Part II. DG-modules and equivariant cohomology.

The main purpose of the three sections 10,11,12 is to prove theorem 12.7.2 - the
detailed algebraic description of the categories D¥%(pt) and DE(pt) for a connected
Lie group G. So we suggest that the reader goes directly to this theorem and, if he
understands the statement, he may proceed to next sections which use very little
from sections 10-12 besides the mentioned theorem.

In section 10 we review the important language of DG-modules over a DG-
algebra. In section 11 we study a very special DG-algebra in terms of which we
eventually describe the categories D% (pt) and D(pt). In section 12 the main
theorem 12.7.2 is proved. Unfortunately, the proof is quite technical, mainly for
the bounded below category D (pt).

10. DG - modules.

Our goal is to introduce the homotopy category and the derived category of
DG-modules, and to define the derived functors of Hom and ®.

Most of the general material is contained in [I€], but we review the basic defi-

nitions for the sake of completeness.

10.1. Definition. A DG-algebra A = (4,d) is a graded associative algebra
A=@2__A" with a unit 14 € A° and an additive endomorphism d of degree 1

i=—o00
s.t.

d?=0
d(a-b)=da-b+ (~1)%eq. db,
and
d(14) =0.

10.2. Definition. A left DG-module (M, dps) over a DG-algebra A = (4, d) (or
simply an A-module) is a graded unitary left A-module M = @2 _ M i with an

i=—o0

additive endomorphism dpr : M — M of degree 1 s.t. d3, =0 and
dy(am) = da-m + (—1)%8@a . dpym

for a € A;m € M. A morphism of DG-modules is a morphism of A-modules of

degree zero, which commutes with d.
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- We will write for short M for (M, dpr) if this causes no confusion.

10.2.1. Denote by M 4 the abelian category of left A-modules.
Note that if A = A°, then an A-module is just a complex of A-modules. In

particular Mz is the category of complexes of abelian groups.

10.2.2. The cohomology H(M) of an A-module M is H(M) := Kerdp/Imdpy.
Note that H(M) is naturally a graded left module over the graded ring H(.A).

10.3. The translation functor [1] :M 4 — M 4 is an automorphism of M 4 s.t.
(M[1)" = MY, dypy = —dum
and the A-module structure on M[1] is twisted, that is
aom = (—1)38Wgm,
where a o m is the multiplication in M[1] and am is the multiplication in M.

10.3.1. Two morphisms f,g : M — N in M4 are homotopic if there exists a
morphism of A-modules (possibly not of A-modules) M->N[~1] s.t.

f—g=sdyu+dns

Null homotopic morphisms Hot(M, N) form a 2-sided ideal in Homaq (M, N) and
we define the homotopy category K4 to have the same objects as M4 and

morphisms

Homg (M, N) := Homum (M, N)/Hot(M, N).

We now proceed to define the cone of a morphism and the standard triangle in

exactly the same way as for complexes of Z-modules.

10.3.2. The cone C(u) of a morphism M-%N in M 4 is defined in the usual way.
Namely, C(u) = N @ M[1] with the differential dygprq) = (dv +u, —dar). We have
the obvious diagram

M35 N - C(u)— N[

in M 4 which is called a standard triangle.

10.3.3. An exact triangle in K 4 is a diagram isomorphic (in K 4) to a standard

triangle above.
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10.3.4. Definition. A short exact sequence

K—-M-—-N

of A-modules is called A-split if it splits as a sequence of A-modules.
One can show that an A-split sequence as above can be complemented to an
exact triangle
K- M- N - K[]]

in K4.

10.3.5. Proposition. The homotopy category K4 with the translation functor [1]
and the ezact triangles defined as above forms a triangulated category (see [Vel]).

Proof. The proof for complexes of Z-modules applies here without any changes.

10.4. A morphism M-5N in M4 is a quasiisomorphism if it induces an isomor-
phism on the cohomology H(M)= H(N).

10.4.1. The derived category D4 is the localization of K 4 with respect to quasi-

isomorphisms (see [Vel]).

10.4.2. Lemma. The collection of quasi-isomorphisms in K4 forms a localizing
system (see [Vel]).

Proof. Same as for complexes of Z-modules.

10.4.3. Corollary. The derived category D 4 inkerits a natural triangulation from
K4.

Proof. Same as for complexes.

Later we will develop the formalizm of derived functors between the derived

categories D 4 (see 10.12 below).
10.4.4. Remark. One can check that a short exact sequence
0-M->N-SK-—0

in M4 defines an exact triangle in D 4.
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10.5. Asin the case of complexes, the functors Homg , (M, ), Homg (-, N),Homp (M, ),
Homp (-, N), H(-) from the category K 4 or D4 to the category of graded abelian
groups are cohomological. That is, they take exact triangles into long exact se-

quences.

10.6. Right DG—modules. One can develop a similar theory for right DG~

modules.

10.6.1. Definition. A right DG-module (M, da) over A = (A, d) is a right graded
A-module M = &% ___M* with an additive endomorphism dps : M — M of degree

t=—00

1, s.t. d%; = 0 and
dy(ma) = dym - a+ (=1)%8™m . da.

Denote the category of right DG-modules over A by M.

One can either proceed to define the homotopy category K7y and the derived
category D7 in a way similar to left DG-modules, or simply reduce the study of
right modules to that of left modules using the following remark 10.6.3 (the two

approaches yield the same result).

10.6.2. For a DG-algebra A = (A,d) we define its opposite A°P = (A°P,d) to
have the same elements and the same differential d, but a new multipliciation a 0 b
defined by

aob:= (—l)deg(“)'deg(b)ba,

where ba denotes the multiplication in A.

10.6.3. Remark. Let A be a DG-algebra, .A°P its opposite. Then the categories
M 4 and M7y, are naturally isomorphic. Namely, let M € M4 be a left A-module.

We define on M the structure of a right A°°—module as follows
moa;:= (—l)deg(“)'de“(m)am.
One checks that this establishes an isomorphism of categories M 4M7op.

10.7. A DG-algebra is called supercommutative if ab = (—1)d¢8(s)dee(®pq. In

other words A is supercommutative of A = A°P,

10.8. Hom.



72

Let M,N € M 4. Define the complex Hom (M, N) of Z-modules as follows:
Hom™(M, N) := {morphisms of A-modules M — N[nl]}; if f € Hom"(M,N),
then
df =dnf —(=1)"fdum.
Note that by definition Homg (M, N) = H'Hom(M, N).
10.8.1. One can check that the bifunctor Hom(:, -) preserves homotopies and defines

an exact bifunctor
Hom(+,-): K4 xKa = Kz.

10.8.2. In.case A is supercommutative the complex Hom (M, N) has a natural
structure of a DG-module over A. Namely, for f € Hom(M,N) put (af)(m) =

af(m). In this case Hom(-,-) descends to an exact bifunctor
Hom(+,): K%Y x K4 — Ka.

10.9. ®4.
Let M € MY, N € M4 be a left and right DG-modules. Then the graded
Z-module M ® 4 N is a complex of abelian groups with the differential

dm®n) =dym@n+ (-1)28™m @ dyn
We denote this complex by M @ 4 N.
10.9.1. The bifunctor ® 4 preserves homotopies and descends to an exact bifunctor
@A Ky xKa—Kg.

10.9.2. In case A4 is supercommutative the complex M ® 4 N has a natrual structure
of a DG-module over .A. Namely, put a(m ® n) = (—1)d¢8(#)-de&(m);mq @ n. Then

®.4 descends to an exact bifunctor
®_A:IC;‘ XxKaqg—K4g.

10.10. If A is supercommutative we have the following functorial isomorphisms

(M,N,K € My):
MRA(NQ4AK)=(MQ4aN)Q4 K

Hom(M, Hom(N,K)) = Hom(M ®4 N, K)
Homaq, (M, Hom(N, K)) = Hompa (M ®4 N, K)

Homg (M, Hom(N, K)) = Homg (M ®4 N, K).
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10.11. Let ¢ : A — B be a homomorphism of DG-algebras, that is a unitary
homomorphism of graded algebras ¢ : A — B which commutes with the differential.
Consider B as a right DG-module over A via ¢.

The assignment M — B ® 4 M defines the extension of scalars functor
" My — Mp
which descends to the exact functor
¢* K4 —Kp.

On the other hand, if N € Mg we can view N as a left A-module via ¢. This

defines the restriction of scalars functor
by Mp — My

and the exact functor
¢ : Kp— K4.

The functors ¢* and ¢. are adjoint. Namely, for M € M4, N € Mp we have
Homut, (¢*(M), N) = Homa (M, $.(N))
Homy, (¢*(M), N) = Homg , (M, ¢+(IV)).
In case A and B are supercommutative we have also
BRQAaMOAN)=BoaM)®s(BR4N)
for M, N € M4, that is ¢* is a tensor functor.

10.12. Derived functors.

Our goal is to define derived functors in the sense of Deligne [D3] of Hom and
®.4. In order to do that we will construct for each DG-module M a quasiisomor-
phism P(M) — M, where P(M) is the “bar resolution” of M. Then we show that
P(M) can be used for the definition of the derived functors. We use the results of
N. Spaltenstein {Sp].

Let us recall the notion of a K-projective complex of Z-modules (see [Sp]).

10.12.1. Definition. Let C € M z. We say that C is K-projective if one of the

following equivalent properties holds:
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(i) Foreach B € Mz
Hom;c,(C’,B) = Hosz(C,B)

(ii) For each B € Mz, if H(B) = 0, then

H(Hom(C,B)) =0

The equivalence of (i) and (ii) is shown in [Sp]. We will repeat the argument in
lemma 10.12.2.2 below.

Theorem. For every complez B € Mg there ezists o K—projective C € Mz and

a quasissomorphism C — B.
Proof: see [Sp].

10.12.2. We need to extend the definition and the theorem in 10.12.1 to arbitrary
DG-modules.

10.12.2.1. Definiton. Let P € M4. Then P is called K—projective if one of the

equivalent conditions in the following lemma holds.

10.12.2.2. Lemma. Let P € M. Then the following conditions are equivalent:
(i) Homg ,(P,-) = Homp (P,")

(i) For every acyclic C € Mp, (that is H(C) = 0), the complez Hom(P,C)
1s also acyclic.
Proof: (i) = (ii). Let C be acyclic. Then Homg,(P,C) = Homp,(P,C) = 0.
But Homg (P,C) = H Hom (P,C). So Hom(P,C)is acyclic in degree 0. Using the
isomorphism Hom (P, C[i]) = Hom (P, C)[i] we conclude that Hom(P,C) is acyclic.

(ii) => (i). By the definition of morphisms in K4 and D 4 it suffices to prove
the following: For a map s € Homy , (T, P) that is a quasi-isomorphism, there exists
a map

t € Homy (P, T), st. s-t=1Idp.

Consider the cone of s in K 4
TSP - C(s).

Then by (ii) Homx , (P, C(s)) = 0. Hence from the long exact sequence of Homx, (P,-)
it follows that there exists t € Homy,, (P,T) s.t. s-t = Idp. This proves the lemma.
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10.12.2.3. Remark. One checks directly that the A-module A is K~projective.

10.12.2.4. Bar construction. For a DG-module M € M 4 we will now define its
bar resolution B(M) € M 4 together with a quasiisomorphism

B(M)—- M.

Then we will prove that B(M) is K—projective, hence there are enough K—projective
objects in K 4.

So let M € M 4. Consider M as just a complex of abelian groups M € Mz.
Let Sy = S(M)5 M be its K-projective resolution in Kz (which exists by theorem
10.12.1). We may (and will) assume that ¢ is surjective. Consider the induced
A-module P, = A ®z Sy corresponding to the natural homomorphism Z — A..

There is a natural map of .A-modules
8o:Pp— M, b(a®s)=a-e(s).

We claim that &y induces a surjection on the cohomology H(P) — H(M).
Indeed, the map ¢ : Sy — M is a quasiisomorphism and for the cycles s € Sp and
1® s € Py we have e(s) = §p(1 ® s).

Let K = Ker(dg). Then the exact sequence

0-K—PBM -0
in M 4 induces the exact sequence on cohomology
0— H(K)— H(Py) - HM)—0

We now repeat the preceding construction with K instead of M, etc. This

produces a complex of A-modules
(+) 2P 2P 2R, 0.

Define a new A-module B(M) = @%____ P—;[i], where the A-module structure

on P_;[i] is the same as on P_; and the differential
d:P_j[i] = P_i[§] ® P_iya[i — 1] is

d(p) = (dp_.(p), (~1)**8®é_(p)).
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There is an obvious morphism of A-modules B(M )—6>M , where 8lp, = & and
6|p_; = 0 for 7 > 0. We call B(M) the bar resolution of M, which is justified by

the following claim.

10.12.2.5. Claim. 6 : B(M) — M is a quasi-isomorphism.

Indeed, B(M) is the total complex, associated to the double complex (*) of
abelian groups. Hence H(B(M)) can be computed using the spectral sequence of
the double complex (*). The E; term is the complex

~ H(P_3) — H(P_;) = H(Py) = 0,

which is exact except at Py by the construction of B(M). Hence the spectral
sequence degenerates at E; and H(B(M)) = E;, = H(M).

10.12.2.6. Proposition. The A-module B(M) as constructed above is K-projective.

Proof. We will prove property (ii) of the lemma 10.12.2.2: for an acyclic A~
module C the complex Hom(B(M),C) is acyclic. Since H°Hom(B(M),C) =
Homg , (B(M), C) it suffices to prove

Homx ,(B(M),C) = 0.

So let f : P — C be a morphism of A-modules, where H(C) = 0. We will
construct a homotopy h : f ~ 0, defining h inductively on the increasing sequence
of submodules B, = @2 ,P_;[:] C B(M).

n = 0. Recall that By = Py = A®z Sy where S; € Mz is K~projective. By
the adjunction properties in 1.11 the morphism f|p, : Po — C of A-modules comes
from a morphism g : S — C of Z-modules. But g is homotopic to zero, because
So 1s K-projective. Hence by the same adjunction property there exists a homotopy
ho : Py — C[~1] s.t. f|p, = dho + hod.

Suppose we have constructed a homotopy hp—1 : Bo—1 — C[—-1] s.t.
f1Baoy = dhnoy + hpad.

We will extend h,—1 to a homotopy h, : B, — C[—1]. So we need to define hy, on
P_,[n].

Let us introduce a local notation. For M € M 4 (resp. M € Mz) we denote
by M[n] € M4 (resp. M[n] € Mz) the appropriately shifted module, where the
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differential and the A-module structure (resp. the differential) are the same as in
M.

Let K C P_p41 be the kernel of §_,,41. Let @ : S(K) — K be the K—projective
resolution in M z used in the construction of B(M). Then P_, = AQz S(K) and
denote by i : S(K)[n] = P—n[n], i(s) = 1®s the map of Z-complexes. Recall that
the differential dp(ary acts on i(s) = 1@ s € P_y[n] as

dpon(i(s)) = 1® dsge (s) + (~1)45a(s)

Put a(s) = (—1)%8(a(s)
Define an additive map g : S'(K)[ﬁ] — C as follows:

g:f'i—h,,_y&.
Note that ¢ has degree zero.

Claim. g is ¢ map of Z-complezes, 1.e.

dc -9 =g dsk)-

Proof.
dc-g=do(fi—hn-1-a)

—de-fri—dc-hni &

= f-dpm i~ ldc hn-t1 + hn-1-dpar) = bn-1-dBon] - &

=fli-dsxy + @] —f-d+hn-1-drx-&

=fi-dsg) + hno1 - [~@ - dso)

=[f i = ha-r - &lds(x) = 9 - dsro)-

Since S(K) is K-projective there exists a homotopy of Z-complexes

h: S(K)[n] — C[-1], s.t.

hdsixy+dch =g
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We get

=3

hdsxky +dch=f-i—hp1-

hds(K) +hpya+dch=f-1

Now there is a unique map of A-modules hy, : P_n[n] = A®z S(K)[n] — C[-1]
which extends the homotopy h : S(K)[n] —» C[-1]. We claim that hndpar) +
dchy, = f on P_n[v_z], that is h,, is the desired extension of h,_;.

Indeed,

(hndp(m) + dchn)(a® s) = hndpmy(a ® s) + dchn(a ® s)

= ha(da ® s + (—1)38@a @ dg(ys + (—1)3eB()Fde8(@) gq(s))
+ do((—1)*5ah(s))

= (=1)%8(@+1gg . p(s) 4 (~1)de8@+deB@ g h(dg e 5)
+ (—1)des(o)+degla)tdeg(a)g p(af(s)) + (—1)28(8)da . h(s)
+ (—1)des(@)+deg(@) g o p(s)

= alhds(k) + hn-18 + dch](s)

= of -i(s) = f(a® ).

So we have extended the homotopy 4 : f ~ 0 from B,_; to B,. This completes

the induction step and the proof of the proposition.

10.12.2.7 Remark. In case the algebra A contains a field the bar construction
can be simplified. Namely, we do not need the intermediate complexes S(K), since

every complex over a field is K—projective.

10.12.2.8. Denote by KP4 the full triangulated subcategory of K 4 consisting of
K-projectives. The following corollary follows immediately from 10.12.2.1-6.

10.12.2.9. Corollary. The localization functor K4 — D4 induces an equivalence
of triangulated categories KP4 ~ Dy4.

10.12.3. In sections 10.12.2.4-6 above we proved that the category K 4 has enough
K-projective objects. This allows us to define the derived functor of Hom(-,:).



79
10.12.3.1. Definition. For M, N € M 4 we define the derived functor
RHom(M,N) := Hom(B(M),N),

where B(M) is the bar resolution of M as in 10.12.2.4.
The results in 10.12.2.2-6 above show that RHom is a well defined exact bi-
functor
RHom : D& x Dg— Dz,

which is a right derived functor of Hom in the sense of Deligne ({D3]).

In case A is supercommutative we get the exact bifunctor
RHom : D% x D4 — D4

10.12.4. Next we want to define the derived functor of ® 4. Let us recall the
following definition, which is again due to Spaltenstein [Sp].

10.12.4.1. Definition. A DG-module P € M4 is called K-flat if the complex
N ®4 P is acyclic for every acyclic N € M7,.

10.12.4.2. Lemma. A K-projective complez S € Mz is K-flat.
Proof. See [Sp].

10.12.4.3. Proposition. For every M € M4 its bar resolution B(M) € M4 13
K-flat.

Proof. Let C € M, be acyclic. Recall that B(M) is an .A-module associated with

a complex of A-modules
(+) oo Pip e o

Each term P_; is of the form A ® z S where § is a K-projective Z-complex. By
the previous lemma 10.12.4.2 S is K-flat, so

CRAP_;=CRuA®RzS=C®zS

is acyclic.

But C ® 4 B(M) is a complex associated with the double complex

o C®AP T C A P B C oA P — 0,
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where the “columns” C @4 P—; are acyclic. Hence C ® 4 B(M) is acyclic. This

proves the proposition.
10.12.4.4. Corollary. A K-projective object in M 4 is K—flat.

Proof. Let P be K—projective and let B(P)—5>P be its bar resolution. Then § is a

homotopy eqinvalence. Suppose now that C € M7 is acyclic. Then C ®.4 B(P) is

acyclic by the last proposition. But C® 4 B(P)l§>6C®AP is a homotopy equivalence,

hence also C @ 4 P is acyclic. This proves the corollary.
10.12.4.5. Definition. Let M € M4, N € M7,. We define the derived functor
L
N®aM := N @4 B(M),

where B(M) is the bar resolution as in 10.12.2.4.
L
The fact that B(M) is K—projective and K-flat implies that ® 4 is a well defined

exact bifunctor

L
®4:Dy xDsg — Dg,

which is the left derived functor of ® 4 in the sense of Deligne ([D3]).

In case A is supercommutative we get the exact bifunctor
L
Q4 :DaxDy— Dy

10.12.5. Let ¢ : A — B be a homomorphism of DG-algebras. We now define the

derived functor of the extension of scalars functor B4 = ¢* : K4 — Kg to be
B<§L3>A=¢*1DA—’DB
We also have the restriction functor
¢+ Dp — Dy
obtained by restriction of scalars from B to .A. The above functors are adjoint:
Homp, (¢*(M),N) = Homp (M, ¢.(N))

for M € D4, N € Dg.

10.12.5.1. Theorem. Let ¢ : A — B be a homomorphism of DG-algebras which
induces an isomorphism on cohomology H(A)=H(B). Then the extension and the
restriction functors

¢*:DA—>DB,
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¢*:DB'—’DA

are mutually inverse equivalences of categories.

Proof. Let M € D4, and B(M)—6>M its bar resolution. Then ¢, - ¢*(M) =
B ®.4 B(M) considered as a left A-module. Define a morphism of functors

a:ldp, = ¢u- 9"
where a : M — B ®4 B(M) is a composition of §~1 with the map f:
f:B(M)— B®a4B(M)
f:re—m1Qe.

To show « is a quasiisomorphism it suffices to show that f is so. But this is
immediate since B(M) is K-flat (proposition 10.12.4.3) and hence

f=b®id: A@s B(M) - B o BOM)

is a quasiisomorphism.

Let us define a morphism of functors
B:¢" e — Idp,.

For N € Dg, ¢*-¢.(N) =B ®4 B(N), where B(N)—-t->N is the bar resolution of N

considered as an A-module. Put
B:BRaB(N)—- N
B:b®e— bt(e)
We claim that 3 is a quasiisomorphism. Indeed, consider the commutative diagram
B(N)=A®4B(N)
$01 | \ 19t
B®iB(N)->A®4N =N,

where the maps ¢ ® 1 and 1 ® ¢ are quasiisomorphisms.

This proves the theorem.
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10.12.6. If A is supercommuntative, there are the following functional identities
(M,N,K € Dy):

MEA(NBAK) = (MEAN)B 4K
RHom (M, RHom(N, K)) = RHom(M® 4, K)
Homp,, (M, RHom(N, K)) = Homp,,(M® N, K)
If in addition B is supercommutative then ¢* : D4 — Dg is a tensor functor, that

1s

L L L L L
BRA(M®4N) = (BRAM)®s(BRAN).



11. Categories Df;, Di.

In this work we will be interested in a very special DG-algebra A = (A,d = 0),
where A = R[X,...,X,] is the commutative polynomial ring, and the generators
z; have various even degrees. This is a supercommutative (even commutative)
DG-algebra. Denote by m := (Xi,...,X,) the maximal ideal in A. The algebra
A appears as the cohomology ring H(BG, R) of the classifying space BG of a
connected Lie group G. Eventually, we will describe the derived category Dg(pt) of
G-equivariant sheaves on a point using the derived category D4 (see next section).

11.1. For the remaining part of this section let us fix a DG-algebra A as above.
Consider the following triangulated full subcategories of M 4:

MY = {M € M4|M is a finitely generated A — module},

MY = {M e MM =0 fori << 0}.

We repeat the construction of the homotopy category and the derived category in
section 10 above replacing the original abelian category M4 by M ﬁ (resp. MY).
Denote the resulting categories by ICf‘, th, (resp. K}, DI) We have the obvious
fully faithful inclusions of categories

M c MY c My,
KL cKkhcKa

The following proposition implies that there are similar inclusions of the derived
categories (see 11.1.3 below).

11.1.1 Proposition. Let M € M 4. Assume that M € M,f‘t (resp. M € M)
Then there exists a K-projective P € M4 and o quasiisomorphism P — M, such
that P € Mﬁ (resp. P € M}).

Proof. Consider the exact sequence of A-modules
(%) 0 — Kerdpyy = M — M/Kerdy — 0,

where the A-modules Kerdys and M/Kerdy have zero differential and belong to
M;f,‘ (resp. MY). The sequence (*) is an exact triangle in D 4. Since K-projective
objects form a triangulated subcategory in K 4, we may assume that the differential
du in the module M is zero.
Let
0-P 5. SPRSM -0

be a graded resolution of M (as an A-module) by finitely generated (resp. bounded
below) projective (hence free) A-modules. This resolution defines an A-module
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P = @P_;[1] with the differential d : P_,[i] — P_;+i[¢ — 1] and a quasiisomorphism
€: PSM (elp_;;n =0, i >0). Clearly P € Mﬁ (resp. P € M%).

Claim. The A-module P is K-projective.

Proof of the claim. One immitates the proof of the corresponding statement
for complexes (see [Hart]). Namely, the following statement is easily verified: Let
C e My, st. HC) =0, then Homg, (P,C) = 0.

This proves the proposition.

11.1.2. Consider the full subcategory KP4 C K4 consisting of K-projectives and
denote by K:'Pi; C KP4 the full subcategory consisting of objects M € Mﬁ. We

have a natural commutative diagram of functors

KP4 = DY,
le id
KP4 LN Dy.

The functor b is an equivalence (10.12.2.9). It follows from the above proposition
that the functor a is also an equivalence. Hence d is fully faithful. Similarly for
KP% and DY. So we proved the following

11.1.3. Corollary. The naturel functor Di; — D4 (resp. DY — Du) is fully
faithful.

11.1.4. Actually the proof of 11.1.1 gives more. Namely, the K-projective DG-
module P constructed in this proof is an iterated extension of finite (shifted) direct
sums of A (resp. of bounded below direct sums @;s,(@.A[—1])) in case of the
category Mﬁ (resp. M7). This shows that the triangulated category IC’P_{1 (resp.
KPY) is generated by A (resp. by bounded below direct sums @; ,(®.A[—i])). Let
us write for short &% .A[—i] for @;5,(®A[—7]). Using the equivalence a in 11.1.2 we
obtain

11.1.5. Corollary. The triangulated category D_{t (resp. D% ) is generated by A
(resp. by bounded below direct sums @+ A[—1]).

11.1.6. The categories M_{‘, Mj (resp. KL, )CI) are closed under the tensor
product ® 4, and M_{‘, IC_{‘ are closed under Hom(-,-). Using the proposition 11.1.1
we can define the derived functors of Hom(-,-) and ® 4 on the categories D_{i, Dj{,
using the K-projective resolutions (see definitions 10.12.3,4). So we obtain the exact
functors

RHom(-,-) : D% x D§, - D/,
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RHom(:,-): Dfd x D% — D}
L
-®-:D£‘XD£‘—+D£
L
& . D% x D% o DY

Clearly, all relations in 10.12.6 hold for the above functors.
Our main interest lies in the category DQ. We proceed to define some additional
structures on Di.

11.2. Duality.

11.2.1. Definition. The A-module Dy := A € Dj; is called the dualizing
module.
Next we define the duality functor

D: D) - D
D(M) := RHom(M, D4)
11.2.2. Proposition. D? = Id.

11.2.2.1. Lemma. For ¢ K-projective P € IC:'; the A-module Hom(P,D,) 13 also
K -projective.

Proof. Since the category of K-projectives is generated by A (see 11.1.4), it suffices
to prove the lemma if P = A in which case it is obvious.

Proof of proposition. Let M ¢ D,{t be K-projective. Then using the above lemma

we have

DD(M) = Hom(Hom(M,D4), Da).

Define a map of A-modules
a: M — DD(M), a(m)(f) = (_1)des(m)deg(f)f(m)

We claim that o defines an isomorphism of functors Id——~D?. By corollary 11.1.5
above it suffices to prove that o is an isomorphism in case M = A, which is obvious.

This proves the proposition.

11.3. Relations with Ext 4 and Tor 4.

L
Let us point out some relations between the operations RHom and @4 in Dﬁ
and the operations Ext 4 and Tora in the category Mody of graded A-modules.
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Let M\N e M .’; be A-modules with zero differentials. Recall the construc-
tion of a K-projective resolution P of M as in the proof of proposition 11.1.1. We
considered a projective resolution

(*) 0o P -4 . 5P - 5P -5 M 0

of M in the category Mod 4. Then the A - module P was defined as P = &; P_;[i]
with the differential d : P_;[t] —» P_;41[i — 1] and the quasiisomorphism ¢ :
PS5 M (e(P-ifd)) = 0, for i > 0).

By definition,

1) RHom(M,N) = Hom(P,N).
On the other hand, the complex of A-modules
(2) ... » Hom4(P-;,N) —» Homu(P—;—y,N) — ...

computes the modules Ext’, (M, N)
Comparing (1) and (2) we find

11.3.1. Proposition. If M, N € DY have zero differentials, then
(%) H(RHom(M,N)) = &;Ezt'y(M, N)[—i].

In particular, if Ext'y(M,N) =0, i # k, then the A-module RHom(M, N) is quasi-
isomorphic to its cohomology H(RHom(M,N)) and hence

RHom(M,N) = Ezt(M, N)[-k].
In case N = Dy = A the last equality becomes
D(M) = Exthy(M, A)[-k],

which shows the close relation between the duality in D£ and the coherent duality
in ModA.
(ii) There ezists a naturel morphism in D.{:1

RHom(M,N) — Ezt(M,N)[—n],

which induces a surjection on the cohomology (the differential in the second A-
module 13 zero).

In the previous notations we also have

L
(3) M®aN =P®uN.
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On the other hand the complex of A-modules
(4) eo. * P_i®AN—>P_ ;11 ®4a N — ...
computes the modules Tor’, (M, N). Comparing (3) and (4) we find

11.3.2. Proposition. If M,N € Df‘ have zero differentials, then
L )
(?) H(M®AaN) = &;Tor',(M,N){].

. L
In particular, if Tory(M,N) =0, i # k, then the A-module M@ 4N is guasiiso-
L
morphic to its cohomology H(M® 4N) and hence

L
M®uN = Tork (M, N)ik].

(i) There ezists a natural morphism in Df;

L
MsAN - M®a N,

which induces a surjection on the cohomology (the differential in the second module

18 zero).

11.3.3. For a given M € D4 it is useful to know if M is quasiisomorphic to its
cohomology, i.e. if M ~ (H(M),d = 0) (see, for example, the previous propositions
11.3.1, 11.3.2).

Proposition. Let M &€ D4 be such that the A-module H(M) has cohomelogical
dimension 0 or 1. Then M ~ (H(M),d =0).

Proof. Choose {c;} C Kerdyy C M such that {c;} generate the cohomology H(M)
as on A-module. Let Py = @;Ac; be the free A-module on generators ¢; with the
natural map of A-modules

€: Pp — Kerdy
ci ey
Let P_; C Py be the kernel of the composed surjective map
Py5Kerdy — Kerdpy /Imdy = H(M).
By our assumption P_; is a free A-module, and hence

0 P3Py - HM) -0
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is a projective resolution of the A-module H(M).

As in the proof of 11.1.1 consider the K-projective A-module P = Py & P_4[1]
with the differential d : P_;[1] — Py. Then P is quasiisomorphic to H(M) (from
the exact sequence above). Let us construct a quasiisomorphism P=M, which will
prove the proposition.

We already have the map Py->M. It remains to find a map of A-modules
¢': P_y — M which makes the following diagram commutative

&

P_l — M
ld ldm
P 5 M.

Such a map exists since cod(P_;) C Imdpy and P_; is a projective A-module. This
proves the proposition.

11.4. {-structure.
Let us recall the definition of a ¢-category in [BBD)].

11.4.1. Definition. A t-category is a triangulated category D together with two
full subcategories D<°, D29 s.t. if D<" := D<%[—n] and D2" := D2°[—n], then

(i) For X € DY € D2! Homp(X,Y) =0
(ii) D2® ¢ D= and D2° > D!
(i) For X € D there exists an exact triangle A —» X — B st. A € DS°, B € D21

Let us introduce a t-structure an D,f4'

11.4.2. Definition.
D-{‘,ZO ={M ¢ Df‘| there exists N € Df; quasiisomorphic to M such that
Ni'=0,i: <0}

D%=* := {N € D}j|Hom (N, M) =0 for all M € DLy,
11.4.3. Theorem. The triple (DQ,DQZO,DQ’SO) is a t—category.

Proof. The properties (i),(ii) of definition 11.4.1 are obvious. In order to prove (iii)
we need some preliminaries. The proof will be finished in 11.4.11 below.

11.4.4. Definition. Let N € Di; be a free A-module. Denote by rk 4N its rank
as an A-module. Let now M € Df‘ be arbitrary. Then we define the rank of M as
follows

rkM = mgn{rkAP|P is K — projective, free as

an A-module, quasiisomorphic to M }.
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11.4.5. Remark. The function rk(M) satisfies the “triangle inequality”. Namely,
if M - N — K is an exact triangle in Dﬁ, then rkN < rkM + rkK.

11.4.6. Definition. Let P € Df; be a K-projective, free as an A-module. Then P
is called a minimal K-projective, if rka P = rkP.

11.4.6.1. Let P = (®A:],dp) be a free A-module. Define the following A-
submodules of P:

so that P = P<; @ P>iq1.

11.4.7. Lemma. Let (P,dp) be a K-projective A-module, free as an A-module.
Then the following statements are equivalent.

(1) dp(P) C mP;

(1) P is a minimal K-projective A-module;

(it) for all k, P<y is an A-submodule of P, i.e. dp(P<x) C P<i.

Proof. Let e,...,e, be a graded A-basis of P, s.t. deg(e;+1)> deg(e;). Then the
differential dp is an endomorphism of P given by a matrix M = (a;;), where

n

dp(ej) = Zaijei-
i=1
Then clearly, (1)& a;; € m, Vi,j < M is upper triangular <(iii).
(1)=>(i1). Assume that P satisfies (i). Consider the complex of IR-vector spaces

L
IRQaP = P/mP.

By our assumption this complex has zero differential. Hence P is minimal.
(i1)=(i). Induction on the A-rank of P.
Suppose that dp(e1) = 0. Then we have a short exact sequence of A- modules

Aey — P — P/Aey,

where all modules are free. This sequence is A-split, hence defines an exact triangle
in K (10.3.4). The first two terms are K-projective, hence the third one is also such.
Moreover, from the triangle inequality (11.4.5) it follows that P/Ae; is minimal. By
the induction hypothesis (i) holds for P/Ae;. Hence it also holds for P.
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Now suppose that dp(e1) # 0. Then dp(e;) is an IR-linear combination of
e;’s. We may (and will) assume that dp(e;) = e; for some i. Denote by E the
A-submodule of P spanned by e;, ;. Note that F is K-projective as the cone of
the identity morphism id : Ae; — Ae; and H(E) = 0. Consider the short exact
sequence of .4-modules

EFE-P— P/E,

where all modules are free. This sequence is A-split, hence defines an exact triangle
in K4 (10.3.4). The first two terms are K-projective, hence the third one is also
such. The map P — P/E is a quasiisomorphism, which contradicts the minimality
of P. This proves the lemma.

11.4.8. Lemma. Let P be a minimal K-projective. Then the A-submodules
Pep C P (11.4.7) are K-projective for all k. Hence also P/P<y are K-projective
and actually P<x, P/P<y are minimal.

Proof. Induction on k.

11.4.9. Remark. Let M € Df‘. Let ey,...,e, be a graded A-basis for a minimal
K-projective module P quasiisomorphic to M. The previous lemma implies that
there is an isomorphism of graded IR-vector spaces

L
H(R®AM) = ©Re;.

In particular

L
rkM = dimpH(R®AM).

11.4.10. Proposition, Let P,Q € M 4 be two minimal K-projectives. If P, Q are
quasiisomorphic then they isomorphic.

Proof. Let a : P — @ be a quasiisomorphism. Since P is K-projective, a is an
actual morphism of modules. Applying the functor IR ® 4 - we find that a induces
an isomorphism of the vector spaces

P/mP = Q/mQ.
Hence a is an isomorphism by the Nakayama lemma.

11.4.11. Now we can finish the proof of theorem 11.4.3. Let M € D_{‘. Let P be
the minimal K-projective quasiisomorphic to M (which is unique by 11.4.10). By
lemma 11.4.7 the A-submodule P<p C P is actually an A-submodule. Consider the

exact triangle
Pso-—?P—bP/PSo
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We claim that this is the desired triangle. Indeed, P/P<q € Dﬁzl. Since P<g has
generators in negative degrees and is K-projective {(11.4.8), it lies in Df{so. This
proves the theorem.

11.4.12. Recall that a t-structure on a triangulated category D defines the trun-
cation functors

T<n : D — Dsn
Ton: D — D2"

which are respectively right and left adjoint to the inclusions D" ¢ D, D2 C D.
Then for X € D the exact triangle

TSOX - X — T21X

is the unique triangle (up to a unique isomorphism) satisfying condition (iii) of
definition 11.4.1 (see [BBD]).

In our case the truncation functors are made explicit by the argument in
11.4.11.above. Namely if P is a minimal K-projective then r<;P = Pg; and
T>i+1P = P/Pq;. '

11.4.13. Given a t-structure on D, its heart is the full subcategory C := DZ°ND<0,
It is known ([BBD]) that C is abelian.

Claim. The abelian cetegory D.{{zo N DQSO 18 equivalent to Vectg — the category
of finite dimensional vector spaces over IR.

Proof. Let P € DQZO n Dﬁ’so. We may assume that P is minimal K-projective.
Since P € Dﬁso, 7>1P = 0. Since P € Dj:’zo, 7<—1X = 0. So by 11.4.12 we
find that P = ®A, dp = 0. Hence D_{,’Zo N Df{so is equivalent to the category of
free A-modules of finite rank, placed in degree zero, which in turn is equivalent to
Vect k.-

11.4.14. One can characterize the subcategories Dﬁzo, D.{{SO C D£ in the follow-
ing way.

Proposition. Let M € Df‘.

1. The following conditions are equivalent
(i) M € D;2°.
(i) There exists a K-projective P € D_f; quasiisomorphic to M such that P* =
0,z <0.
(iii) If P e D.{t is a minimal K -projective quasitsomorphic to M, then P* =0,i < 0.
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2. The following conditions are equivalent
(iv) M € DL=°
(v) There ezists a K-projective P € Df‘ quasiisomorphic to M such that P is
generated as an A-module by elements in nonpositive degrees.
P
(vi) IfP € Dﬁ 18 @ minimal K-projective quasiisomorphic to M, then P is generated

as an A-module by elements in nonpositive degrees.

Proof. 1. Clearly, (iil) = (i) = (i).

(i) = (1i). Let M € Di‘zo and let P be a minimal K-projective quasiisomorphic
to M. Since P € D4Z°, r_;P = 0. But then by 11.4.12, P’ = 0,i < 0 which
proves (iii).

2. Clearly, (vi) = (v) = (iv).
(iv) = (vi). Let M ¢ DQSO and let P be a minimal K-projective quasiisomorphic
to M. Then 751 P = 0, so by 11.4.12 P = 7<o P = P<g, which proves (vi).



12. DG-modules and sheaves on topological spaces.

This is a fairly technical section whose only purpose is to prove the main theo-
rem 12.7.2. Otherwise, it is never used later.

12.0 In this section we show how DG-modules are connected with sheaves on topo-
logical spaces. Namely, to a topological space X one can associate a canonical
DG-algebra Ax, so that a continuous map X LY defines a homomorphism of DG-
algebras ¢ : Ay — Ax. Let D4, be the derived category of left Ax-modules and
D(X) be the derived category of sheaves on X. We define the localization functor

Lx : D4y — D(X)
and the global sections functor
vx : DY(X) — Day.

These functors establish an equivalence between certain natural subcategories of
D4y and D(X). Then we study the compatibility of the localization functor with
the inverse image f* : D(Y) — D(X) and the direct image f. : D*(X) — D¥(Y).
These results will be applied to the derived category of equivariant sheaves Dg(pt).

12.1. DG-algebras associated to a topological space.
Let X be a topological space, Cx — the constant sheaf of R—modules on X
(later on we will stick to the reals R = R).

Definition. Let 0 — Cx — F  be a resolution of the constant sheaf. We say
that it is multiplicative if there is given a map of complexes m : F* @ F* — F~
which is associative and induces the ordinary multiplication on the subsheaf Cx.
The resolution F* is called acyclic if all sheaves F" are acyclic, i.e. H}(X,F") =
0, z>0. ,

Given a multiplicative resolution Cx — F the complex of global sections I'(F")
has a structure of a DG—-algebra. This algebra makes sense if F~ is in addition acyclic;

then, for example, H!(I'(F")) = H'(X,Cx).

12.1.1. Examples. 1. The canonical Godement resolution Cx — C' (see {Go],
4.3).
2. The canonical simplicial Godement resolution Cx — F~ (see [Go], 6.4).
3. The resolution by localized singular cochains Cx — CS" (see [Go], 3.9).
4. If X is a manifold, one can take the resolution by the de Rham complex of
smooth forms Cx — Q.
All resolutions in above examples are acyclic at least if X is paracompact.
Notice that the first three resolutions are functorial with respect to continuous maps.
Namely, given a continuous map f : X — Y, we have a natural map f*By — By
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(where B’ is a resolution from examples 1-3) which induces the homomorphism of
DG-algebras ¢ : I'(By) — I'(Bx). The de Rham complex 2y is functorial with
respect to smooth maps.

The next proposition shows that the choice of a particular acyclic resolution is
not important.

12.1.2. Proposition. Let X be a topological space and Cx — B’ be an acyclic
multiplicative resolution. Then the DG-algebra I'(B’) 1s canonically quasiisomor-
phic to the DG-algebra T(F'), where Cx — F is the simplicial Godement resolu-
tion. More precisely, there exists an acyclic multiplicative resolution Cx — F'(B’)
and canonical morphisms F° — F'(B’) and B — F'(B’), which induce quasiiso-
morphisms on DG-algebras of global sections. In particular, any two DG-algebras
coming from acyclic multiplicative resolutions of Cx are canonicelly quasiisomor-
phic, and hence the corresponding derived categories of DG-modules are canonically
equivalent (10.12.5.1).

Proof. Let us recall the simplicial Godement resolution F~ (see [Go], 6.4). Let
A € Sh(X). There exists a canonical resolution F (A) of A:

0 A— FA)SFUAS ...,

where F(A) = C%(A) - the sheaf of discontinuous sections of 4 (see [Go], 4.3) and
F*(A) = CO(F"1(A)). We denote the resolution F'(Cx) simply by F".
Recall that local sections s® € F*(A)(U) are represented by functions

8™(zg,...,%a) € Az,

defined on U™*!. Two such functions define the same section if they satisfy certain
equivalence relation (see [Go}, 6.4).

Following Godement we will use the following convention. Let u € A,. Then
we denote by y — u(y) € A, any local (continuous) section of A which is equal to
u when y = z. Using these notations we can write the differential

d: F™(A) - F™(4)

as follows
(ds™)(zay- -y Tny1) = Z(—l)is"(xo, ey iy, Tntl)
=0

+(=1)" sz, .. 2o Znt1)-

The functor A — F (A) has the following properties.
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(1) It is exact.

(2) Each sheaf F*(A) is flabby, hence acyclic.

(3) If A is a sheaf of rings, then F"(A) has a multiplicative structure x defined
by the formula

s? x 89 (zo, ..., Tptq) = sP(Z0,. .-, Tp)(Tpaq) 0 81 (Zp, .-, Tpag)s

where s? € FP(A), s € Fi(A) and o denotes the multiplication in A.
Hence in particular F is an acyclic multiplicative resolution of Cx.
Let Cx — B’ be an acyclic multiplicative resolution. Consider the double

complex .

0 — F1 o
i T

0 - F° - FYB% - FUBY
1 T T

0 - Cx - B° - B! —
T T T
0 0 0

Denote by F'(B') the total complex of the inside part

¢ - F (TBO) —
T 1

0 — FB% — F°B')
1 T
0 0

The complexes F* and B" embed naturally in F'(B’), and properties (1}, (2)
above imply that these embeddings induce quasiisomorphisms between the global
sections.

So it remains to construct a multiplicative structure on ¥ (B") which will agree
with the given ones on " and B'. Let o : B ® B° — B’ denote the given multi-
plication on B". Let us define the multiplication x : F (B )@ F(B') = F(B') as
follows. Given sP' € FP(B'),s% € FI(B’), the section sP* x ¥/ € Frte(Biti) is
defined by the formula

8P % 899 (g, .. Tprg) = (—1)T 5P (Toy o, Zp)(Tpaq) © ST (Tpy oo s Tpg)-

One checks immediately that x is a morphism of complexes and that it induces
the given multiplication on ' and B’. This proves the proposition.

As was mentioned above the de Rham algebra is functorial only with respect to
smooth maps. However, it has the advantage of being supercommutative, and hence
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its category of DG-modules has more structure. Since in this work we are interested
only in very special topological spaces — the classifying spaces for Lie groups — we
will stick to the de Rham algebra.

12.2. The de Rham complex of an co—dimensional manifold.
For the remaining part of this section 12 let us put R = R.

12.2.1. Definition. An co-dimensional manifold M is a paracompact topolog-
ical space with a fixed homeomorphism,

M ~lim M,

where M;bMysM; ... is a sequence of smooth (paracompact) manifolds of in-
creasing dimensions d; < dy < ..., and j is an embedding of a closed submanifold.
(A subset U C li_r)nMn is open iff U N M,, is open in M, for each n).

Let Qy =0—-Q% —-Q} — - > QdAjI‘" — 0 be the de Rham complex
of smooth differential forms on M,,. It is known (Poincare lemma), that Qy, isa
resolution of the constant sheaf Cpy, .

Extend the complex §2;, by zero to M via the closed embedding M, — M
and denote this extension again by ), . Then the restriction of forms from M1

to M, produces the inverse system of complexes on M:
- QM; — QMl'

12.2.2. Definition. The de Rham complex on M is the inverse limit
Qg = lim (),

12.2.3. Proposition. (i) The complez ), is a resolution of the constant sheaf
Cum.

(i) Each sheaf Q%, = lim Qﬁ,,n 18 soft. Since M 1is paracompact, it follows that
Qk; is acyclic, i.e. H'(M,Q%,) =0, i > 0 (see [Go],8.5.4).
Proof. (i) Fix a point ¢ € M, say z € M,,. Let us show that the sequence of stalks

0—-Cuyy:— Q(IJW,I - Q}w,: — - 1s exact. [t suffices to show that for a small open
subset U 3 x the complex of global sections

(*) 0 = I(U,Cp) = T(U,0%) — -

is exact. There is a fundamental system of neighborhoods of z consisting of open
subsets U s.t. UN Mg ~ R%*, k >n, and U N My < U N M4y is the embedding
of a plane R% < R%+1, Then by the Poincare lemma the complex

OﬁF(U,CMk)—»F(U,Q[]’Wk) —
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is exact. Now the exactness of (*) follows since in the inverse system

I(U, Q%) = imT(U, 24,)
k

all maps
I, Q) = T, Q)

are surjective.

i) Since 0%, is a module over the sheaf of ring Y%, (“smooth functions” on
M g3y
M), it suffices to prove the following

12.2.4. Lemma. The sheaf 93, is soft.

Indeed, the lemma implies that %, is soft (as a module over a soft sheaf of
rings) (see [Go],3.7.1), and since M is paracompact, it is acyclic ([Go),3.5.4).

Proof of lemma. Since M is paracompact it is enough to prove the following
statement. Each point « € M has a neighborhood U such that for any disjoint
closed subsets S, T C M which are contained in U there is f € Q3,(U) st. f=11in
some neighborhood of S and = 0 in some neighborhood of 7.

Fix z € M. Let us choose U 3 z such that Uy := U N My ~ R is relatively
compact in My and Ugx — Uiy is the embedding of the plane R C R+,
Let S,T C M be disjoint closed subsets contained in U/. Then the intersections
Sk 1= SN Uy, T := TN Uy are compact subsets in Uy. It is shown in [Gol, 3.7 that
there exists a smooth function fy on Uy such that fi = 1 is a neighborhood of Si
and fr = 0 in a neighborhood of T. So it remains to choose fr+; on Ug4 so that
fertlue = fe.

Suppose fi is chosen. Denote again by fi its extension to Ug4i using the
product structure Upyq = Uy x JR%*+1"9 Let fk+1 be a smooth function on U4y
such that fk+1 = 1 near Si41 and fk+1 = 0 near Tk4+1. Since Si+; and Try
are compact we can choose a small open neighborhood V of Uy in Ugy; with the
following property. Put W = Ug41\Uy, and let ¢y, ow be a parition of 1 subject
to the covering Ugy; =V U W. Then the function

fes1 = 0v - fi +ow - fin

will be equal to 1 in a neighborhood of Sx+; and equal to 0 in a neighborhood of
Ti41. Clearly fr41lu, = fx which proves the lemma and the proposition.

12.2.5. Since the restriction of forms Q'Mn+1 — ), commutes with the wedge
product, the de Rham complex Q, inherits a natural multiplicative structure. By
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the above proposition, {3, is an acyclic multiplicative resolution of Cy (see defini-
tion 12.1). Denote by Axs the corresponding DG-algebra of global sections

Ap =T (Qyy).

12.2.6. Definition. Let M’ = lim M! be another co-dimensional manifold and

f i M — M be a continuous map. We say that f is smooth if for each n there
exists n’ such that f(M,) C M,,, and the restriction

f]Mn ZMn _’M:‘I,

is smooth.

Let f : M — M’ be a smooth map. Then we have a natural morphism f*Qj, —
{24 which preserves the product structure and hence defines the homomorphism of
DG-algebras

¢: Ay — Apm.

12.3. Localization and global sections.

In this section and in sections 12.4-6 below all spaces X,Y,... are smooth
paracompact manifolds (possibly co-dimensional) and all maps f : X — Y are
smooth. For a space X, Ax denotes the de Rham DG-algebra defined in 12.2.5.

12.3.1. Let us define the localization functor
L:X : DAx - D(X)’

where D 4, is the derived category of (left) DG-modules over Ax (10.4.1) and D(X)
is the derived category of sheaves on X. Let M € D4, . Put

L
Lx(M):=0Q%x®Qa,M.

In other words, let P — M be a K-projective resolution of M (10.12.1,
10.12.4.5).
Then
Lx(M)=Qx ®ayx P

which is the sheaf of complexes (or the complex of sheaves} on X associated to the
presheaf of complexes

U Qx(U) ®ax P.

Note that Lx(Ax) ~ Cx. Indeed, Ax is K-projective as an 4x—module
(10.12.2.3), hence
Lx(Ax) = Qx ®ax Ax = Qx = Cx.
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12.3.2. Definition. Let D be a triangulated category, S € D.

(i) Denote by D(S) C D the full triangulated subcategory generated by S.

(i1) Consider "bounded below” direct sums @;>,(®S[—i]). As in 11.1.4 we
denote them by @*S[—i]. Denote by Dt (6S) C D the full triangulated category
generated by sums @+ S[—i].

12.3.2.1. Remark. Let A be the DG-algebra studied in section 11. Take D = D4
and S = A. Then D(A) = D/ and D*(@A) = D} (11.1.5).

12.3.3. Proposition. The localization functor induces an equivalence of categories
Lx : D(Ax)>D(Cx)
and

Lx : DY (@Ax)SDT(@Cx).

Proof. We have Lx(Ax) = Cx. So to prove the first assertion we only have to
check that
HomDAX (.AX, .AX[I]) = HOInD(X)(Cx, Cx[z])

But
Homp,(Ax, Ax[i]) = H(Ax) = H(X,Cx) = Homp(,)(Cx, Cx[z]).
Let us prove the second assertion. Let
M =@t Ax[-i], N = @t Ax([—j] € DT (dAx).

Then
LxM = @+Cx[—-i], LxN = $+Cx[—j] € D+(@Cx),

since Lx preserves direct sums and the DG-modules M, N are K-projective. It
suffices to check that

Homp,, (M,N) = Hompx)y(LxM,LxN).
Obviously, the left hand side is

[l(@;H(Ax)),

1

and the right hand side is

[I(H X, ©;Cx[-il).
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So we need to show that
(*) H'Y(X,®;Cx[-3]) = ®;H7(X,Cx).

Since X is a paracompact locally contractible space, we may use the singular

cohomology to compute the groups in (*). Namely,
H'(X,Cx)=H'(X,R),

and then the equality (*) follows from the universal coefficients formula. This proves
the proposition.
The last argument also proves the following

12.3.4. Lemma. Let @*Cx[—i] € DY (®Cx). Consider its canonical soft resolu-
tion
dtCx[~i] = ot Qy[—i].

Then the natural map of Ax-modules
& Ax[—i] = T(X, 0 Qx[—])
18 ¢ quasitsomorphism.
12.3.5. In order to define the functor of global sections
7x 1 D(X) = Dax

on the whole category D(X) we need the notion of a K-injective resolution (see
[Sp])- To avoid the use of these resolutions and some other technical problems we
prefer to work with the bounded below derived category D*(X). So we define the
functor of global sections

vx : DY(X) — Day

as follows. Let $° € D*(X) be a complex of sheaves. Then the complex of global
sections of the tensor product Qy ®c¢, S has a natural structure of a left module
over Ax =T(Q%). Put

x(57) == T(2x @cx ).

We must check that vx is well defined on Dt (X), that is yx preserves quasiiso-
morphisms. Note that the functor Qy ®c, (-) is exact, since we work with sheaves
of IR—vector spaces. Also, the complex Qy Q¢ S is bounded below and consists of
sheaves (2y ®cy 5)™ = Br>0St% ®cyx S™F which are modules over the soft sheaf
of rings Q% (12.2.4). Hence they are also soft and therefore acyclic for T, since X
is paracompact ([Go),3.5.4). So vx is well defined.



101

Note that
1x(Cx) =T(2% ®cx Cx) = I'(Qx) = Ax,
and by lemma 12.3.4
1x (8% Cx[—i]) = N(@*Qx[i]) ~ &F Ax[-i].

Hence yx maps subcategories D(Cx), DT (®Cx) C D*(X) to subcategories
D(Ax) and D*(Ax) respectively.

12.3.6. Proposition. The functor
7x : DY (@®Cx) - DY (9 Ax)
18 an equivalence, which is the inverse to the equivalence
Lx: DY (@Ax) - DT (9Cx)
of propoesition 12.3.4. More precisely, there exist canonical isomorphisms of functors
o : Idp+@ax) = 7x - Lx,

T:Lx vx = Idp+gcy)-

Similarly, for D(Cx) and D{Ax).

Proof. Let us define the morphism o.
Let M € D¥(dAx) be K-projective. Since direct sums G+ Ax[—i] are K-
projective, we may (and will) assume that M* =0, i << 0. Then

Lx(M)=Qx ®ax M € DT(X),

and
X - LX(M) = P(QX ®cx (QX Rax M))
Consider the map of complexes
Qx @cx (U ®ax M)"B 0y @ax M,

where m : Oy ® Qy — Qy is the multiplication. We claim that m ® 1 is a quasiiso-
morphism. This follows from the following lemma.

12.3.7. Lemma. Let S" € D(X) be a complez of sheaves and
1:Qx Qcx S = 5

be a morphism of complezes, such that t(1 ® s) = s. Then t is a quasiisomorphism.
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Proof of lemma. Indeed, the inclusion
115 =0y ®cx 5, s—10s
is a quasiisomorphism, and ¢ -7 = 7dg.

Since the map m ® 1 is a quasiisomorphism of bounded below complexes con-
sisting of soft (hence acyclic) sheaves, it induces the quasiisomorphism of left A4x-

modules
a:T(Qx ®cx (2x ®ax M))ST(Qx Qax M).

On the other hand there is the obvious morphism of left A x-modules
B:M-oT(Qx ®ax M), m—1Qm.

Finally we define 0 = a~! - 3.

Assume that M = @+ Ax[—i]. Then 3 is a quasiisomorphism by lemma 12.3.4.
Hence o is a quasiisomorphism if M € D¥(®Ax).

Let us define the morphism 7.

Choose S € D (®Cx). Then vx(S) = I'(y ®cx S°). Choose a quasiiso-
morphism P — yx(S"), where P € D4, is a K-projective Ax-module. We have

Lx-yx(5)=Lx(P)=Q% ®ax P
with the morphism
1@a:Qx Qax P — Qx Qax [(Qx ®cx I).
Compose it with the multiplication map
b: 0y ®ax Ny ®cx ) = Uy Qcy S
wRW @s— ww Qs
to get the morphism
b-(1Qa): Lx-vx(5) = Q% Qcyx S
On the other hand we the obvious quasiisomorphism
c: S5 = Q% Qcy S
s—1Q®s.

So we define the morphism 7 as the composition

T=c_1.b.(1®a):£x-7x—-)ld.
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Assume that S = @+YCx[—i]. Then yx(S") is quasiisomorphic to &+ Ax[—1]
(lemma 12.3.4), which is K- projective, so we may take P = @+ Ax[—:]. Then the
map

b-(1®a): Qy Qay (B Ax[—i]) > Qx ®c, (@ Cx[=i])

is an isomorphism. Hence 7 is a quasiisomorphism if §* € D*(®Cx). This proves
the proposition.

12.3.8. Remark. All the results in this section 12.3 are valid for general paracom-
pact locally contractible spaces X and a DG-algebra I'(X, F') for a multiplicative
acyclic resolution F* of C'x (the sheaf F° must be soft and the basic ring R must
be a field). In particular we never used the fact that Ax was supercommutative.

12.4. Applications to classifying spaces.

We want to apply the results of previous sections 12.1-12.3 to “smooth models”
of classifying spaces.

Let G be a Lie group.

12.4.1. Defintion. A smooth classifying sequence for G is a sequence of closed
embeddings

MycCcMC...,

where My is a free k-acyclic smooth paracompact G-space, My C Mgy is an
embedding of a submanifold and dim(Mg41) > dim(My).

Let My C M; C ... be a smooth classifying sequence for G. Denote the
quotient G\M} = BG;. Then we get a sequence of closed embeddings of smooth
manifolds BGy C BG; C .... The classifying space BG = liin BGy is a smooth co—
dimensional manifold (12.2.1). We call is a smooth model or a smooth classifying
space.

12.4.2. Lemma. Assume that the Lie group G has one of the following properties
(a) G is a linear group, i.e. a closed subgroup of GL(n, R) for some n.
(b) G has a finite number of connected components.
Then there ezists a smooth classifying sequence for G.

Proof. (a) Let M} denote the Stiefel manifold of n—frames in IR™t*. Then the
sequence

MyCMC...

is a smooth classifying sequence for G.

(b) Let K C G be a maximal compact subgroup.

By a theorem of G. Mostow G/K is contractible. By the Peter—Weyl theorem
K is linear and so by (a) there exists a smooth classifying sequence for K

M¢CM C....
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Then
GxgMyCcGxgM;C...

is a smooth classifying sequence for G. This proves the lemma.

12.4.3. In the rest of this section 12.4 we will consider only connected Lie groups.
Let G be such a group, and BG be its smooth classifying space (12.4.1). The
derived category D"G’ (pt) of G-equivariant constructible sheaves on pt is canonically
equivalent to the full subcategory of D¥(BG) consisting of complexes with constant
cohomology sheaves of finite rank (see 2.7.2,2.8). This last category is generated by
the constant sheaf Cgg. In other words

(1) D¢ (pt) = D(Cgq).

But by (12.3.3) D(Apg) ~ D(Cpg), where Apg is the de Rham algebra of the
smooth space BG. So we obtain an equivalence of triangulated categories

(2) D(Apc) ~ Dg o(pt)

We will go one step further and make the left hand side of (2) more accessible.

It is known that the cohomology ring H*(BG, IR) is isomorphic to a polynomial
ring R[X1,...,X,], where generators X; have various even degrees. Denote this ring
by Ag and consider the DG-algebra

Ag = (Ag,d =0)
as in section 11.

12.4.4. Proposition. There ezists a homomorphism of DG-algebras Ag — Apc
which 13 a quasiisomorphism; hence it induces an equivalence of categories D4, ~

Dyge (10.12.5.1). This equivalence is unique up to a canonical isomorphism.

Proof. Choose differential forms ¢1,...,¢n € Ape which represent cohomology
classes X;,...,X,. Since the degrees of X;’s are even the forms ¢, generate a
commutative subalgebra in Apg. Hence we may define a homomorphism

¢:Ag — Apc , Xir ¢i,
which is clearly a quasiisomorphism. It defines an equivalence of categories
#* : Dag>Duapg-

Let ¥y,...,%n € Apg be a difference choice of forms which induces the corre-
sponding equivalence
P* DAG:'DABG-
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We will show that functors ¢*,¢* are canonically isomorphic.

Since ¢;,1); represent the same cohomology class we can choose w; € Apg such
that dw; = ¢; — ;. Let C C Apg be the DG-subalgebra generated by {p;, ¢:, wi},
and v: C — Apg be the inclusion. We have two natural embeddings

a7ﬂ . AG - C,
where a(X;) = ¢;, B(Xi) = ;. Consider the induced equivalences of categories
o*, % D4, — De, ¥*:Dec — Dage-

Since ¢* = v* - a* , Y* = 4* - B* it suffices to construct an isomorphism of
functors a* 5 *.

Let § : C — Ag be the homomorphism 8(¢;) = §(¢;) = X;, 6(w;) =0, and let
§* : D¢ — D4, be the corresponding equivalence. Note that 6§* - a* = id = §* - §*.
Hence functors a*, 8* are canonically isomorphic.

To complete the proof of the proposition we must show that a different choice
of forms w; will produce the same isomorphism ¢*31*. We will only sketch the
argument since it is similar to the one just given.

Let w! be a different choice of forms that produces the DG-subalgebra C' C
Apg. Since d(w; — w!) = 0 and the odd cohomology of BG vanishes we can
find n; such that dn; = w; — w!. Let E C Apg be the subalgebra generated by
{¢i,%:,wi, wl,m:}. Now all algebras Ag,C,C’ embed in E and it suffices to prove
the equality of two morphisms in Dg, which is done similarly. This proves the

proposition.

12.4.5. Composing the equivalence of 12.4.4 with the localization functor of 12.4.3
we obtain the functor

Lg := D4, — D(BG)
which induces an equivalence
La: D(AG):)D'&,C(pt).

But D(Ag) is the category D_‘QG studied in detail in section 11 (see 11.1.5). We call
the obtained equivalence
Lc: DY DY (pt)

the localization.
12.4.6. Proposition. The localization functor

Lg : DY _SDY (pt)
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L
13 an equivaelence of t—categories, which commutes with functors ®, RHom, D and

the cohomological functor H : Df‘c — Moda,.

Proof. Let P € D_’;G be a minimal K—projective (11.4.6). Then P € Df{go & Pi=
0,:<0and P e Dﬁ’fo & P is generated by elements in nonpositive degrees (see
prop. 11.4.14). Note that Lc(Ag) = Cpg. Hence L preserves the subcategories

D20 and D=° and so is an equivalence of t—categories.
Let M,N ¢ D_{‘G be two K-projective DG-modules. Then

L
Lo(M®N) = Qpc ®ag (M ®as N).
Define a marphism of complexes
L
0:Le(M)Qcps Lo(N)— Lo(MRN)
by the formula
:(we@m)®(w' @n) (—l)deg("‘)deg("’l)ww' @mn.

Since € is a quasiisomorphism if M = N = Ag, it is an isomorphism of functors.

L
Hence L& commutes with ®.
To prove the statement for RHom we need the following.

12.4.7. Lemma. Let M, N € DQG be K-projective. Then Hom (M,N) is also so.

Proof. Since the subcategory of K-projectives in )C";G is generated by Ag, it
suffices to prove the lemma for M = Ag[i], N = Ag[j], in which case it is obvious.

Let M, N € D/, _ be K-projective. Then by the lemma
La(RHom(M,N)) = Qpg ®.a, Hom(M, N).
Let i : Lg(N) — I be an injective resolution. Then
RHom(Lg(M),Le(N)) = Hom(Qpe Q4 M, I).
Define a morphism of complexes
§: Le(RHom(M,N)) - RHom(Lg(M)Le(N))
by the formula

5(w ® f)(w' @ m) = (~1)4eBNEN (10! @ f(m)).
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It is a quasiisomorphism if M = N = Ag, hence is an isomorphism of functors.
So Lg commutes with RHom. Since Lg(Ag) = Cpg, it also commutes with the
duality D. It remains to treat the cohomological functor H.

Let M € Df‘G be K-projective. We have a map of DG-modules

v: M - T(Qpe Qas M) =T(La(M))
m— 1®m.

It is a quasiisomorphism if M = Ag, hence is so in general. This proves the
proposition.

12.4.8. Proposition. The localization functor Lo : Da, — D(BG) induces an
equivalence of full subcategories

Lg: D}G:?Dg(pt)
L
(see 11.1,11.1.5). It commutes with ® and H.

Proof. We know that DIG is generated by bounded below direct sums &+ Ag{—i]
(11.1.5). If M = @+ Agli], N = &% Ag[j] € D}, are two such modules then

Homp, (M, N) = Homp(pe)(La(M), Lc(N)),

by proposition 12.3.3, so L is an equivalence of Dja with its essential image in
D(BG). Since EG(D:"{G) C D%(pt) it remains to show that any complex S €
D*(BG@) with constant cohomology sheaves lies in Lg(D} ¢)

Let S be such a complex. Then S is the direct limit

S =lim7<,S.

Each 7¢,5 lies in ACG(DIG), say T<nS ~ Lg(My) for a K-projective M,. The
modules M, form a corresponding direct system in Dja and if we put

M :=YmM, € Da,,
then Lg(M) = S, since L preserves direct limits. It only remains to show that M
lies in DIG.
Note that T<p415 = C(H"*1(S)[—1} — 7<nS). Hence we can put M4, to be
My = C(H™(S)[-1) ®r Ac = M,),

so that if M} = 0 for i < m, then the same is true for My41. But then clearly

M =lim M, = UM, € DJ;_
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This proves the first part of the proposition.
The second part is prove similarly to proposition 12.4.6 above using lemma
12.34.

12.4.9. Corollary. The subcategory D} (pt) C D(BG) coincides with DT (6Cpg)-
Proof. This follows from 11.1.5, 12.3.3, 12.4.8.
12.4.10.To conclude this section we want to show that the constructed equivalences
Lo : DY — Db (pt)
Lg: D}, — D&(pt)

do not depend on the choice of a smooth model for BG.
Let

M, CM,C...
M CcMC...

be two smooth classifying sequences for G giving rise to smooth models BG, BG'.
Consider the product sequence

My x M] C My x M, C...

which produces the smooth model BG". We have the diagram of smooth maps

BGH
P/ NP
BG BG'

and the corresponding homomorphisms of DG-algebras

ABG/’
¢/ N
Apc Apa

So we may assume that BG' = BG". Then the required result follows from the
commutativity of the functorial diagram

Da,.. 5 D(BG")
¢* 1 T p*
DABG 'E’ D(BG)7

which is a special case of proposition 12.5.1 below.
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12.5. Localization and inverse image.

We keep the notations of section 12.3. Let f: X — Y be a (smooth) map. It
induces functors of inverse and direct image f* : D(Y') —» D(X), f« : D(X) — D(Y)
(see [Sp]). On the other hand we have the corresponding homomorphism of DG-
algebras ¢ : Ay — Ax which induces functors ¥* : D4, — Da,, ¢ : Ax = Da,.
It is natural to ask if the above functors are compatible with the localization (see
12.3), i.e. if the following diagrams are commutative.

Day = D(X)

(1 g 1 A

Di4y I DY)

Day, 2 D(X)
(2) P | L £
Dia, & D)

Here we discuss the inverse image. The direct image is discussed in the next section
12.6.

12.5.1. Proposition. The diagram (1) is commutative. More precisely, there
ezists a canonical isomorphism of functors f* Ly SLx - ¢*.

Proof. Let N € D4, be K-projective. Then ¢*(N) = Ax ®4, N € D4, is also
K-projective. So

Lx " (N)=Qx Qax (Ax ®ay N) =0x ®ay N.
Also Ly (N) = Qy Q4, N and
[ Ly(N) = f*(Qr ®a, N)

Given open subsets U C X,V C Y such that f(U) C V we have the natural map
of right Ay-modules Qy(V) — Qx(U) which induces a quasiisomorphism on the
stalks

Qy,5(2) QX0

for each ¢ € X. We get the corresponding map of complexes

f(Qy ®ay N) = Qx @4, N
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which is also a quasiisomorphism on stalks since N is K—projective. This proves the
proposition.

12.6. Localization and the direct image.

We keep notations of sections 12.3, 12.5. Let f : X — Y be a map, and
¥ : Ay — Ax be the correspondong homomorphism of DG-algebras. Recall (12.3.3)
the equivalences

Lx: D+(@Ax) — D+(€B0x),
Ly : DY (®Ay) — DT (®Cy).
12.6.1. Proposition. Assume that the direct image fo maps D¥(®Cx) to Dt (@Cy).
Then 1. maps DY (D Ax) to DY (®Ay) and the following functorial giagram s com-
mutative
D*(®Ax) & D*(@Cx)

e | L fe
DH(@Ay) & D+(&Cy)

Proof. Recall that the functor
Ly : D+(GB.Ay) — D+(69Cy)

has the inverse
vy : DY (@Cy) - Dt (Ay)

with canonical isomorphisms
oc:Id— qy - Ly,
7: Ly -vyy — Id
(see 12.3.6). So it suffices to construct an isomorphism of functors
a: .=y fo- Lx

from DY (@ Ax) to DY (Ay).
Let M € D*(®Ax) be K-projective. We may (and will) assume that M* =
0, : << 0. Then .M = M considered as an Ay -module and

Yy - fe Lx(M) = 1y (fo(Qx ®ax M))

=T(Qy ®cy fo(2x ®ax M))
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(Here we use the fact that x ® 4, M is bounded below and consists of soft sheaves
on a paracompact space, hence acyclic for f).
The multiplication map

Qy @ fullx — fullx

induces a quasiisomorphism of bounded below complexes of soft sheaves

Qy ® fu(Qx ®uax M) - fo(Qx Qax M)
(lemma 12.3.7) and hence a quasiisomorphism of left .Ay-modules

a:yy - fu Lx(M)ST(fo(QRx ®ax M)

=T(2x ®ux M).
On the other hand the canonical morphism of Ax-modules
b: M > T(Qx ®ay M), m—1@m

is a quasiisomorphism, since M € D*(®.Ax) (12.3.4). Hence we may put

This proves the proposition.

12.7. Applications to Dg(pt).

2.7.0. Let ¢ : H — G be a homomorphism of connected Lie groups. Let
MyCcM, C...
NoC Ny C...

be smooth classifying sequences for H and G respectively (12.4.1). Then

My xNoC My XNy C ...

is also a smooth classifying sequence for H and projections
M; x N; — N;

induce a smooth map of the corresponding smooth models

f:BH — BG
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Recall that we have canonical identifications of D'},,C(pt),D}S(pt) as certain full
subcategories of D*(BH), and similar for G (2.7.2, 2.9.5). Consider

pt — pt
as a ¢—map. Then we get the functors
Q" : D¢ (pt) — Diy .(pt)
Q" : D§(pt) — DF(pt)
Qu : Dfy(pt) — DE(pt)
which under the above identification coincide with
f*: DY (BG) - D*(BH)
fv: DY (BH) - D¥(BG)
respectively {6.11).Recall that we have the equivalences of categories
Ly : DY SDh(pt)
L : D% SDE(pt)
(12.4.8). The map f induces a homomorphism of the cohomology rings Ag — An
and hence two functors ¥* : DIG — DIH y et D}H — D}G.
Consider the functional diagrams
Di, =% Dilpt)
(1) "1 K%
Di, =5 D&(rt)
and
D%, —% Di(pt)
(2) Ya | 1 Qs

DIG - Dg(pt)

12.7.1. Proposition. The above diagrams (1) and (2) are commutative.
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Proof. Recall (12.4.5) that the localization functor £y is the composition of the
equivalence D, D 4,, (12.4.4) with the localization Lpy : Dag, — D(BH)
{and similar for G).

We have the obvious commutative diagrams

~

D-AH - D-ABH
T N RS
DAG - D-ABG

and
Day — Dagy

Pe | L,

~

Dy, — Dup,.

Hence the commutativity of (1) follows from 12.5.1.

By the corollary 12.4.9 the category D¥(pt) coincides with DY (@Cpg) (and
similar for G). Hence f, maps DY (®Cppy) to D¥(®Che) and therefore by propo-
sition 12.6.1 the following diagram is commutative

D*(@Apn) 2% D(pt)
Yu l 1O
DH(@®Aps) =28 DE(pt)

is commutative. But D} = D*(®Ay) (11.1.5) and similar for G. Hence the
diagram (2) is also commutative which proves the proposition.

Let us now summarize the results of 12.4.6, 12.4.8, 12.7.1 in the following

12.7.2. Main Theorem. Let G be a connected Lie group, A¢ = H(BG). Let
Ag = (Ag,d = 0) be the corresponding DG-algebra.

(i) There exists an equivalence of triangulated categories
L : DY _SDE(pt)

L
which is unique up to a canonical isomorphism. It commutes with @ and

the cohomology functor (-)ﬁ»ModAG.

(i1) The above equivalence resiricts to the functor between the full subcategories

L : DY SDY (pt),
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. . . . .y L
which is an equivalence of t-categories commuting with @, RHom, D and

H.

(i) Let ¢ : H — G be a homomorphism of connected Lie groups. It induces
o homorphism of tings ¢ : Ag — Ay and hence the functors of extension
and restriction of scalars

%*: DY — DY,
P DjH — DIG.

Let Q* : DE(pt) — D (pt) and Q. : Dh(pt) — DE(pt) be the functors of
the inverse and direct image corresponding to the ¢-map

pt — pt.
Then under the identification of (i) we have ¢¥* = Q*, ¢, = Q\.

The above theorem gives an algebraic interpretation of the category Dg(pt)
and is our main tool in applications.



13. Equivariant cohomology.

13.0. Let G be a Lie group. Let X be a G-space and p: X — pt be the map to a
point. It induces the direct image functor

where the category D (pt) can be naturally realized as a full subcategory of Dt (BG)
for the classifying space BG (2.9.5). Put Aq = H(BG,R). Notice that for S €
D(BG) its cohomology H(S) = H(BG, S) is naturally a graded Ag-module.

13.1. Definition. Let F € DE(X). The G-equivariant cohomology Hg(X, F)
of X with coefficients in F is by definition the graded Ag—module

He(X,F) = H(p.F).

13.2. Definition. Assume that X is nice (1.4) and let F € DY%(X). The G-
equivariant cohomology Hg (X, F') with compact supports of X with coefficients
in F' is by definition the graded Ag—module

Hg o (X,F):= H(pF).

13.3. Certainly the object p,F € DE(pt) (or pF) carries more information than
the Ag-module Hg(X,F) (or Hg (X, F)), and we usually prefer to work with
the triangulated category DE(pt) rather than with the abelian one Mods,. In
particular, if X is a pseudomanifold and we work with the constructible category

D (X), then we interpret the formula
D- =Py D

as the equivariant Poincare duality. Notice that in case of a connected Lie group
G this formula relates the Verdier duality in Df;yc(X ) with the “coherent” duality
in DY, ~ DY (pt) (see 12.7.2(ii)).

For the rest of this section 13 we put R = R.

13.4. Example. Let G be a complex linear algebraic group acting algebraically on
a complex algebraic variety X. Consider the G-equivariant intersection cohomology

sheaf ICq(X). We denote by
IHg(X) := He(X, ICq(X))

[Hg o(X) = Ho (X, IC&(X))
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the equivariant intersection cohomology (resp. with compact supports) of X.
Assume that X is proper. Then by the decomposition theorem (5.3) the direct
image p,ICq(X) = pICs(X) is a direct sum of (shifted) local systems on BG. If
furthermore the group G is connected then each local system is constant, and we
conclude that JHg(X) is a free Ag—module with the graded basis TH(X), i.e.

IHg(X) = Ag ® TH(X).

13.5. Let ¢ : H — G be a homomorphism of Lie groups. It induces a map of
classifying spaces ¢ : BH — BG and hence a map on cohomology Ag — Ay. For
an Ag-module M we denote by 4,M the corresponding Ag-module obtained via
the restriction of scalars. It is clear that for $ € D*(BH) we have

(*) H(%,5) = a,H(S).

Let f: X — Y be a ¢-map and F € Df;(X). Let Q5. F € DE(Y) be its direct
image. The following formula immediately follows from (*) and 6.12.2

acHu (X, F) = He(Y, Q. F).

13.6. Example. Let f : X — Y be a principal G-bundle. Then we know that
Q«Cx,c = Cy. Hence by the above formula we have an isomorphism of graded
groups

Hg(X) = H(Y).

Of course, Hg(X) has more structure, namely the action of generators of Ag (the
Chern classes of the G~bundle X — Y).

13.7. Example. In the previous example assume that Y is a compact manifold
and G = S'. Assume moreover that the manifold X is orientable. We want to make
the equivariant Poincare duality explicit in this case. Consider the map p : X — pt.
We have Asi ~ R[z] and identify D"Sl’c(pt) = D_ﬁsl (12.7.2). Since X is compact
we have P*CX,Sl = p!CX)Sl. Also DCXysl = CX,S‘ [dx], dx = dimX, since X 1is
orientable. Hence the Poincare duality formula

D -pCx 51 =ps- DCx s

becomes

D -p.Cx st = p.Cx s1[dx].

Put p,Cx 1 =M € thsl . Since H(M) has cohomological dimension < 1 as an
Ag1 — module, it follows from 11.3.3 that M = H(M), i.e., the DG-module M has
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the zero differential. Note that in fact M is a torsion module, since M = H(Y, R).
Hence by 11.3.1(1) we have

DM = Ext} , (M, Ag)[1]

So the Poincare duality is a canonical isomorphism for the Agi — module
Ha(X)
Ha (X) = EXt}‘lsl (Hs:1(X), As1)|[—dx — 1]

13.8. Remark. Replace in the previous example S! by an arbitrary connected
compact Lie group K of rank r. If we knew that the DG-module p,.Cx k € DQK
had zero differential (which is probably true), then we would obtain the similar
formula

HK(X) = Ext:‘K(HK(X),AK)[—dX - 7‘]

using the same argument.

13.9. Example. Suppose we are in the situation of Theorem 9.1. Namely, let
0— K — H% G — 0 be an exact sequence of complex linear reductive algebraic
groups. Let f: X — Y be an algebraic morphism which is a ¢—map. Assume that
the following conditions hold.

(a) The group K acts on X with only finite stabilizers.

(b) The morphism f is affine and is the geometric quotient map by the action
of K (all K~orbits on X are closed).

Then we know that Q.ICu(X) = IHg(Y)[dk], where dx = dimgK = dx —dy.
Hence as in 13.5 above we obtain an isomorphism of Ag-modules

e THE(X) = THg(Y)[dx — dy].

13.10. Borel’s interpretation of Ag.

Let G be a compact Lie group and T be a maximal torus in G. Let ¢t be the Lie
algebra of T and W be the Weyl group W = N(T)/T. The group W acts on t and
hence also on the ring of polynomial functions S(¢*) on . By the classical result of
A. Borel ([Bo3]) we have a canonical isomorphism of graded algebras

Ag = H(BG) ~ S(t*)V,

where linear functions in S(t*) are assigned degree 2.

If G is connected then S(t*)W is a polynomial ring and S(t*) is a free S(t*)" -
module, since the group W is generated by reflections. Let U C G be a closed
subgroup with a maximal torus T’ C U and the Weyl group W'. The diagram of
inclusions of groups

T - T
! !
U - G
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induces the diagram of classifying spaces

BT — BT
i !
BU — BG

and the corresponding diagram of cohomology rings

Ar +— Ar
T i
Ay « Ag.

Borel showed that this diagram coincides with the natural diagram

S@™*)y o« 8%
T i
S(tl*)W' — S(t*)W

under the above identification (the horizontal arrows in the last diagram are restric-
tions of functions).

Let G be a Lie group with finitely many components and K C G be a maximal
compact subgroup. Then topolically

G~ K x R
Hence Ag = Ak and the above picture can be applied to Ag.
13.11. Equivariant cohomology of induced spaces.

13.11.1. Let G be a group and ¢ : H < G be an embedding of a closed subgroup.
Let X be an H-space and Y = G xy X be the induced G-space. The inclusion
f:X — Yisad¢-map. Let F € Df;(X) and Q. F € DE(Y). Then by 13.5 we
have

AcHu(F) = Hg(Qy. F).

We want to derive a similar relation for the cohomology with compact supports. So
let us assume in addition that X is a constructible space (1.10) and that H,G are
Lie groups with finitely many components.

Consider the commutative functorial diagram

Q -
Dy (X) =5 DY (V)
j 1pe
Q.

D}y (pt) = Dg (pt)-

In order to find a relation between Hy (F) and Hg (Q s+ F') we need to know how
functors Q«, @, behave with respect to duality.
We denote by dps the dimension of a manifold M.
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13.11.2. Recall (7.6.3) that if the group H is connected then there exists a canonical
isomorphism of functors from D} ,(X) to DY (Y)

Qfs - D = (D - Qy.)dn — dgl.
Denote by K(H) C H and K(G) C G the maximal compact subgroups of H, G.

13.11.3. Proposition. Assume that K(H) is connected. Then there ezists a
canonical 1somorphism of functors

Q.- D = (D - Q.)dk(ny — dk(a))-

Proof. We may (and will) assume that K(H) = H,K(G) = G.

Let E be an oco-acyclic free G-space, hence also a free H-space. Then G\E =
BG, H\E = BH and we have the natural fibration # : BH — BG with the fiber
G/H. Recall that categories D';,, pt) and D’&’ .(pt) are naturally identified as certain
full subcategories in D¥(BH) and D®(BG) respectively. Under this identification
the functor @, is ..

Consider the G-space Z = G/H and its co—acyclic free resolution P = ExZ —
Z.let P = G\P. Then D, (Z) is identified as a full subcategory in Db(P). Notice
that P = H\E = BH and the categories DE‘C(Z) and D'},,c(pt) are identified as
the same full subcategory in D¥(P) = D*(BH). Indeed, both categories consist of
bounded complexes S € D*(P) with constant cohomology sheaves of finite rank.
Moreover, the direct image functor ., : D?L Apt) — Dg’ {pt) is then identified with
the direct image p, : Df—;,C(Z) — D,l};,c(pt) for the G~map p: Z — pt.

The space Z is compact, hence p, = p; and so by 13.3

D'P*:P*‘D,

where the duality D on the right takes place in DE’C(Z ). So it remains to show that
the equivalence of categories Dg, AZ)— D';{, pt) commutes with the duality up to
the shift by dz = d¢ — dy. Since the group H is connected this follows from 7.6.3.
This proves the proposition.

We can now state our main result.

13.11.4. Theorem. Assume that in the setup of 18.11.1 the group H is connected.
There ezists a natural isomorphism of functors

Q« - p = - Qpeldi(ry — di(c) + do — dH]

from Dy (X) to Dl (pt).
In particular for F € Dl;{,c(X) we have a natural isomorphism of Ag-modules

AcHu,(F) = Hg Qs+ F)ld sy — dk(c) + dc — dn)
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Proof. Recall that pr = D - p, - D. So it remains to apply 13.11.2 and 13.11.3.
13.12. Relation with nonequivariant cohomology.

13.12.1. Let G be a Lie group and X be a G-space. Let ¢ : H < G be an embed-
ding of a closed subgroup. We want to compare the G—equivariant cohomology of
X with the H—equivariant one.

Consider the commutative diagram

x 3¢ x
rl lp
pt LN pt

where horizontal arrows are ¢—maps. By theorem 7.3 we have a natural isomorphism
of functors
PsQF = Q% - pu

from DE(X) to D} (pt).

13.12.2. Corollary. In the setup of 13.12.1 assume that the groups G,H are
connected and identify DE(pt) = DIG,D;}(pt) = Dj{H (12.7.2(i),(i11)). Then for
F € DE(X) we have
L
px - ResgoF = Ag®ag (p*F).

In particular, if H = {e}, then the nonequivariant cohomology H(X,For(F)) s
computed from p.F € D;G by the formula

H(X,For(F)) = Ré)_AG (puF).

13.12.3. Remark. Let F € Dg(X ). If we only know the equivariant cohomology
Hg(X, F) then we cannot in general recover the nonequivariant one H(X, For(F)).
However, we have more information if we work with the DG-module p, F € DIG.
If, for example p, F € Dﬁa, then H(X, For(F)) is a graded basis of a minimal
K-projective Ag-module P quasiisomorphic to p.F (11.4.6).



14. Fundamental example.

We analyze the stalk of the equivariant intersection cohomology sheaf at a point
fixed by a 1-parameter subgroup.

14.1. Let 0 - C* — H 3 G — 0 be an exact sequence of complex connected
reductive groups. Let X be an affine complex variety with an algebraic action of
the group H. Assume that X has an H-fixed point ¢ which is the unique €*—fixed
point. Assume that ¢ is the attraction point under the €*-action on X, that is, the
ring of functions on X is nonegatively graded by characters of C*.

Let {q}'—l—>X fL’XO =X — {q} denote the corresponding closed and open em-
beddings. Put F := ICy(X) and F, := i'F € DY%({q}), Fo := j*F ¢ DY (Xo).
Consider the exact triangle in DY (X)

(1) i*F; = F - j.F
and its direct image in D?{’ (pt) under the map p: X — pt
(2) P*F(; — poF = p.Fy.

We identify the categories D'},’C(pt) = D.{t,, (12.7.2(i1)) and denote the DG-
module p, Fy by M. Consider the canonical exact triangle in D;&H

(3) (r>0M)[=1] = T<oM — M.

14.2. Theorem.
(i) The triangles (2), (3) above are isomorphic.

(it) The objects T<coM, T>oM € thH are free Ag-modules with zero differential
and a basis given by TH(X) and the costalk i'IC(X) respectively.

The proof of this theorem uses the decomposition theorem and the hard Lef-
schetz theorem. Let us first of all deduce an important corollary.

14.3. Corollary. (1) The costalk F, is o direct sum of (shifted) constant equiv-
ariant sheaves Cy p at g:

F, = Cqn ®iIC(X)
(i’) Similarly for the stalk Fy = i*F:

Fy = Cyu ®*IC(X)

(11) The equivariant intersection cohomology IH(X) is a free Ax-module with a
basis TH(X), i.e.
IHg(X)= Ay @ IH(X)
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(#1°) Similarly for IHp (X):

IHy (X)=Ap @ IH.(X)

Proof. (i) and (ii) follow immediately from the theorem; (i’) and (ii’) follow from
(i) and (ii) by duality, since all basic functors commute with the forgetful functor.

14.4. Proof of theorem 14.2.

By our assumptions the action of the subgroup €* C H defines on X the
structure of an affine quasihomogeneous cone over the projective variety X =C*\X,.
Note that the group G acts naturally on X and the projection f : Xo — X is a
¢~map.

(i) Let Qo, Q-1 € D.{,H be minimal X-projective DG-modules quasiisomorphic
to p. F and p,Fq! respectively, so that the triangle (2) is isomorphic to a triangle

(2 Q-15Qo - M

By remark 13.12.3 the free Ay—modules Qo, Q-1 have bases TH(X) and :'IC(X)
respectively. It is known that IH(X)[—1] and i*IC(X)[1] are isomorphic to the prim-
itive and the coprimitive parts of IH(X) with respect to the Lefschetz operator on
X. Hence is particular Q is generated in degrees < 0 and Q_; is generated in de-
grees > 0. This implies that in the K—projective module @ = cone(e) = Qo B Q—1[1]
we have

do@Q C mQ,
where m C Apg is the maximal ideal. Therefore @ is the minimal K-projective
quasisomorphic to M (11.4.7). Moreover,
Qo = 1< M
Q-1 = (T2 M)[-1].

Hence triangles (2') and (3) are isomorphic. This proves (i).
(ii) The homomorphism ¢ : H — G induces an embedding Ag — Axy. We
have (non canonically)
A H X AG[/\]

where A has degree 2.
Consider the ¢-map f : Xp — X. Since €* acts with only finite stabilizers,
Qs Fo = ICG(X)[1] (9.1(iv)). Therefore

(*) AcM = IHg(X)[1]
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(13.5). The variety X is projective, so IHg(X) is a free Ag~module and
IHg(X) = A @r TH(X)
(13.4). Therefore we obtain an isomorphism of JR-vector spaces
(4) R®a; M~ ITH(X)[1].
Notice that the left hand side in (4) is naturally an R[\]-module.

14.5. Lemma. Under the identification (4) the action of A on IH(X) coincides
(up to a scalar) with the Lefschetz operator for the projective variety X.

Let us postpone the proof of the lemma and finish the proof of the theorem.

Since the Ag-module 4, H(M) = IHg(X)[1] is free, ,the Ag-module H(M)
has cohomological dimension < 1. So by proposition 11.3.3 the DG~module M has
zero differential M = H(M).

Let Pr and CPr be the primitive and the coprimitive parts of the cohomology
TH(X) with respect to the Lefschetz operator A. By considering the Hilbert poly-
nomial of the Ay—module M we find that it has a minimal projective resolution of
the form

0P, 2P - M0,

where Py = Ag ®g Pr[l] , Py = Ay ® r CPr[—1]. Hence Cone(§) = Py, & P_1[1]
is a minimal K-projective quasiisomorphic to M. Moreover

Pg = T<0M
P_l = (TZ()M)[—I]

(use Hard Lefschetz for X). Hence Py = Qo,P_; = Q_; and hence Qo,Q_; have

zero differential which proves part (ii) in the theorem.

Proof of Lemma 14.5.
Consider the commutative diagram of group homomorphisms

¢ —- H
! 1
{e} - G

Since ¢ : H — G is surjective the assumption of theorem 7.3 is satisfied. Consider
the diagram

X, & X

pl _lp
pt — pt
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where the horizontal arrows are the ¢-maps. Then by theorem 7.3 and proposition
7.2 the functors of the direct image @ f«, @ r+, p» commute with the restriction func-
tors Resy.},a,

Res ¢+, . We have to prove something about the object

Res(ey,c - Qne - PoFo = R®ag M € DY, (pt).
But by above mentioned results it is equal to
me - px - Res C‘,HFO-

So we may (and will) assume that G = {e}, H =C™.
Let E be an co-acyclic free C*~space and €*\ E = BL™* be the classifying space.
Put Xog+ =C*\(Xo x E). We have natural projections

(1) X Xop- B BC™.

If we embed Dg. (Xo) C D (Xog-) then the direct image Q- : D (Xo) — D*(X)
becomes f, : D (Xog+) — DH(X). We know that f,Cx,. = Cx (9.1(i1)), hence

(2) H(X) = H(Xoc )
But H(Xog+) is a module over H(BC*) = IR[)] via the projection p in (1); and the
image of A on H(X) via the identification (2) above is the first Chern class of the
(almost) principal €*~bundle f : Xy — X. This proves the lemma.
14.6. Corollary. In the previous setup the natural map of Ay-modules

IHy(X) — IHu(Xo)
induces an 1somorphism modulo the mazimal ideal

IHX)=R®a, IHH(X)SR @4, [Hu(Xo)

Proof. Indeed, in the proof of the above theorem 14.2 we saw that this map is the
minimal projective cover

Po—iM.

Hence the assertion follows.

14.7. Consider the dual picture.
Put F, := ¢*F and consider the exact triangle

(1) Fl=1] = inFy[-1] = 1 F
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which is the dual to the triangle (1) in 14.1. Consider its direct image with compact
supports in Dl;,,c(pt)

@) pF[-1] - pF[-1] = pFo.

Since DF = F we find that the triangle (2') is dual to the triangle (2) in 14.1.
By the above theorem 14.2 the triangle (2) in 14.1 is of the form

(3) (TZOM)[_1] — T<0M bl M

where all modules have zero differential. Moreover, the Ag—modules 75>0M,7<oM
are free and the diagram (3) is the minimal projective resolution of the A g—module
M. Hence the dual traingle is

(3" r>o(DM)[-1} — TS()(DM) — DM,

which is also a minimal projective resolution of the Az-module DM = Ext} oM, Ag)
(11.3.1(3)). Identifying terms in isomorphic triangles (2') and (3') we find the fol-
lowing

14.8. Corollary. The natural map of Ay-modules
(ICx H)q[—1] = IHp,(Xo)
nduces an isomorphism modulo the mazimal ideal

ICx,q[—l] =R®a, (ICX,H),][—I]:)R Ray THu (Xo).



