This follows immediate ly  from 8.2.3 and 8.2.4. 

8 .2 .6 .  P r o p o s i t i o n .  The induction functor Ind commutes with the inverse image. 

Namely, let r : G1 -+ G2 be a homomorphism and f : X --~ Y be a e-map. Let 

112 C G2 be a subgroup and Hx -- r  C G1. Assume that r induces a bijection 

G1/Ha = G2/H2. Then there is a natural isomorphism o f functors 

Inda'  �9 f* ~- f* . I n d ~  : ShH2(Y) -* Sha , (X) .  

P r o o f .  Indeed, let S E ShH2(Y). Then the inverse image f*(Ind~l~(S)) e S h a , ( X )  

is the induced sheaf IndaHll ( f ' F )  (the functor f* preserves direct sums). 

8.3.  Let us recall the definition of the functor 

i :  D(ShG(X))  ~ Da(X) ,  

where D denotes D b or D + (2.5.4). 

Let M be a contractible free G-space. Consider the cw-acyclic resolution p : 

P = M x X --* X of X and let q : P --, P be the quotient map. Then DG(X) ~- 

DG(X, P), where the last category is the full subcategory of D(P) consisting of 

objects  F such that  q*F comes from X. 

Let S E D(ShG(X))  be a complex of equivariant sheaves on X.  Then p*S E 

D(ShG(P)),  and since P is a free G-space there exists a unique T E D(P) such that  

q*T = p*S ( lemma 0.3). We put  i(S) = T. 

8.3 .1 .  T h e o r e m .  The above functor i :  D+(ShG(X)) --~ D+(X)  is an equivalence 

of categories. 

P r o o f .  Using 2.5.3 it suffices to prove that  for F, H E D+(ShG(X)) 

Homo(sa~(x))(F, H) = HOmDa(x)(i(F), i(H)). 

Note that 

HOmDa(x)(i(F), i(H)) = Homn(-fi)(i(F), i(H)) = HOmD(sh~(p))(p*F, p 'H) .  
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Hence we should prove that  

( ,)  HomD(ShG(Xi)(F, H) = HOmD(sha(p))(p*F,p*H). 

We will reduce (*) to its nonequivariant version, which holds because the map 

p is oc-acyclic. 

Put  Ind(.) = Ind?~}(.). Assume first that  F = Ind(Cu) E Sha(X) .  Then 

p*F = Ind(Cp-t(v)) (8.2.6). By corollary 8.2.5 the left and right terms in (*) 

are equal to HOmD(x)(Cu, For(H)) and HomD(p)(Cp-l(u),p*For(H)) respectively. 

But these two groups are equal, since the map p is oo-acyclic. 

Let F E Sho(X) .  We can find a left resolution of F of the form 

. . .  ~ ~)vlnd(Cv) ~ e v l n d ( C u )  ~ F ~ O. 

By s tandard arguments (see [H],7.1) we deduce that  (*) holds for F E Db(Sha(X)). 

A general F E D+(ShG(X)) can be represented as an inductive limit of bounded 

complexes 

F = lim r<nF. 

Assume that  H consists of injective sheaves. Then the complex Horn(F, H) is the 

surjective inverse limit 

Horn (F, H) = lira Horn'(v<,F, H). 

Hence the isomorphism (*) for F E D b implies the isomorphism for F E D +. 

This proves the theorem. 

8.4.  By the above theorem we may identify the categories D+(Sha(X) )  and D+(X).  

Let r : H ~ G be a homomorphism of groups anf f : X ~ Y be a e- 

map.  Clearly, the inverse image f* : D(Sha(Y) )  --* D(ShH(X))  defined in 8.1 

corresponds to the inverse image Q* : DG(Y) ~ DH(X)  under the identification 

D(Sha)  = Da. We want to identify the direct image Q,  (6.9) explicitly when the 

homomorphism r is surjective. 

Assume that  r : H ---* G is surjective, K = ker(r Consider the functor f,K : 

ShH(X)  --~ Sha (Y )  defined in 8.1. This is a left exact functor (as a composit ion of 

two left exact functors), and we denote by R f ,  K its right derived functor 

Rf,K : D+(ShH(X))  ---, D+(ShG(Y)).  

8.4 .1 .  P r o p o s i t i o n .  Let r : H --* G be a ~urjective homomorphism, K = ker( r  

and f : X ---* Y be a e-map. Then the following hold. 
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(i) The f~nctor f.~ : S h . ( X )  ~ Sho(Y)  is the right adjoint to f* : ShG(Y) 
S h . ( X )  

(ii) The functor R f ,  K : D+(ShH(X)) -~ D+(ShG(Y)) is the right adjoint to 

f * :  D+(Sha(Y))  -+ D+(X)).  

8.4.2.  Coro l l a ry .  The functor R f ,  g corresponds to the direct image Q, under the 

identification D+(ShG) = D +. 

Indeed, both functors are right adjoint to the same functor f* = Q*. 

P r o o f  o f  8.4.1.  (i) We must show that 

HomshH(x)(f* F, S) = Homshc(y)( F, f,K s),  

where F E ShG(Y), S E ShH(X). 
As in the proof of theorem 8.3.1 we may assume that F = Ind(Cv) for some 

open subset Y C Y. Then f *F  = IndH(Cf-l(v))  (8.2.6). We have 

Homsh~(y)(F,  f,h'S) = Homsh(y)(Cv, Forf,h'S) = F(U, f ~ S )  = F ( f  - I (U) ,  S) K, 

K Homsh,(x)( f*F,  S) = HomshK(x)(Cf-~(u), ReSHS) = r ( f - l ( u ) ,  s) g 

This proves (i). Now, (ii) follows from (i) and the fact that f,K maps injectives to 

injectives (being the right adjoint to the exact functor f*). 

8.5.  In this section we work in the following setup. Let r : H --* G be a surjective 

homomorphism, K = ker(r Let f : X --~ Y be a t -map  which is the quotient map 

by the action of K.  

8 .5 .1 .  L e m m a .  (i) Let F' E Sha(Y) .  The adjunction map 

F' ~ f g f*F'  

is an isomorphism. 
(ii) Let F ~ S h u ( X )  The adjunction map 

~:  f * f . K F  -~ F 

is a monomorphism. Moreover c~ is an isomorphism if and only if F comes from 
Y,  i.e. F = f*F'  for some F' E Sha(Y) .  
P r o o f .  (see [Groth] in case G = {e}.) 

8.5.2.  Coro l l a ry .  (i) The f~nctor f* : ShG(Y) ~ ShH(X)  is fully faithful. 
(ii) For each F E ShH(X)  the subsheaf im(c~) C F is the maximal subsheaf of 

F that comes from Y.  
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8.5.3.  Consider the following full subcategories of ShH(X): 

Ih" = {F E ShH(X)[ for each x E X, its stabilizer Ks C K acts trivially on F~}, 

Sh" ---- {F E ShH(X)] for each x E X, the stalk Fs has no nonzero Ks-invariants}.  

R e m a r k .  The subcategoty IK is closed under subquotients, but not under exten- 

sions in general. The subcategory SK is closed under extensions, but not under 

subquotients in general. However, if for each point x E X the stabilizer K~ is finite 

and if the basic ring R is a field of characteristic 0, then both subcategories are 

closed under extensions and subquotients. 

8.5.4.  Recall the following 

Def in i t ion .  Let B be a group and Z be a B-space. We say that B acts on Z 

properly discontinuously, if 

(i) the stabilizer Bz of each point z E Z is finite, 

(it) each point z E Z has a neighbourhood Vz such that bVz M Vz = 0 if b E 
B , b ~ B ~ .  

8.5.5.  L e m m a .  Assume that the group K acts properly discontinuously on X .  Let 
F E ShH(X)  and consider the adjunction map 

ol : f* f.K F --+ F. 

Then for every point x E X the stalk im(c~)s C Fs is equal to Ks-invariants of Fs. 
P r o o f .  Fix a point x E X. Since K acts properly discontinuously on X, there exists 

a fundamental system of neighbourhoods Vs of x with the following properties. 

1. K , y ~ = v s ,  
2. k V s M V ~ = O i f k E K ,  kf~K~. 

The stalk (f*f.h'F)s is equal to the limit 

(f* f f f  F)s = livmF(f-l(f(Vs)))I( .  

But f - l ( f (V~) )  = I-LeK/K~ sV~ and hence 

F ( f  -1 (f(Vs)))K = F(v~)K~. 

Therefore, 

This proves the lemma. 

(f*Y,~'F)s = l im E ( U s )  ~" = F : ' .  
v, 
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8.5.6.  P r o p o s i t i o n .  Assume that the subgroup K C H acts properly discontinuously 
on X .  Then the following hold. 

(i) A sheaf F �9 S h H ( X )  belongs to I~  (8.5.3) if and onty if it comes from Y.  

(ii) Assume that the basic ring of coejficients is a field of characteristic O. Let 

F �9 ShH(X) .  Consider the canonical exact sequence 

O ~ F I ~ F - ~ F s ~ O ,  

where the map Fx ~ F is the adjunction inclusion a : f*f ,R'F ~ F (8.5.1(ii)). 
Then Fx 6 Ig ,  Fs �9 SK. 

P r o o f .  Let F �9 ShH(X) .  Consider the adjunction monomorphism 

a :  f* f .h 'F-- ,  F. 

By lemma 8.5.1(ii) we know that it is an isomorphism if and only if F comes from 

Y. On the other hand, by the previous lemma, it is an isomorphism if and only if 

F E I/~-. This proves (i). 

Fix a point x E X. Consider the exact sequence of stalks 

O-, F~,~--* Fx--* Fs,~-~O. 

By the previous lemma, the image of Fl,x in Fx coincides with the I(x-invariants. 

Since Kx is finite and the basic ring R is a field of characteristic 0, the stalk Fs,x 

has no K,-invariants. This proves (ii). 

8.6. Let the basic ring R be a field of characteristic 0. 

Let r : H ~ G be a surjective homomorphism of groups, K = ker(r Let 

f : X ~ Y be a e-map, which is the quotient map by the action of K on X. 

Assume that  K acts on X properly discontinuously. 

8.6.1.  T h e o r e m .  Under the above assumptions the following hold. 

(i) The functor f g  : S h H ( X )  ---* S h a ( Y )  is exact. 

(ii) R f ~ ' .  f* "" IdD+(ShG(Y)). 
(iii) Q,Q* "~ IdD+a(y). 

(iv) Let F E ShH(X) .  I f  F E SK, then Q . F  = Rft." F = O. 
(v) The functor f* induces an equivalence of categories f* : Sha (Y)  ~- IK. 

P r o o f .  (ii) and (iii) are equivalent using the identification D+(ShG) = D +, Rfl.  r = 

Q., f* = Q* in 8.4.2. In view of lemma 8.5.1(i) the assertion (i) implies (ii). So it 

remains to prove (i), (iv), (v). 

(i). Let F --* F I be a surjective morphism in ShH(X) .  It suffices to show 

that f ,h'F ---* f,h'F' is surjective. Fix a point y E Y and let x E X be one of its 

preimages, f ( x )  = y. There exists a fundamental system of neighbourhoods U of 

y such that f - l ( U )  = I-[seK/K, sVx, where Vx is a neighbourhood of x with the 

following properties: 
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1. K~V~ =V~. 
2. k V ~ M V ~ = O i f k c  K, k ~ K~. 
We have 

f~ 'F(V)  = ( 1-I F(sV*))g = F(v*)K*' 
s E K / K ~  

and similarly 

S.~F'(U) = F'(V~) ~ 

Hence f.K Fv = FK.,  g t ~ p '  K z  - x f .  F~ _ ~ and it suffices to show that  the map F IG 

F~ g~ is surjective. This follows from the surjectivity of F~ --~ F~, since taking K~- 

invariants is an exact functor (K~ is a finite group and we work in characterist ic 0). 

This proves (i) and hence also (ii) and (iii). 

(iv). It suffices to show that  f K F  = 0 if F E SK and then to use (i). So let 

F �9 SK. Using the above argument we find that  f .KF v = F K" = 0. This proves 

(iv). 

(v). We have f *Sh~(Y)  C IK (8.5.6(i)), and f ,K.  f ,  = Idsha(y) (8.5.10))- 

Hence it suffices to show that  f f  : IK --* S h c ( Y )  is injective on morphisms. But 

this again follows from the proof of (i) above. This proves (v) and the theorem. 

8.7.  Let us consider the algebraic situation. 

As usual, the basic ring R is assumed to be a field of characterist ic 0. Let 

r : H --~ G be a surjective homomorphism of groups with a finite kernel K = ker(r  

Let f : X ~ Y be a e-map.  Assume that  X,  Y are complex algebraic varieties, f 

is an algebraic morphism, which is also the quotient map by the action of K .  

8 .7 .1 .  T h e o r e m .  Under the above assumptions the following hold. 
(i) The functor Q. : D+(X)  ~ D+(Y) preserves the t-structure, i . e . Q .  : 

ShH(X)  -~ Sha(Y) .  

(ii) Q,Q* ~_ IdD+(y ). 
(iii) The functor Q. is exact in the perverse t-structure, i . e . Q . :  PervH(X) --* 

PervG(Y). 

(iv) Q d C . ( X )  = x c G ( y ) .  

P r o o f .  Since X is a Hausdorff topological space (in the classical topology) and the 

group K is finite, it acts on X properly discontinuously. Hence (i), (ii) follow from 

theorem 8.6.1(i),(iii). 

(iii). Notice tha t  f : X --* Y is a finite morphism of algebraic varieties and 

hence f . P e r v ( X )  C Perv(Y).  

Let P E PervH(X) be a complex of equivariant sheaves (using the equivalence 

DbH(X) ~-- Db(ShH(X))).  We have to check that  the complex f g p  E Db(Sha(Y))  
satisfies the support  and the cosupport  conditions. Namely, let i : Z r Y be an 
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inclusion of a locally closed subvariety of codimension k. We need to show that  

(*) H~(i*f,EP)~ = 0, s > k 

(**)  H S ( i ' f ~ P ) z  = 0, s < k 

at the generic point z E Z. 

We know (*) and (**) for f ,P  instead of f,Ep. The functor i* commutes with 

taking K- invariants ,  which  is an exact functor. Hence Hs(i*f~'P) = ( H S ( i * S , P ) )  E 

and (*) holds. 

In order to prove (**) we may assume that  the complex P consists of injective 

H-equivar iant  sheaves. Since functors f , ,  r E ,  For preserve injectives, the complexes 

f ,P  E Db(Sh(Y)) and f,gP E Db(ShG(Y)) also consist of injective sheaves. The 

functor i ! - taking sections with support  in Z - is left exact, hence applicable to the 

complexes f ,P  and f,Kp. It commutes with taking K-invar iants  and HS(i!f,EP) = 
H~(i!f,P) K, so (**) holds. This proves (iii). 

(iv) Since Q,  = f,K we may assume that  H = K,  C = {e}. Recall that  

the intersection cohomology sheaf IC(W) on a stratified pseudomanifold W can 

be constructed from the constant sheaf Cu on the open s t ra tum U by pushing it 

forward to the union with smaller and smaller s t ra ta  and by t runcat ing (see [Bol D . 

Let S be a stratif ication of Y and T = f - 1  (S) be the induced stratif ication of X 

such tha t  IC(Y) and IC(X) are constructible with respect to $ and T.  Let V C Y 

be the open s t ra tum on Y and f - l ( V )  = U be the one on X.  Let CU, E E ShE(U) 
be the constant  K-equivariant  sheaf on U. Its direct image f,ECu, E = Cv is the 

constant  sheaf on V. We claim that  constructions of IC(X) and IC(Y) from Ccr 

and Cv commute with the direct image f,K. Indeed, the operations of pushing 

forward (direct image) and t runcat ion obviously commute with the exact functor 

f , .  The functor ( ) g  of taking K-invariants  commutes with the pushforward, and 

since ( )K is exact it also commutes with the truncation. This proves (iv) and the 

theorem. 



9. A l m o s t  f ree  a lgebra ic  act ions .  

9.0. In this section we consider almost free actions (only finite stabilizers) of reduc- 

tive algebraic groups and extend theorem 8.7.1 to this situation. As always in the 

algebraic setting we assume that the basic ring R is a field of characteristic 0. We 

denote by dM the complex dimension of a complex algebraic variety M. 
Let r : H --~ G be a surjective (algebraic) homomorphism of affine reductive 

complex algebraic groups with the kernel K = ker(r Let X and Y be complex 

algebraic varieties with algebraic actions of H and G respectively. Let f : X --- Y 

be an algebraic morphism which is a e-map. Assume that the following hold. 

a) The group K acts on X with only finite stabilizers. 

b) The morphism f is affine and is the geometric quotient map by the action 

of K (all K-orbits in X are closed). 

9.1. T h e o r e m .  Under the above assumptions the following hold. 
(i) The functor Q, : D+(X) ~ D+(Y) preserves the t-structure, i.e. Q, : 

ShH(X) --* Sho(Y).  In particular Q, preserves the bounded category D b. 

(ii) Q,Q* = IdD~(V). 
(iii) The fuuctor Q, preserves the perverse t-structure, i.e. Q, : PervH(X) 

Perva(Y)[dK]. 
5v) Q,ICH(X) = ICa(Y)[dK]. 

P r o o f .  Let us first prove the theorem in the absolute case H = K, G = {e}. 

All assertions of the theorem are local on Y (at least for the Zariski topology). 

Hence we may assume that X is affine. By our assumptions all K-orbits are closed. 

Hence by a fundamental theorem of D. Luna (see [Lu]) at each point x E X there 

exists an etale slice. This means the following. 
There exists an affine Kx-invariant subvariety S C X containing x with the 

following properties. Consider the following natural diagram 

KXK~S-~ X 

U ~ Y  

where f and ] are quotient maps by K, & is the obvious K-map and a is the induced 

map of the quotients. Then 

1. This is a pullback diagram. 

2. The morphism a (and hence also &) is etale. 
Claim. It suffices to prove the theorem for the map ] instead of f .  

Indeed, by the smooth base change theorem (7.1) the assertions (i),(ii),(iii) for 

Q], imply those for Qf , .  Suppose we proved (iv) for Q],. Then a*. Qf , ICH(X)  = 
IC(U) and hence Qf, ICH(X) is a simple perverse sheaf on Y. It remains to show 

that for some smooth open dence subset V C Y we have Qf, ICH(X)Iv = Cv. We 
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can choose a smooth V in such a way that  f- l(V) C X is also smooth and hence 

I C H ( X ) [ f - I ( v )  = C I - I ( v  ) = Q * C v .  But the adjunct ion map Cv --* Q,Q*Cv is an 

isomorphism by (ii), which is what  we need. This proves the claim. 

So we may (and will) assume that  U = Y, K x K, S = X.  

Denote by r : K~ ~ K the na tura l  embedding. 

Consider S as a K~-space and the embedding v : S --* X as a C-map. Put  

g = f[s : S --* Y. We have the following commutat ive diagram 

s - - ~  x 
lg  I f  
Y =  Y 

Hence Qg*: D+K.(S) --* D+(Y) is equal to the composition of Q ~ , :  D+K~(S) --+ 
D+(X) with Q I , :  D+(X) ~ D+(Y). But Q~, is the inverse functor to the induc- 

tion equivalence Q* = v* :  D+(X) ~_ D + ( S )  (6.12(6)) and hence it preserves the 

t -s t ructure  and the intersection cohomology sheaves (up to a shift) (5.2). Hence it 

suffices to prove the theorem for Qg, instead of QI,. It remains to apply  theorem 

8.7.1 above. This proves the theorem in the absolute case H = K and G = {e}. 

Let us t reat  the general case. 

Let P --~ Y be a smooth complex resolution of the G-space Y. Consider the 

pullback d iagram 
P x y X - - - *  X 

1 1 
P - - , y  

where horizontal  arrows are smooth H-  and G-maps respectively and vertical arrows 

are C-maps. The s tatements  (i),(ii),(iii) of the theorem are invariant under  the 

smooth base change (7.1). If the fibers of P --* Y are connected (which we can 

assume) then (iv) is also invariant. Hence it suffices to prove the theorem for the 

map P x y X --* P instead of X ~ Y. In other words we may (and will) assume 

tha t  Y is a free G-space. 

Let q : Y ~ Y be the quotient map by the action of G. Consider the composed 

morphism q. f : X --* Y as a C-map, where r : H --* {e}. Then this map  qf satisfies 

the assumptions of the theorem, i.e. it is affine and is the quotient map  of X by 

the action of H,  which has only finite stabilizers. So by the absolute case of the 

theorem which was proved above we know (i)-(iv) for the map  qf. 
Notice tha t  Qqf. = Qq*QI* and Qq. is the inverse functor to the quotient 

equivalence Qq = q* : D+(Y)  ~ D+(Y) (6.12(6) , which preserves the t -s t ructure  

and intersection cohomology sheaves (5.2). Hence we deduce that  (i)-(iv) hold for 

QI* as well. This proves the theorem. 


