
P a r t  I I .  D G - m o d u l e s  and equivariant cohomology. 

The main purpose of the three sections 10,11,12 is to prove theorem 12.7.2 - the 

detai led algebraic description of the categories Db(pt)  and D+(pt) for a connected 

Lie group G. So we suggest that  the reader goes directly to this theorem and, if he 

unders tands  the s tatement ,  he may proceed to next sections which use very litt le 

from sections 10-12 besides the mentioned theorem. 

In section 10 we review the impor tant  language of DG-modules over a DG- 

algebra. In section 11 we s tudy a very special DG-algebra in terms of which we 

eventually describe the categories Db(pt)  and D+(pt). In section 12 the main 

theorem 12.7.2 is proved. Unfortunately, the proof is quite technical, mainly for 

the bounded below category D+(pt). 

10. D G -  modules. 

Our goal is to introduce the homotopy category and the derived category of 

DG-modules,  and to define the derived functors of Horn and | 

Most of the general material  is contained in [If], but  we review the basic defi- 

nit ions for the sake of completeness. 

10.1.  D e f i n i t i o n .  A D G - a l g e b r a  A = (A,d)  is a graded associative algebra 
c~ i A = O i = _ ~ A  with a unit 1A E A ~ and an additive endomorphism d of degree 1 

s.t. 

and 

d 2 = 0  

d(a.  b) = da. b + (--1)des(a)a �9 

d(1A) = 0. 

10.2.  D e f i n i t i o n .  A left D G - m o d u l e  (M,  dM) over a DG-a lgebra  ,4 = (A,d)  (or 

s imply an .A-module) is a graded uni tary  left A-module M = ( ~ _ o o M  i with an 

addit ive endomorphism dM : M --* M of degree 1 s.t. d ~  = 0 and 

dM(am) = da . m -4- (--1)deg(a)a �9 dMm 

for a E A, m E M. A morphism of DG-modules  is a morphism of A-modules  of 

degree zero, which commutes with d. 
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We will write for short M for (M, dM) if this causes no confusion. 

10.2.1.  Denote by A4.4 the abelian category of left A-modules.  

Note that if A = A ~ then an A-module  is just a complex of A-modules. In 

particular .A//~ is the category of complexes of abelian groups. 

10.2.2.  The c o h o m o l o g y  H(M) of an A-module  M is H(M) := KerdM/ImdM. 

Note that  H(M)  is naturally a graded left module over the graded ring H(A).  

10.3. The t r a n s l a t i o n  f u n c t o r  [1] :.AA4 --* M.4 is an automorphism of A4.4 s.t. 

(M[1]) i = M i+l, dM[1 ] = - - d M  

and the A-module  structure on M[1] is twisted, that  is 

a o m = (--1)des(a)am, 

where a o m is the multiplication in M[1] and am is the multiplication in M. 

10.3.1.  Two morphisms f,  g : M --~ N in A//.a are h o m o t o p i c  if there exists a 

morphism of A-modules (possibly not of A-modules)  M-2-~N[-1] s.t. 

f - g = sdM q- dys 

Null homotopic morphisms Hot(M, N) form a 2-sided ideal in H o m ~ a  (M, N)  and 

we define the h o m o t o p y  c a t e g o r y  /CA to have the same objects as A4A and 

morphisms 

Homlca (M, N)  := H o m ~ a  (M, N ) / n o t ( M ,  g) .  

We now proceed to define the cone of a morphism and the standard triangle in 

exactly the same way as for complexes of ,~-modules. 

10.3.2.  The cone  C(u) of a morphism M - ~ N  in A4.4 is defined in the usual way. 

Namely, C(u) = N @ M[1] with the differential dNeM[1] =(dN + u, --dM). We have 

the obvious diagram 

M -~ g ~ C(u) ~ Nil] 

in A4.4 which is called a s t a n d a r d  t r iangle .  

10.3.3.  An exac t  t r i ang l e  in/CA is a diagram isomorphic (in/(:.4) to a standard 

triangle above. 
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10.3.4.  Def in i t ion .  A short exact sequence 

K - ,  M-- ,  N 

of A-modules  is called A-split if it splits as a sequence of A-modules. 

One can show that an A-split sequence as above can be complemented to an 

exact triangle 

K -~ M --* N -~ K[1] 

in ]CA. 

10.3.5.  P r o p o s i t i o n ,  The homotopy category ]CA with the translation functor [1] 

and the exact triangles defined as above forms a triangulated category (see [Vel]). 

P r o o L  The proof for complexes of 2g-modules applies here without any changes. 

10.4. A morphism M--~N in .A4A is a q u a s i i s o m o r p h i s m  if it induces an isomor- 

phism on the cohomology H(M)-%H(N). 

10.4.1.  The de r ived  c a t e g o r y  D.a is the localization of ]c~t with respect to quasi- 

isomorphisms (see [Vel]). 

10.4.2,  L e m m a .  The collection of quasi-isomorphisms in ]CA forms a localizing 

system (see/yell). 
P r o o f .  Same as for complexes of 2~-modules. 

10.4.3.  Coro l l a ry .  The derived category DA inherits a natural triangulation from 

]CA. 

P r o o f .  Same as for complexes. 

Later we will develop the formalizm of derived functors between the derived 

categories DA (see 10.12 below). 

10.4.4.  R e m a r k .  One can check that a short exact sequence 

O--~ M - ~  N--~ K-- ,  O 

in A4A defines an exact triangle in DA. 
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10.5. As in the case of complexes, the functors Hom~:.~ (M, .), Homtc~ (., N), Homv~ (M, .), 

HomD~(-,N),  H(-) from the category ]CA or DA to the category of graded abelian 

groups are cohomolog ica l .  That  is, they take exact triangles into long exact se- 

quences. 

10.6. R i g h t  D G - m o d u l e s .  One can develop a similar theory for right DG-  

modules. 

10.6.1.  Def in i t ion .  A right DG-module (M, dM) over AM = (A, d) is a right graded 

A-module  M = @~_ooM i with an additive endomorphism dM: M --~ M of degree 

1, s.t. d ~  = 0 and 

dM(ma) -= dMrn �9 a -F (--1)des(m)m �9 da. 

Denote the category of right DG-modules over .4 by M y  4. 

One can either proceed to define the homotopy category ]c~t and the derived 

category D~ in a way similar to left DG-modules,  or simply reduce the study of 

right modules to that of left modules using the following remark 10.6.3 (the two 

approaches yield the same result). 

10.6.2.  For a DG-algebra .4 = (A, d) we define its o p p o s i t e  AM ~ = (A ~ d) to 

have the same elements and the same differential d, but a new multipliciation a o b 

defined by 

a o b := (--1)deg(a)'deg(b)ba, 

where ba denotes the multiplication in A. 

10.6.3.  R e m a r k .  Let AM be a DG-algebra, AM ~ its opposite. Then the categories 

M~t and Ad~to p are naturally isomorphic. Namely, let M E M A  be a left AM-module. 

We define on M the structure of a right ,4~ as follows 

m o a :---- (--1)des(a)'des(m)am. 

One checks that  this establishes an isomorphism of categories .M~t~,~4~top. 

10.7. A DG-algebra is called s u p e r c o m m u t a t i v e  if ab = (--l)deg(a)'deg(b)ba. In 

other words AM is supercommutative of AM = AM ~ 

10 .8 .  Horn. 
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Let M, N E A4.4. Define the complex Horn (M, N) of ~-modules as follows: 

Homn(M, N)  := {morphisms of A-modules M --* N[n]}; if f E Homn(M, N), 

then 

df = dNf  -- (--1)'~fdM. 

Note that by definition Hom~c, (M, N) = H~ N). 

10.8.1. One can check that the bifunctor HomO, .) preserves homotopies and defines 

an exact bifunctor 

Hom(., .) : IC~ • -+ ICm. 

10.8.2. In case .A is supercommutative the complex Horn (M,N) has a natural 

structure of a DG-module over A. Namely, for f e Hom(M,N)  put (af) (m) = 

af(m).  In this case Horn(., .) descends to an exact bifunctor 

Ho.~(., .) : lC~ x JC.4 - -  l q4 .  

10.9. @A. 

Let M 6 M~,  N 6 M.4 be a left and right DG-modules. Then the graded 

2~-module M @A N is a complex of abelian groups with the differential 

d(m | n) = dMm | n + (--1)deg(m)rn @ dNn 

We denote this complex by M | N. 

10.9.1. The bifunctor | preserves homotopies and descends to an exact bifunctor 

10.9.2. In case .4 is supercommutative the complex M |  has a natrual structure 

of a DG-module over ,4. Namely, put a(m | n) = (--1)des(a)'deg(m)ma | n. Then 

| descends to an exact bifunctor 

|  : ~ 4  x/C~ --+ ~ .  

10.10. If .A is supercommutative we have the following functorial isomorphisms 

(M, N, K 6 A4.4): 

M | (N | K) = (M | N) @A K 

Horn(M, Horn(N, K))  = Hom(M | N, K)  

SomM, (M, Horn(N, Ix')) = Homza, (M @.4 N, K) 

Hom~c, (M, Hom(g,  K))  = Homlc, (M | N, K). 
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10.11.  Let r : A --* B be a h o m o m o r p h i s m  of DG-algebras ,  that  is a uni ta ry  

homomorphism of graded algebras r : A ~ B which commutes with the differentiA. 

Consider/3 as a right DG-modu le  over A via r 

The assignment M ~ B |  M defines the e x t e n s i o n  o f  s c a l a r s  functor 

which descends to the exact functor 

r :/CA ~ ~ .  

On the other hand, if N E M B  we can view N as a left A - m o d u l e  via r This 

defines the r e s t r i c t i o n  o f  s c a l a r s  functor 

r : Ms - -*  M ~  

and the exact functor 

r  : K~ ---* /CA. 

The functors r and r  are a d j o i n t .  Namely, for M E .~,t.a, N E M B  we have 

Hom~B( r  N)  = H o m ~ ( M ,  r  

Hom~c8 (r  N)  = Hom~c, (M, r  

In case A and B are supercommutat ive we have also 

/3 | (M | N) = (~ | M) | (13 | N) 

for M, N E M A ,  that  is r is a tensor functor. 

10.12.  D e r i v e d  f u n c t o r s .  

Our  goal is to define derived functors in the sense of Deligne [D3] of Horn and 

| In order to do that  we will construct for each DG-modu le  M a quasiisomor- 

phism P(M) ---* M, where P(M) is the "bar resolution" of M. Then we show that  

P(M) can be used for the definition of the derived functors. We use the results of 

N. Spaltenstein [Sp]. 

Let us recall the notion of a K-projec t ive  complex of 2~-modules (see [Sp]). 

10 .12 .1 .  D e f i n i t i o n .  Let C E M ~ .  We say that  C i s / C - p r o j e c t i v e  if one of the 

following equivalent propert ies  holds: 
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(i) For each B E M z  

Homlc.  (C, B) = HomD.  (C, B) 

(ii) For each B E M z ,  if H(B)  -- 0, then 

H(Hom(C, B)) =- 0 

The equivalence of (i) and (ii) is shown in [Sp]. We will repeat the argument  in 

l emma 10.12.2.2 below. 

T h e o r e m .  For every complex B E A/f~ there exists a ~c-projective C E M z  and 

a quasiisomorphism C ~ B. 

P r o o f :  see [Sp]. 

10.12.2 .  We need to extend the definition and the theorem in 10.12.1 to arbi trary 

DG-modules .  

10 .12.2 .1 .  Def in i ton .  Let P E A, tA. Then P is ca l l ed / ( : -p ro jec t ive  if one of the 

equivalent conditions in the following lemma holds. 

10 .12.2 .2 .  L e m m a .  Let P E MA.  Then the following conditions are equivalent: 

(i) Homlca (P, ") = HomDa (P, ') 

5i) For every acycliq C E A4D,, (that is H(C) =- 0), the complex Hom(P,C) 

is also acyclic. 

P r o o f :  (i) ==* (ii). Let C be acyclic. Then Homtca (P, C) = H o m D a ( P , C )  ---- 0. 

But Homlr (P, C) = H~ (P, C). So Horn(P, C) is acyclic in degree 0. Using the 

isomorphism Horn(P, C[i]) -- Horn (P, C)[i] we conclude that  Horn(P, C) is acyclic. 

(ii) ==* (i). By the definition of morphisms in/CA and D.a it suffices to prove 

the following: For a map s E Homjca (T, P)  that  is a quasi-isomorphism, there exists 

a map  

t e H o m K : a ( P , T ) ,  s . t . s . t = [ d R .  

Consider the cone of s in/C.4: 

TAmP ~ C(s). 

Then by (ii) Homjca (P, C(s)) = 0. Hence from the long exact sequence of Somlca (P, ") 

it follows tha t  there exists t E Homjca (P, T) s . t . s ,  t = Idp. This proves the lemma. 
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10.12.2.3 .  R e m a r k .  One checks directly that the A-module  A is ](:-projective. 

10.12.2.4 .  B a r  c o n s t r u c t i o n .  For a DG-module  M E Aria we will now define its 

bar resolution B ( M )  E 3,4.4 together with a quasiisomorphism 

B(M) ---* M.  

Then we will prove that  B ( M )  is K-projective, hence there axe enough K-project ive 

objects in ](:,4. 

So let M E A4~t. Consider M as just a complex of abelian groups M E .M•. 

Let So = S(M)--f-,M be its K-project ive resolution in K:z (which exists by theorem 

10.12.1). We may (and will) assume that e is surjeetive. Consider the induced 

A-module  P0 = A |  So corresponding to the natural homomorphism ~ ---, A.. 

There is a natural map of A-modules 

60:P0-+M, 6 0 ( a |  

We claim that  60 induces a surjection on the cohomology H(Po) --+ H ( M ) .  

Indeed, the map s : So -+ M is a quasiisomorphism and for the cycles s E So and 

1 | 8 e P0 we have  ~(8) = 60(1 | s) .  

Let K~ = Ker(~0). Then the exact sequence 

O---+ K ~ Po-~ M - +  O 

in M A  induces the exact sequence on cohomology 

0 -* H ( K )  ---+ H(Po) ---* H ( M )  --~ 0 

We now repeat the preceding construction with K instead of M, etc. This 

produces a complex of A-modules 

~-s n ~-~ n 6-t  n 
(*) '/~--2 ~s --+ O. 

= @i=_ooP_i[z], where the A-module  structure Define a new A-module  B ( M )  o 

on P-ill] is the same as on P - i  and the differential 

d :  P-i[i] --* P-i[il  (9 P-i+l[ i  - 11 is 

d(p) = ( d p _ ,  (p), (--  1)deg(P)~-i (p)).  
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There is an obvious morphism of A-modules  B ( M ) ~ M ,  where 6]p o = 6o and 

SIp_ ~ = 0 for i > 0. We call B(M) the b a r  r e s o l u t i o n  of M, which is justified by 

the following claim. 

1 0 . 1 2 . 2 . 5 .  C l a i m .  5 : B ( M )  --* M is a quasi-isomorphism. 

Indeed, B(M) is the total  complex, associated to the double complex (*) of 

abelian groups. Hence H(B(M))  can be computed using the spectral  sequence of 

the double complex (*). The E1 term is the complex 

--~ H ( P - 2 )  ~ H ( P - 1 )  -~ H(Po) --+ O, 

which is exact except at P0 by the construction of B(M).  Hence the spectral  

sequence degenerates at E2 and H(B(M))  = E2 = H(M). 

10.12 .2 .6 .  P r o p o s i t i o n .  The A-module B( M) as constructed above is ]C-projective. 

P r o o f .  We will prove proper ty  (ii) of the lemma 10.12.2.2: for an acyclic A -  

module C the complex Hom(B(M),C)  is acyclic. Since H~ = 

Homlca (B(M),  C) it suffices to prove 

Homtca(B(M),  C) = 0. 

S o l e t  f : P ~ C b e  a m o r p h i s m o f A - m o d u l e s ,  where H(C) = O. We will 

construct  a homotopy h : f ~ O, defining h inductively on the increasing sequence 

of submodules B ,  = G'~=oP-i[i] C B(M).  

n = 0. RecM1 that  B0 = P0 = A |  So where So G f14~ is/C -projective. By 

the adjunct ion propert ies  in 1.11 the morphism fiF0 : P0 ---+ C of A-modu les  comes 

from a morphism g : So ---+ C of 2g-modules.  But g is homotopic to zero, because 

So is /C-project ive.  Hence by the same adjunction proper ty  there exists a homotopy 

h0 : P0 --~ C[ -1 ]  s.t. fifo = dho + hod. 

Suppose we have constructed a homotopy hn-1 : Bn-1 ---+ C[-1 ]  s.t. 

f[B,_~ =dh~-a +hn-ad. 

We will extend hn-1 to a homotopy hn : Bn ---* C[ -1 ] .  So we need to define hn on 

P_.[n]. 
Let us introduce a local notation. For M E 3,t,4 (resp. M E A4z~) we denote 

by Mini  C .s (resp. Mini  E f14~) the appropr ia te ly  shifted module,  where the 
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differential and the A-module structure (resp. the differential) are the s a m e  as in 

M. 

Let K C P - n + I  be the kernel of 5- ,+1.  Let c~ : S ( K )  ~ K be the/C-projective 

resolution in A 4 z  used in the construction of B ( M ) .  Then P _ ,  = .d | S ( K )  and 

denote by i :  S(K)[n] --* P_~[n], i ( s )  = 1 | s the map of ,~-complexes. Recall that 

the differential dB (M)  acts on i ( s )  = 1 | s 6 P-n[n]  as 

dB<M)( i ( s ) )  = 1 | d s ( K ) ( S )  + (--1)deg(')a(s) 

Put  &(s) = (--1)deg(8)a(s) 

Define an additive map g : S(K)[n] ~ C as follows: 

g =  f . i - h , _ l  . 6 .  

Note that  g has degree zero. 

C l a i m .  g is a m a p  o f  2 ~ - c o m p l e x e s ,  i .e.  

d o  �9 g = g �9 d s ( K ) .  

Proof .  

d c  " g = d c ( f  " i - h , - 1  " &) 

= d c  �9 f "  i - d c  �9 h n - 1  �9 6 

= f .  dB (M)  . i -- [dc  �9 h ,~- i  + h , - I  " dB(M)  -- h n - 1  " dB(M)] ' 6 

= f [ i .  ds(g) + 6]  --  f .  (~ + h n - 1  �9 d K "  6 

= f .  i �9 ds(t~') + h n - a  �9 [ - 6  �9 ds(K)] 

= [ f -  i -- hn-1 �9 5z]ds(/~') = g" d s ( K ) .  

Since S ( K )  is/C-projective there exists a homotopy of 2g-complexes 

h :  S(K)[n] --~ C[-1] ,  s.t. 

h d s ( K )  + d c h  = g 
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hds(K) + dch = f . i -  hn-1 �9 & 

hds(K) + h , - l &  + dch = f "i 

Now there is a unique map of A-modules hn : P_,[n]  = A | S(K)[n] ~ C[ -1]  

which extends the homotopy h : S(K)[n] ~ C[-1] .  We claim that hndB(M) + 

dch~ = f on P-n[n],  that  is hn is the desired extension of h , -1 .  

Indeed, 

(hndB(M) + dchn)(a | s) = hndB(M)(a | s) + dchn(a | s) 

= h.(da | s + (--1)deg(")a | dS(K)S + (--1)deg(s)+deg(a)aa(s)) 

-b dc( (-1)deg(a) ah( s ) ) 

= (--1)deg(~)+lda �9 h(s) + (--1)des(~)+deg(~)a h(ds(K)s) 

-t- (--1)de'(s)+deg(a)+deg(a)a hn- l (a ( s ) )  H- (--1)d~g(~)da " h(s) 

+ (--1)deg(~)+deg(:)adch(s) 

= a[hds(K) + h,,-l& + dch](s) 

= a f .  i(s) = f (a  | s). 

So we have extended the homotopy h : f ~ 0 from B , - 1  to B~. This completes 

the induction step and the proof of the proposition. 

10 .12.2 .7  R e m a r k .  In case the algebra A contains a field the bar construction 

can be simplified. Namely, we do not need the intermediate complexes S(K) ,  since 

every complex over a field is E-projective. 

10.12.2.8.  Denote by/C79A the full triangulated subcategory of/CA consisting of 

/c-projectives. The following corollary follows immediately from 10.12.2.1-6. 

10.12.2.9 .  Coro l l a ry .  The localization functor /C~ ~ DA induces an equivalence 

of triangulated categories/C79A " DA. 

10.12.3.  In sections 10.12.2.4-6 above we proved that the category/c~t has enough 

/c-projective objects. This allows us to define the derived functor of Horn(., .). 
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10 .12 .3 .1 .  D e f i n i t i o n .  For M, N E A4,4 we define the d e r i v e d  f u n c t o r  

RHom(M, N) := Hom(B(M), N), 

where B(M)  is the bar  resolution of M as in 10.12.2.4. 

The results in 10.12.2.2-6 above show that  RHom is a well defined exact bi- 

functor 

RHom : D~ x DA ---, D z ,  

which is a right derived functor of Horn in the sense of Deligne ([D3]). 

In case A is supercommutat ive we get the exact bifunctor 

RHom : D~ x DA ~ D.a 

10.12 .4 .  Next we want to define the derived functor of | Let us recall the 

following definition, which is again due to Spaltenstein [Sp]. 

10 .12 .4 .1 .  D e f i n i t i o n .  A DG-modu le  P E A~,4 is called K:-flat  if the complex 

N | P is acyclic for every acyclic N E A~[~. 

10 .12 .4 .2 .  L e m m a .  A/C-projective complex S E A4 z  is /C-flat. 

P r o o f .  See [Sp]. 

10 .12 .4 .3 .  P r o p o s i t i o n .  For every M E A4,4 its bar resolution B(M)  E .A,~.4 is 

/C-fiat. 

P r o o f .  Let C E A4~ be acyclic. Recall that  B(M) is an A - m o d u l e  associated with 

a complex of A-modu le s  

/ ~ _ 2 - - - ~ / ~ _ l - ' - - + J - ' 0  "--+ 0 .  

Each te rm P - i  is of the form A |  S where S is a K;-projective g - c o m p l e x .  By 

the previous lemma 10.12.4.2 S is LZ-flat, so 

C|  = C | 1 7 4  

is acyclic. 

But C | B (M)  is a complex associated with the double complex 

~ 1 @ ~ _  ~..~ ~ = t=1~6-1  ~ 
�9 . . C |  ----* b ~ o . a P - 1  ----* t ; |  
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where the "columns" C | P-i  are acyclic. Hence C | B(M)  is acyclic. This 

proves the proposition. 

10 .12 .4 .4 .  C o r o l l a r y .  A lC-projective object in ./VIA is 1C-flat. 

P r o o f .  Let P be K:-projective and let B(P)~-+P be its bar  resolution. Then 6 is a 

homotopy eqinvalence. Suppose now that  C E A4~ is acyclic. Then C | B(P)  is 

acyclic by the last proposition. But C|174 is a homotopy equivalence, 

hence also C | P is acyclic. This proves the corollary. 

10 .12 .4 .5 .  D e f i n i t i o n .  Let M E 3,4,4, N E J~4~. We define the derived functor 

L 
N| := N | B (M) ,  

where B(M)  is the bar  resolution as in 10.12.2.4. 
L 

The fact that  B(M) is KT-projective and L:-flat implies that  | is a well defined 

exact bifunctor 
L 
| : D~ x D`4 ~ Dz~, 

which is the left derived functor of | in the sense of Deligne ([D3]). 

In case .4 is supercommutat ive we get the exact bifunctor 

L 
| : D`4 • D`4 ~ D`4. 

10.12 .5 .  Let r : .4 ---+/3 be a homomorphism of DG-algebras .  We now define the 

derived functor of the extension of scalars functor/3| = r :/CA ---* L:~ to be 

L 
/3| = r : DA ~ Dr3 

We also have the restriction functor 

r  : DB ~ DA 

obta ined by restr ict ion of scalars from/3 to .4. The above functors are adjoint:  

HomD.( r  N) = HomD~ (M, r  

for M C D`4,N E DB. 

10 .12 .5 .1 .  T h e o r e m .  Let r : A ~ B be a homomorphism of DG-algebras which 

induces an isomorphism on cohomology H(A)-%H(/3). Then the extension and the 

restriction functors 

r : DA ~ D~, 
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r  : D~ -* DA 

are mutually inverse equivalences of categories. 

P r o o f .  Let M C DA, and B ( M ) A M  its bar resolution. Then r  r = 

B | B(M) considered as a left A module. Define a morphism of functors 

where c~ : M ~ B | B(M) is a composition of 6 -1 with the map f: 

f :  B(M) ~ B @~a B(M) 

f :e~-*l@c.  

To show c~ is a quasiisomorphism it suffices to show that f is so. But this is 

immediate since B(M) is ]C-flat (proposition 10.12.4.3) and hence 

f = r @id : A | B(M) ~ B @.a B(M) 

is a quasiisomorphism. 

Let us define a morphism of functors 

/~ : r - r  ---* IdDs. 

For N E DB, r r  = B | B(N),  where B(N)J~N is the bar resolution of N 

considered as an A-module.  Put  

: B @A B(N) ~ N 

: b |  bt(e) 

We claim that /3  is a quasiisomorphism. Indeed, consider the commutative diagram 

B(N) = A | B(N) 

r174 I ~ lot  

B|  Z , A @ A N = N ,  

where the maps r @ 1 and 1 | t are quasiisomorphisms. 

This proves the theorem. 
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10.12.6. If .,4 is supercommuntative, there are the following functional identities 

(M, N, K E D~): 

L L L L 
M| N| = ( M|174 

L 
RHom (M, RHom(N, K)) = RHom(M| K) 

L 
HOmD~ (M, RHom(N, K)) = HomD~ (M| K)  

If in addition/3 is supercommutative then r : D.4 ~ DB is a tensor functor, that 

is 
L L L L L 

B| M| = ( B|174 B| 



11. Categories DA, D +. 

In this work we will be interested in a very special DG-algebra A = (A, d = 0), 
where A = -~[X1,. . . ,  Xn] is the commutative polynomial ring, and the generators 

xi have various even degrees. This is a supercommutative (even commutative) 
DG-algebra. Denote by m := (X1, . . . ,Xn)  the maximal ideal in A. The algebra 
A appears as the cohomology ring H ( B G ,  ~n:~) of the classifying space B G  of a 

connected Lie group G. Eventually, we will describe the derived category DG(pt) of 
G-equivariant sheaves on a point using the derived category DA (see next section). 

11.1. For the remaining part of this section let us fix a DG-algebra A as above. 
Consider the following triangulated full subcategories of A/tA: 

A//A = {M �9 A4.41M is a finitely generated A - module}, 

M + = {M �9 M ~ I M  ~ = 0 for i <<  0}. 

We repeat the construction of the homotopy category and the derived category in 

section 10 above replacing the original abelian category Adct by .&4 A (resp. Ad+). 
Denote the resulting categories by EL, D~, (resp. E +, D+). We have the obvious 
fully faithful inclusions of categories 

MA cM,1 cM , 

EL 
The following proposition implies that there are similar inclusions of the derived 

categories (see 11.1.3 below). 

11.1.1 P ropos i t ion .  Let M E A4.a. Assume that M �9 ./t4 A (resp. M �9 A4~t ). 

Then there exists a E-projective P �9 A4.4 and a quasiisomorphism P --* M ,  such 

that P �9 ./t4 A (resp. P �9 M +  ). 

Proof .  Consider the exact sequence of A-modules 

(,) 0 --+ KerdM --* M --* M / K e r d M  --* O, 

where the A-modules KerdM and M/KerdM have zero differential and belong to 
M A (resp. M~) .  The sequence (*) is an exact triangle in D.4. Since E-projective 
objects form a triangulated subcategory in E~t, we may assume that the differential 

dM in the module M is zero. 
Let 

0 - ~ P  ~ d . . . . .  ~ P o ~ M  ~ 0 

be a graded resolution of M (as an A-module) by finitely generated (resp. bounded 
below) projective (hence free) A-modules. This resolution defines an A-module 
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P = OP-i[i]  with the differential d :  P-i[i] --* P-i+1 [i - 1] and a quasiisomorphism 

~: P-%M (r = O, i > 0). Clearly P E M f (resp. P E 3,4+). 

C l a i m .  The "4-module P i~ K.-projectivc. 

P r o o f  o f  t h e  c l a im.  One immitates the proof of the corresponding statement  

for complexes (see [Hart]). Namely, the following statement is easily verified: Let 

C e .MA, s.t. H ( C )  = 0, then Hom~c~ (P, C) = 0. 
This proves the proposition. 

11.1.2.  Consider the full subcategory KT~a C )U.4 consisting of )U-projectives and 

denote by ~ P A  / C /CPA the full subcategory consisting of objects M E 3d/A. We 

have a natural  commutat ive diagram of functors 

1 c  ~d  
~ P ~  i D~.  

The functor b is an equivalence (10.12.2.9). It follows from the above proposition 

that  the functor a is also an equivalence. Hence d is fully faithful. Similarly for 
]CT ~+ and D +. So we proved the following 

11.1.3.  Coro l l a ry .  The natural functor Ds  ~ D.4 (resp. D + -~ D,4) is fully 
faithful. 

11.1.4.  Actually the proof of 11.1.1 gives more. Namely, the t2-projective DG- 
module P constructed in this proof is an iterated extension of finite (shifted) direct 

sums of "4 (resp. of bounded below direct sums Oi> , (O '4 [ - i ] ) )  in ease of the 
category Ad/A (resp. 3/1+). This shows that  the triangulated category ~P/A (resp. 

K:P +) is generated by ,4 (resp. by bounded below direct sums @i>,(@'4[-i])) .  Let 
us write for short G+,4[- i ]  for Gi> , ( |  Using the equivalence a in 11.1.2 we 
obtain 

11.1.5.  Co ro l l a ry .  The triangulated category DIA (resp. D +) is generated by "4 
(resp. by bounded below direct sum8 q)+'4[-i]). 

11.1.6.  The categories A4/A, A,t + (resp. K:I,A /C+) are closed under the tensor 

product  | and .hd~, K:/A are closed under Horn(., .). Using the proposition 11.1.1 
we earl define the derived functors of Horn(., .) and | on the categories D~,  D +, 
using the KJ-projective resolutions (see definitions 10.12.3,4). So we obtain the exact 
funetors 

RHom(.,  . ) :  D/A x D/A ~ D/A 
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RHom(.,.): D~ x D + -~ D + 

L 
- |  DfA x D~ ~ D~ 

L 
�9 |  D + x D + ~ D + 

Clearly, all relations in 10.12.6 hold for the above functors. 

Our  main interest lies in the category DfA. We proceed to define some addi t ional  

s tructures on D/A. 

11.2.  D u a l i t y .  

11 .2 .1 .  D e f i n i t i o n .  The ,4-module DA := "4 E DfA is called the d u a l i z i n g  

module.  

Next we define the d u a l i t y  functor 

D :  D~ ~ D~ 

D(M) := RHom(M, DA) 

11.2.2 .  P r o p o s i t i o n .  D 2 = Id. 

11.2 .2 .1 .  L e m m a .  For a ~c-projective P E/CfA the ,4-module Hom(P, DA) i~ also 

~c-projective. 

P r o o f .  Since the category of /c-project ives  is generated by ,4 (see 11.1.4), it suffices 

to prove the 1emma if P = ,4 in which case it is obvious. 

P r o o f  o f  p r o p o s i t i o n .  Let M C DfA be/C-projective.  Then using the above lemma 

we have 

DD(M) = Horn(Horn(M, DA), DA). 

Define a map  of ,4-modules 

a: M ~ DD(M) , a(m)(f) = (--1)des(m)deg(l)f(m) 

We claim tha t  a defines an isomorphism of funetors Id--U-*D 2. By corollary 11.1.5 

above it suffices to prove that  a is an isomorphism in case M = `4, which is obvious. 

This proves the proposit ion.  

11.3.  R e l a t i o n s  w i t h  ExtA a n d  TorA. 
L 

Let us point out some relations between the operat ions RHom and | in DfA 

and the operat ions ExtA and TorA in the category ModA of graded A-modules.  
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Let M, N E .L4~ be M-modules with ze ro  differentials .  Recall the construc- 

tion of a/C-projective resolution P of M as in the proof of proposition 11.1.1. We 

considered a projective resolution 

(*) O ~  P_ d__~...__, p_ d_~po__~ M ~ O  

of M in the category ModA. Then the .4 - module P was defined as P = @iP-i[i] 
with the differential d : P-i[i] --* P-i+a[i - 1] and the quasiisomorphism e : 

p-7-,m (6(P_i[ i ] )  = 0, for i > 0). 

By definition, 

(1) R n o m ( M ,  N) = ttom(P, N). 

On the other hand, the complex of A-modules 

(2) ...---~ HomA(P_i, N) --, HomA(P-i-a, N) --~ .. .  

computes the modules Extia(M, N) 

Comparing (1) and (2) we find 

11.3.1.  P r o p o s i t i o n .  If  M, N E D~ have zero differentials, then 

(i) H(RHom(M,  N)) = OiEZtiA(M, N)[- i ] .  

In particular, if EXtrA(M, N) = O, i # k, then the M-module RHom(M,  N) is quasi- 
isomorphic to its cohomology H(RHom(M,N) )  and hence 

RHom( M, N) = Extka( M, N)[-k] 

In cane N = DA = A the last equality becomes 

D(M) = EXtkA(M,A)[-k], 

which shows the close relation between the duality in DIA and the coherent duality 
in ModA. 
(ii) There exists a natural morphism in DIA 

RHom(M, N) ---r EXt"A(M , g ) [ - n ] ,  

which induces a surjection on the cohomology (the differential in the second A- 
module is zero). 

In the previous notations we also have 

L 
(3) M| = P | N. 



87 

On the other hand the complex of A-modules 

(4) . . .  "* P - i  | N --* P- i+l  @A N --* . . .  

computes the modules Tor/A(M, N). Comparing (3) and (4) we find 

11.3.2. P ropos i t i on .  I f  M,  N E D~ have zero differentials, then 

L 
(i) H ( M |  = ~ i  TOriA(M, N)[i]. 

L 
In particular, i f  ToriA(M,N) = O, i r k, then the A-module M |  is quasiiso- 

L 
morphic to its cohomology H ( M |  and hence 

L 
M |  = TOrkA(M, N)[k]. 

(ii) There exists a natural morphism in DfA 

L 
M |  ~ M @A N,  

which induces a surjection on the cohomology (the differential in the second module 

is zero). 

11.3.3. For a given M E D.,t it is useful to know if M is quasiisomorphic to its 
cohomology, i.e. if M "~ ( H ( M ) ,  d = 0) (see, for example, the previous propositions 
11.3.1, 11.3.2). 

Proposit ion.  Let M E D.4 be such that the A-module H ( M )  has cohomological 

dimension 0 or 1. Then M ~- (H(M),  d = 0). 

P roo f .  Choose {ci} C KerdM C M such that {ci} generate the cohomology H ( M )  

as on A-module. Let Po = @iAci be the free A-module on generators ci with the 
natural map of A-modules 

: P0 --~ KerdM 

c i ~ C i . 

Let P-1 C P0 be the kernel of the composed surjective map 

Po--~KerdM --* KerdM /ImdM = H ( M ) .  

By our assumption P-1 is a free A-module~ and hence 

0 ~ P - l ~ P o  ~ H ( M )  --* 0 
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is a projective resolution of the A-module H(M). 
As in the proof of 11.1.1 consider the/C-projective A-module P = P0 @ P-1 [1] 

with the differential d : P-l[1] --+ P0. Then P is quasiisomorphic to H(M) (from 

the exact sequence above). Let us construct a quasiisomorphism P-%M, which will 

prove the proposition. 

We already have the map Po-GM. It remains to find a map of A-modules 

c ~ : P-1 --~ M which makes the following diagram commutative 

P-1 --* M 
,~ d ,~ dM 
Po ~ M 

Such a m a p  exists since r o d(P-i ) C Imdu and P-1 is a projective A-module. This 

proves the proposition. 

11.4. t - s t r u c t u r e .  

Let us recall the definition of a t-category in [BBD]. 

11.4.1.  D e f i n i t i o n .  A t - ca t ego ry  is a triangulated category D together with two 

full subcategories D<-~ >-~ s.t. if D <-n := D-<~ and D ->'~ := D->~ then 

(i) F o r X E D  - < ~  - > I , H o m D ( X , Y ) = 0  

(ii) D -<~ C D <1 and D ->~ D D ->1 

(iii) For X E D there exists an exact triangle A --+ X --~ B s.t. A E D<-~ E D >-1. 

Let us introduce a t-structure an D/A. 

11 .4 .2 .  D e f i n i t i o n .  

D L->~ := { U  E D/AI there exists N E D~ quasiisomorphic to M such that 

N i = 0, i < 0}. 

D L<~ := {N E D~[HOmD~(N,M ) = 0 for all M E DL->I}. 

11.4.3.  T h e o r e m .  The triple (D~,DL>-~ L<-~ is a t-category. 

P r o o f .  The properties (i),(ii) of definition 11.4.1 are obvious. In order to prove (iii) 

we need some preliminaries. The proof will be finished in 11.4.11 below. 

11.4.4.  D e f i n i t i o n .  Let N E D/A be a free A-module. Denote by rkAN its rank 

as an A-module. Let now M E D/A be arbitrary. Then we define the r a n k  of M as 

follows 

rkM := ~n{rkAPiP is/C - projective, free as 

an A-module, quasiisomorphic to M}. 
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11.4.5.  R e m a r k .  The function r k ( M )  satisfies the "triangle inequality". Namely, 

if M --~ N --~ K is an exact triangle in D~,  then r k N  <_ r k M  + r k K .  

11.4.6.  Def in i t ion .  Let P E D~ be a/c-projective, free as an A-module. Then P 

is called a minimal /c-projec t ive ,  if rkAP  = rkP.  

11.4.6.1.  Let P = (•A[i],dp) be a free A-module. Define the following A- 

suhmodules of P:  

P<_i = | 

P>_i = ej<-iA[j], 

so that P = P<i G P>_i+l. 

11.4.7.  L e m m a .  Let (P, dp) be a ~c-projective A-module, free as an A-module. 

Then the following statements are equivalent. 

(i) dR(P)  C raP; 

(ii) P is a minimal ~c-projective A-module; 

(iii) for all k, P<k is an A-submodule orB,  i.e. dp(P<_k) C P<_k. 

P r o o f .  Let e l , . . . ,  e ,  be a graded A-basis of P,  s.t. deg(ei+l)>_ deg(ei). Then the 

differential dp is an endomorphism of P given by a matrix M = (aij), where 

dp(ej) = ~ aijei. 
i=1 

Then clearly, (i)r aij C m, V i , j  r M is upper triangular r 

(i)=~(ii). Assume that P satisfies (i). Consider the complex of E-vector  spaces 

L 
B:t| = P / m P .  

By our assumption this complex has zero differential. Hence P is minimal. 

(i i)~(i).  Induction on the A-rank of P. 

Suppose that dR(el) = 0. Then we have a short exact sequence of A- modules 

Ael --~ P --+ P / A e l ,  

where all modules are free. This sequence is A-split, hence defines an exact triangle 

in/C (10.3.4). The first two terms are/C-projective, hence the third one is also such. 

Moreover, from the triangle inequality (11.4.5) it follows that P / A e l  is minimal. By 

the induction hypothesis (i) holds for P / A e l .  Hence it also holds for P.  
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Now suppose tha t  dp(el )  7 k O. Then dp(e l )  is an /R-linear combinat ion of 

ei's. We may (and will) assume that  dR(el)  = el for some i. Denote by E the 

A-submodule  of P spanned by el, ei. Note that  E is K~-projective as the cone of 

the ident i ty  morp.hism id : Ael --+ Aei and H ( E )  = O. Consider the short  exact 

sequence of A-modules  

E--+ P - +  P / E , 

where all modules are free. This sequence is A-split ,  hence defines an exact tr iangle 

in )U.a (10.3.4). The first two terms are/(7-projective, hence the third one is also 

such. The  map P --+ P / E  is a quasiisomorphism, which contradicts  the minimal i ty  

of P .  This proves the lemma. 

11 .4 .8 .  L e m m a .  Let P be a minimal IC-projective. Then the A-submodules 

P<_k C P (11.4.7) are It-projective for all k. Hence also P/P<_~ are ]C-projective 

and actually P<_k, P/P<k are minimal. 

P r o o f .  Induction on k. 

11 .4 .9 .  R e m a r k .  Let M 6 D/A. Let e l , . . .  ,e,~ be a graded A-basis for a minimal  

)U-projective module P quasiisomorphic to M. The previous lemma implies that  

there is an isomorphism of graded/R-vector  spaces 

L 
H(/R |  = @/Re/. 

In par t icu lar  
L 

r k M  = d i m ~ H ( / R |  

11.4 .10 .  P r o p o s i t i o n ,  Let P, Q 6 A4.4 be two minimal 1C-projectives. I f  P, Q are 

quasiisomorphic then they isomorphic. 

P r o o f .  Let a : P ~ Q be a quasiisomorphism. Since P is /C-projective, a is an 

ac tual  morphism of modules. Applying the func to r /R  | �9 we find that  a induces 

an isomorphism of the vector spaces 

P / m P  = Q/mQ.  

Hence a is an isomorphism by the Nakayama lemma. 

11 .4 .11 .  Now we can finish the proof of theorem 11.4.3. Let M E D/A. Let P be 

the minimal/ iS-project ive quasiisomorphic to M (which is unique by 11.4.10). By 

lemma 11.4.7 the A-submodule  P<0 C P is actually an A-submodule.  Consider the 

exact t r iangle 

P<o --+ P --+ P/P<o. 
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We claim that  this is the desired triangle. Indeed, P/P<o E Df~ >-1 �9 Since P_<0 has 

generators in negative degrees and is E-projective (11.4.8), it lies in D L<-~ This 
proves the theorem. 

11.4.12.  Recall that  a t-structure on a triangulated category D defines the t r u n -  
c a t i o n  f u n e t o r s  

r<_. : D -+ D -<" 

r_>. : D -+ D ->n, 

which are respectively right and left adjoint to the inclusions D -<" C D, D ->" C D. 

Then for X E D the exact triangle 

r_<0X --* X ~ r > l X  

is the unique triangle (up to a unique isomorphism) satisfying condition (iii) of 

definition 11.4.1 (see [BBD]). 

In our case the truncation functors are made explicit by the argument in 

ll.4.11.above. Namely if P is a minimal /(:-projective then r<iP = P<i and 

r>_i+lP = P./P<_i. 

11.4.13.  Given a t-structure on D, its h e a r t  is the full subcategory C := D>~ <~ 

It is known ([BBD]) that C is abel ian .  

C l a i m .  The abelian category D L>~ A D L<-~ is equivalent to Vect~ - the category 

of f inite dimensional vector spaces over J~. 

P r o o f .  Let P E D L->~ N D L-<~ We may assume that P is minimal/C-projective. 

Since P E D L<~ r>_IP = O. Since P E D L->~ r < - I X  = O. So by 11.4.12 we 

find that  P = @A, dp = 0. Hence D L>~ M D L<~ is equivalent to the category of 

free A-modules of finite rank, placed in degree zero, which in turn is equivalent to 

Vect~. 

11.4.14.  One can characterize the subcategories D f'->~ D S'-<~ ,a , A C D/A in the follow- 
ing way. 

P r o p o s i t i o n .  Let M E DI~. 

1. The following conditions are equivalent 

(i) M E D L>~ 

(ii) There exists a lC-projective P E DIA quasiisomorphie to M such that p i  = 

0,i < O. 
(iii) I f  P E D f is a minimal IC-projective quasiisomorphic to M ,  then p i  = O, i < O. 
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2. The following conditions are equivalent 

(iv) M E D L<~ 

(v) There exists a K-projective P E DIA quasiisomorphic to M such that P is 

generated as an A-module by elements in nonpositive degrees. 

(vi) I f  P E D~ is a minimal K-projective quasiisomorphic to M ,  then P is generated 
as an A-module by elements in nonpositive degrees. 

P r o o f .  1. Clearly, (iii) ::v (ii) =*, (i). 

(i) ~ (iii). Let M E D L->~ and let P be a minimal K-projective quasi isomorphic 

to M.  Since P E D L>-~ r<_-IP = 0. But  then by 11.4.12, pi  = 0, i < 0 which 
proves (iii). 

2. Clearly, (vi) =v (v) ~ (iv). 

(iv) =~ (vi). Let M E D L<-~ and let P be a minimal K-projective quasi isomorphic 

to M. Then  T>1P = 0, SO by 11.4.12 P = v<0P = P_<0, which proves (vi). 



12. D G - m o d u l e s  and sheaves  on topolog ica l  spaces .  

This is a fairly technical section whose only purpose is to prove the main  theo- 

rem 12.7.2. Otherwise, it  is never used later. 

12.0 In this section we show how DG-modules  are connected with sheaves on topo- 

logical spaces. Namely, to a topological space X one can associate a canonical 

DG-a lgeb ra  ,4x ,  so that  a continuous map X J ~ Y  defines a homomorphism of D G -  

algebras r : .Ay --* A x .  Let DAx be the derived category of left .Ax-modules and 

D(X)  be the derived category of sheaves on X.  We define the localization functor 

s  : DAx "-~ D(X)  

and the global sections functor 

7x : D+(X) --" DAx. 

These functors establish an equivalence between certain na tura l  subcategories of 

D.ax and D(X).  Then we s tudy the compatibi l i ty  of the localization functor with 

the inverse image f* : D(Y)  -* D(X)  and the direct image f .  : D+(X) --* D+(Y). 

These results will be applied to the derived category of equivariant sheaves Da(pt). 

12.1.  D G - a l g e b r a s  assoc ia ted  to a topolog ica l  space.  

Let X be a topological space, Cx - the constant sheaf of R-modules  on X 

(later  on we will stick to the reals R = ~ ) .  

Def in i t ion .  Let 0 --* Cx --* ~" be a resolution of the constant  sheaf. We say 

that  it is m u l t i p l i c a t i v e  if there is given a map of complexes m : 9 r" | ~'" ~ ~-" 

which is associative and induces the ordinary mult ipl icat ion on the subsheaf Cx. 

The resolution .T" is called aeyc l i c  if all sheaves ~-" are acyclic, i.e. H i ( x , . ~  n) = 

0, i > 0 .  

Given a mult ipl icat ive resolution Cx --* ~" the complex of global sections F(~- ')  

has a s t ructure  of a DG-algebra .  This algebra makes sense if ~-" is in addi t ion acyclic; 

then, for example,  H i ( r ( ~ - ) )  = H~(X, Cx). 

12.1 .1 .  E x a m p l e s .  1. The canonical Godement resolution Cx --* g" (see [Go], 

4.3). 

2. The canonical simplicial Godement resolution Cx --* .T" (see [Go], 6.4). 

3. The resolution by localized singular cochains C x  -* CS" (see [Go], 3.9). 

4. If X is a manifold, one can take the resolution by the de Rham complex of 

smooth forms C x  --~ f~)r 

All resolutions in above examples are acyclic at least if X is paracompact .  

Notice tha t  the first three resolutions are functorial with respect to continuous maps.  

Namely, given a continuous map f : X ~ Y, we have a na tura l  map f*B~ --* B" X 
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(where B" is a resolution from examples 1-3) which induces the homomorphism of 

DG-algebras r : F (By)  ~ r(Bx). The de Rham complex ~)~ is functorial with 

respect to smooth maps. 

The next proposition shows that the choice of a particular acyclic resolution is 

not important.  

12.1.2.  P r o p o s i t i o n .  Let X be a topological space and C x  --~ B" be an acyclic 

multiplicative resolution. Then the DG-aIgebra F(B' )  is canonically quasiisomor- 

phic to the DG-algebra F(.T"), where C x  ~ J~ is the simplicial Godement resolu- 

tion. More precisely, there exists an acyclic multiplicative resolution C x  -+ .~ ' (B')  

and canonical morphisms .7: --* . ~ ' ( B )  and B --+ U' (B ' ) ,  which induce quasiiso- 

morphisms on DG-algebras of global sections. In particular, any two DG-algebras 

coming from acyclic multiplicative resolutions of C x  are canonically quasiisomor- 

phic, and hence the corresponding derived categories of DG-modules are canonically 

equivalent (10.12.5.1). 

P r o o f .  Let us recall the simplicial Godement resolution .T'" (see [Go], 6.4). Let 

A E S h ( X ) .  There exists a canonical resolution ~-(A) of A: 

0 ~ A --~ J : ~  

where P ( A )  = C~ - the sheaf of discontinuous sections of A (see [Go], 4.3) and 

.7:"(A) = C~ We denote the resolution J~'(Cx) simply by ~". 

Recall that local sections s n E J~"(A)(U) are represented by functions 

s"(x0 . . . . .  xn) E Ax, 

defined on U n+l. Two such functions define the same section if they satisfy certain 

equivalence relation (see [Go], 6.4). 

Following Godement we will use the following convention. Let u E A, .  Then 

we denote by y ~ u(y) E Ay any local (continuous) section of A which is equal to 

u when y = x. Using these notations we can write the differential 

d :  ~-"(A) --* 5r"+'(A) 

as follows 

n 

(d~")(~o . . . .  , ~ . + , )  = ~ ( - I ) ' ~ " ( ~ o , . . . , ~ , . . . ,  ~,,+,)  
i = 0  

The functor A H ~ ' ( A )  has the following properties. 
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(1) It is exact. 

(2) Each sheaf Jrn(A)  is flabby, hence acyclic. 

(3) If A is a sheaf of rings, then 9r'(A) has a multiplicative structure x defined 

by the formula 

~P • ~q(z0 , . . . , ~p+q)  = s ~ ( x 0 , . . . , z ~ ) ( x ~ + q ) o ~ q ( x p , . . . , ~ + ~ ) ,  

where s p E UP(A) ,  s q E ~ 'q(A)  and o denotes the multiplication in A. 

Hence in particular ~'" is an acyclic multiplicative resolution of C x .  

Let C x  ---* B" be an acyclic multiplicative resolution. Consider the double 

0 --~ , ~ 1  ~ . . . . . .  

T T 
0 - .  P --, ~ ( B  ~ -~ P ( B ' )  

T T T 
0 ---* C x  ~ B ~ ~ B 1 

T T T 
0 0 0 

complex 

Denote by .T"(B') the total complex of the inside par t  

_.+ . . .  

T 
0 - ,  ~ ' l (B~  - ,  . . .  

T T 
0 ~ .T'~ ~ --+ 5r'~ 1) " "  

T T 
0 0 

The complexes 9 v" and B" embed naturally in 9 r (B ' ) ,  and properties (1), (2) 

above imply that  these embeddings induce quasiisomorphisms between the global 

sections. 
So it remains to construct a multiplicative structure on aT"(B') which will agree 

with the given ones on .T'" and B' .  Let o : B" | B" ~ B" denote the given multi- 

plication on B' .  Let us define the multiplication x : 9V'(B ") | 5r ' (B ") --* 5t-(B ') as 
follows. Given s v'i E .~v(Bi) ,sq 'J  E f ' q (BJ ) ,  the section s v'i • sq,J E .Tv+q(B i+j) is 

defined by the formula 

$1~ X 8 q ' J  ( x o ,  . . . , X p + q )  = ( - - 1 ) q i  s p ' i (  X o ,  . . . , 2gp ) (  ~ p + q  ) 0 8q ' J  ( X p ,  . . . , : r p + q  )* 

One checks immediately that  x is a morphism of complexes and that  it induces 

the given multiplication on ~-' and B' .  This proves the proposition. 

As was mentioned above the de Rham algebra is funetorial only with respect to 
smooth maps.  However, it has the advantage of being supereommutative,  and hence 
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its category of DG-modules  has more structure. Since in this work we are interested 

only in very special topological spaces - the classifying spaces for Lie groups - we 

will stick to the de Rham algebra. 

12.2. T h e  de R h a m  c o m p l e x  of  a n  c ~ - d i m e n s i o n a l  mani fo ld .  

For the remaining part of this section 12 let us put R = / ~ .  

12.2.1.  De f in i t i on .  An o ~ - d i m e n s i o n a l  m a n i f o l d  M is a paracompact topolog- 

ical space with a fixed homeomorphism, 

M ~_ lira Mn, 

J J 
where MI'--~M2"--~M3...  is a sequence of smooth (paraeompaet) manifolds of in- 

creasing dimensions dl < d2 < . . . ,  and j is an embedding of a closed submanifold. 

(A subset U C l imMn is open iff U N Mn is open in M~ for each n). 

Let ft~4" := 0 --~ f~0 ~1 ~d, 0 be the de Rham complex M. ~ M. ~ "'" -'+ M. 
of smooth differential forms on M~. It is known (Poincare lemma), that f ~ t .  is a 

resolution of the constant sheaf CM. .  

Extend the complex f/M. by zero to M via the closed embedding M ,  ~ M 

and denote this extension again by ~2M. Then the restriction of forms from Mn+l 
to Mn produces the inverse system of complexes on M: 

--. --* flM~ ~ ~2M. 

12.2.2.  D e f i n i t i o n .  The de R h a m  c o m p l e x  on M is the inverse limit 

ft M := lirnQM. 

12.2.3.  P r o p o s i t i o n .  (i)  The complex fl" M is a resolution of the constant  sheaf  

CM. 

(ii)  Each sheaf  f~k M = l im f~kM. is soft. Since M is paracompact, it follows that 

f~k M is acyclic, i.e. H i ( M ,  flkM) = O, i > 0 (see [ao],3.5.4).  

P r o o f .  (i) Fix a point x E M, say x E M~. Let us show that the sequence of stalks 

0 ~ CM,~: ~ ~2~ --* f~lM,~ ~ " "" is exact. It suffices to show that for a small open 

subset U 9 x the complex of global sections 

(*) 0 ~ F(U, CM) ~ r (v ,  fl~,) -~ . . .  

is exact. There is a fundamental  system of neighborhoods of x consisting of open 

subsets U s.t. U fq M k  "~ lFl d*, k > n, and U fq Mk  ~ U f3 Mk+l  is the embedding 

of a plane ~ d ,  r ~lt~d,+,. Then by the Poincare lemma the complex 

o ~ r(U, CM, ) ~ F(U, fP Mk) ~ "'" 
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is exact. Now the exactness of (*) follows since in the inverse system 

all maps 

r (u ,  s2~) = l imr(u ,~2~)  
k 

r(u,  ~ 4 ,  ~ ) -~ r(u,  ~ )  + 

are surjective. 

(ii) Since f~4 is a module over the sheaf of ring ft~t ("smooth functions" on 

M),  it suffices to prove the following 

12.2 .4 .  L e r a m a .  The sheaf f~~ M is soft. 

Indeed, the lemma implies that  f~4 is soft (as a module over a soft sheaf of 

rings) (see [Go],3.7.1), and since M is paracompact ,  it is acyclic ([Go],3.5.4). 

P r o o f  o f  l e m m a .  Since M is paracompact  it is enough to prove the following 

statement .  Each point x E M has a neighborhood U such that  for a~xy disjoint 

closed subsets S, T C M which are contained in U there is f E f ~ ( U )  s.t. f = 1 in 

some neighborhood of S and -= 0 in some neighborhood of T. 

Fix x E M. Let us choose U 9 x such that  Uk := U N Mk "" ~dk is relatively 

compact  in Mk and Uk r Uk+l is the embedding of the plane j~t~dk C ht~d~+ 1 . 

Let S , T  C M be disjoint closed subsets contained in U. Then the intersections 

Sk := S N Uk, Tk := T N Uk are compact subsets in Uk. It is shown in [Go], 3.7 that  

there exists a smooth function fk on Uk such that  fk ~ 1 is a neighborhood of Sk 

and fk = 0 in a neighborhood of Tk. So it remains to choose fk+l on Uk+l so that  

fk+llUk = fk. 

Suppose fk is chosen. Denote again by fk its extension to Uk+l using the 

product  s tructure Uk+l = Uk • ~dk+~--d~. Let ]k+l be a smooth function on Uk+l 

such tha t  ]k+l = 1 near Sk+l and )?k+l ~- 0 near Tk+l. Since Sk+l and Tk+l 

are compact  we can choose a small open neighborhood V of Uk in Uk+l with the 

following property.  Put  W = Uk+l\Uk, and let ~v,~2w be a pari t ion of 1 subject  

to the covering Uk+l = V t3 W. Then the function 

fk+l := ~ v  - fk + ~ w "  ]k+l  

will be equal to 1 in a neighborhood of Sk+l and equal to 0 in a neighborhood of 

Tk+l. Clearly fk+l Ivh = fk which proves the lemma and the proposition. 

12 .2 .5 .  Since the restr ict ion of forms f~t,+~ ~ ftM, commutes with the wedge 

product ,  the de Rham complex ~2~t inherits a natural  multiplicative structure.  By 
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the above proposition, f~ t  is an acyclic multiplicative resolution of CM (see defini- 

tion 12.1). Denote by .AM the corresponding DG-algebra of global sections 

.A M :~-- I~(~~M). 

12.2.6.  Def in i t ion .  Let M '  = lirn M~ be another oo-dimensional manifold and 

f : M ~ M '  be a continuous map. We say that f is s m o o t h  if for each n there 

exists n '  such that f ( M , )  C M~,, and the restriction 

I]M,~ : M n  ~ M~,, 

is smooth. 

Let f : M --~ M I be a smooth map. Then we have a natural morphism f * f ~ t  --* 

f~M, which preserves the product structure and hence defines the homomorphism of 

DG-algebras 

r : .AM' "-'4 .AM. 

12.3. Loca l i za t ion  and global  sect ions .  
In this section and in sections 12.4-6 below all spaces X, Y, . . .  are smooth 

paracompact  manifolds (possibly c~-dimensional) and all maps f : X ~ Y are 

smooth. For a space X, .Ax denotes the de R.ham DG-algebra defined in 12.2.5. 

12.3.1.  Let us define the localization functor 

s : D.ax ~ D(X),  

where D.ax is the derived category of (left) DG-modules over A.x (10.4.1) and D(X)  

is the derived category of sheaves on X. Let M E D.ax. Put  

L 
s  := s174 

let P ~ M be a /C-projective resolution of M (10.12.1, In other words, 

10.12.4.5). 

Then 

f-.x(M) = ~'x | P 

which is the sheaf of complexes (or the complex of sheaves) on X associated to the 
presheaf of complexes 

U ~ a)c(U) | P. 

Note that  s  -~ Cx.  Indeed, A x  is /C-projective as an .Ax-module 
(I0.12.2.3), hence 

~ x ( A x )  = i2x | A x  = S2"x ~- C x .  
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12.3.2. Defini t ion.  Let D be a triangulated category, S E D. 

(i) Denote by D(S) C D the full triangulated subcategory generated by S. 

(ii) Consider "bounded below" direct sums ~ > , ( ~ S [ - i ] ) .  As in 11.1.4 we 

denote them by @+S[-i]. Denote by D+(~S) C D the full triangulated category 

generated by sums ~+S[ - i ] .  

12.3.2.1. R e m a r k .  Let .A be the DG-algebra studied in section 11. Take D = DA 
and S = A. Then D(A) = D~ and D+(~A) = D + (11.1.5). 

12.3.3. P r o p o s i t i o n .  The localization functor induces an equivalence of categories 

and 

Ex : D ( A x ) ~ D ( C x )  

Ex : D+(~Ax)~D+(@Cx) .  

Proof .  We have Ex(.Ax)  = Cx. So to prove the first assertion we only have to 

check that 

Horn/).4 x (.Ax, .Ax[i]) = HomD(x)(Cx, Cx[i]). 

But 

Then 

Homv~ (.Ax, .Ax [i]) = H i (Ax)  = H i (X, Cx ) = HOmD(x)(Cx, Cx [i]). 

Let us prove the second assertion. Let 

M = @+Ax[-i], N = ~+Ax[ - j ]  E D+(@Ax). 

E x M  = ~+Cx[-i],  E x N  = @+Cx[-j] E D+(@Cx), 

since Ex preserves direct sums and the DG-modules M, N ave K:-projeetive. It 

suffices to check that 

HomD~x (M, N) = HomD(x)(ExM, ExN) .  

Obviously, the left hand side is 

H ( ~ j H i - i ( A x ) ) ,  
i 

and the right hand side is 

1-I(H+(X, ~iCx[-i])). 
i 
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So we need to show that  

(*) Hi(X,  OjCx[- j] )  = GjHi-J(  X,  Cx ). 

Since X is a paracompact  locally contractible space, we may use the singular 

cohomology to compute the groups in (*). Namely, 

Hi(X,  Cx)  = Hi(X,  ~ ) ,  

and then the equali ty (*) follows from the universal coefficients formula. This proves 

the proposit ion.  

The last argument  also proves the following 

12.3 .4 .  L e m m a .  Let | E D+(@Cx). Consider its canonical soft resolu- 
tion 

| ~ @+a~:[ - i ] .  

Then the natural map of Ax-modules 

e+Ax[- i ]  --, r (x ,  e+a:~[-i]) 

is a quasiisomorphism. 

12.3 .5 .  In order to define the functor of global sections 

7x : D(X)  ~ DA x 

on the whole category D(X)  we need the notion of a /C-injective resolution (see 

[Sp]). To avoid the use of these resolutions and some other technical problems we 

prefer to work with the bounded below derived category D+(X). So we define the 

functor of global sections 

7x : D+(X) ~ D.4x 

as follows. Let S" E D+(X) be a complex of sheaves. Then the complex of global 

sections of the tensor product  f~x | S has a natura l  s t ructure of a left module  

over .A.x = r ( ~ x ) .  Put  

"rx(S) := r(a:~ | s ) .  

We must  check tha t  fix is well defined on D + ( X ) ,  that  is fix preserves quasiiso- 

morphisms.  Note that  the functor ~)~ OCx ( ') is exact, since we work with sheaves 

of m - v e c t o r  spaces. Also, the complex f~)~ | S" is bounded below and consists of 

sheaves (g~:x @Cx S') m = ~k>ol2kx | sm-k which are modules over the soft sheaf 

of rings ~ :  (12.2.4). Hence they are also soft and therefore acyclic for F, since X 

is paracompact  ([Go],3.5.4). So 7x  is well defined. 
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Note that  

vx(Cx) = r ( a ) r  | Cx) = r ( a x )  = Ax, 

and by lemma 12.3.4 

",/x(@+Cx[-i]) = r ( o + a x [ - i ] )  _~ o+.Ax[-i]. 

Hence 3'x maps subcategories D ( C x ) , D + ( @ C x )  C D + ( X )  to subeategories 

D(,A x ) and D+ (.A x ) respectively. 

12.3.6. Proposi t ion.  The functor 

"Ix : D + ( O C x )  ~ D+(@-4x)  

is an equivalence, which is the inverse to the equivalence 

i f z  : D + ( @ A x )  --* D+(@Cx)  

of proposition 12.3.4. More precisely, there exist canonical isomorphisms of functors 

cr : IdD+(r --~ ?X " if X, 

r : ifX " ?X --* IdD+(r 

Similarly, for D ( C x )  and D ( A x ) .  

P r o o f .  Let us define the morphism a. 

Let M E D+((~.Ax) be /C-projective. Since direct sums O+~4x[ - i ]  are /C- 

projective,  we may (and will) assume that  M i = 0, i < <  0. Then 

i f x ( M )  = f~'x @.ax M E D+(X) ,  

and 

"Yx " if x ( M )  = F(f~x | ( ~ x  | M)) .  

Consider the map  of complexes 

f~'x | (gl'x @.,ix M)T- -~ f t x  | M,  

where m : f~)c | f~)r -* fl)r is the multiplication. We claim that  m | 1 is a quasiiso- 

morphism. This follows from the following lemma. 

12.3.7. Lemma.  Let S" E D(X)  be a complex of sheaves and 

t : ~'x @Cx S" ~ S" 

be a morphism of complexes, such that t(1 | s) = s. Then t is a quasiisomorphism. 
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P r o o f  o f  l e m m a .  Indeed, the inclusion 

i : S" -*  ~ 'X | C x S ' ,  s ~-* l | s 

is a quasiisomorphism, a n d  t �9 i = i d s .  

Since the map  m | 1 is a quasiisomorphism of bounded below complexes con- 

sisting of soft (hence acyclic) sheaves, it induces the quasiisomorphism of left -/Ix- 

modules 

a :  r ( fZx | ( f ix  |  M ) ) 2 , r ( f ~ x  |  M). 

On the other  hand there is the obvious morphism of left . 4x -modu les  

/~ : M --, F ( ~ x  |  M), m ~* 1 | m. 

Final ly  we define a = a -1 �9 

Assume tha t  M = @+.Ax [- i ] .  Then j3 is a quasiisomorphism by lemma 12.3.4. 

Hence a is a quasiisomorphism if M 6 D + ( @ A x ) .  

Let us define the morphism T. 

Choose S" 6 D + ( @ C x ) .  Then 7 x ( S )  -- F(~)~ |  S ' ) .  Choose a quasiiso- 

morphism P ~ 7 x ( S ' ) ,  where P 6 D.ax is a K:-projective .Ax-module.  We have 

f x  �9 7 x ( S ' )  = s  = f~x | P 

with the morphism 

1 | a : f~x GAx P -* f~x | F(f~x | S'). 

Compose it with the mult ipl icat ion map 

b : f~'x | r(ax | s )  ~ ax  | s 

w |  |  ~ w w '  |  

to get the morphism 

b. (1 |  : L : x ' T x ( S ' )  -* ~ x  @Cx S" 

On the other hand we the obvious quasiisomorphism 

c : S" --* ~)r | S '  

s ~ l |  

So we define the morphism r as the composition 

T = C  -1  �9 b. (1 @ a ) : f x  "Tx --~ I d .  
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Assume that  S" = @+Cx[-i]. Then 7 x ( S ' )  is quasiisomorphic to @+.Ax[-i] 

( lemma 12.3.4), which is/C- projective, so we may take P = @+.Ax[- i ] .  Then the 

map 

b. (1 | a ) :  f /x  | ( @ + A x [ - i ] )  --* t) x | (@+Cx[-i]) 

is an isomorphism. Hence v is a quasiisomorphism if S" E D+(@Cx). This proves 

the proposit ion.  

12.3 .8 .  R e m a r k .  All the results in this section 12.3 axe valid for general paxacom- 

pact  loeally contractible spaces X and a DG-a lgebra  F(X,  ~")  for a mult ipl ieat ive 

acyelic resolution 3 r" of C x  (the sheaf ~0 must  be soft and the basic ring R must  

be a field). In par t icular  we never used the fact that  J l x  was supercommutat ive.  

12.4. Appl icat ions  to classifying spaces. 
We want to apply  the results of previous sections 12.1-12.3 to "smooth models" 

of classifying spaces. 

Let G be a Lie group. 

12.4 .1 .  D e f l n t i o n .  A s m o o t h  classifying sequence for G is a sequence of closed 

embeddings 

M0 C M 1 C . . . ,  

where Mk is a free k-acyclic smooth paxacompact G-space,  Mk C Mk+l is all 

embedding of a submaxdfold and dim(Mk+l ) > dim(M~). 

Let M0 C M1 C . . .  be a smooth classifying sequence for G. Denote the 

quotient G\Mk = BG~. Then we get a sequence of closed embeddings of smooth 

manifolds BGo C BGa C . . . .  The classifying space BG = lim BGk is a smooth co -  

dimensional  manifold (12.2.1). We call is a s m o o t h  mode l  br a smooth classifying 

space. 

12.4 .2 .  L e m m a .  Assume that the Lie group G has one of the following properties 

(a) G is a linear group, i.e. a closed subgroup of VL(n,~:t) for some n. 

(b) G has a finite number of connected components. 

Then there exists a smooth classifying sequence for G. 

P r o o f .  (a) Let Mk denote the Stiefel manifold of n- f rames  in ~ , + k .  Then the 

sequence 

M0 C M 1 C . . .  

is a smooth classifying sequence for G. 

(b) Let K C G be a maximal  compact subgroup. 

By a theorem of G. Mostow G / K  is contractible. By the Pe ter -Weyl  theorem 

K is l inear and so by (a) there exists a smooth classifying sequence for K 

Mo cM~ C . . . .  
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Then 

G XK Mo C G XK MI C . . .  

is a smooth classifying sequence for G. This proves the lemma. 

12.4.3.  In the rest of this section 12.4 we will consider only c o n n e c t e d  Lie groups. 

Let G be such a group, and B G  be its smooth classifying space (12.4.1). The 

derived category Db,c(pt) of G~equivariant constructible sheaves on pt is canonically 

equivalent to the full subcategory of Db(BG) consisting of complexes with constant 

cohomology sheaves of finite rank (see 2.7.2,2.8). This last category is generated by 

the constant sheaf CBG. In other words 

(1) D~,c(pt) = D(CBG). 

But by (12.3.3) D ( A B a )  "~ D(CBG), where A s c  is the de Rham algebra of the 

smooth space BG. So we obtain an equivalence of triangulated categories 

(2) D ( A B a )  ~- Db,~(pt) 

We will go one step further and make the left hazld side of (2) more accessible. 
It is known that the cohomology ring H*(BG,  Kt) is isomorphic to a polynomial 

ring ~[X1, .  �9 Xn], where generators Xi have various even degrees. Denote this ring 

by Aa  and consider the DG-algebra 

as in section 11. 

12.4.4.  P r o p o s i t i o n .  

AG := (Ac,  d = 0) 

There exists a homomorphism of DG-algebras A a  --~ ABG 

which is a quasiisomorphism; hence it induces an equivalence of categories DAc ~-- 

DABs (10.12.5.1). This equivalence is unique up to a canonical isomorphism. 

P r o o f .  Choose differential forms r 1 6 2  E ABG which represent cohomology 

classes X 1 , . . . , X , .  Since the degrees of Xi 's  are even the forms r generate a 

commutative subalgebra in .ABG. Hence we may define a homomorphism 

r : A a  ~ A B a  , Xi  ~ r , 

which is clearly a quasiisomorphism. It defines an equivalence of categories 

r : DAa-~DAsc .  

Let r  r  E .ABC be a difference choice of forms which induces the corre- 
sponding equivalence 

r : D.aG-T-*D.aBa. 
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We will show that functors r r are canonically isomorphic. 

Since r r represent the same cohomology class we can choose wi E .ABa such 

that dwi = r - r Let C C ABa be the DG-subalgebra generated by {~i, r  wi}, 

and 7 : C ~ ~4BG be the inclusion. We have two natural embeddings 

a,Z :Ac--* C, 

where ~(Xi) = r /3(Xi) = r Consider the induced equivalences of categories 

a* , /~* :DA a - * D e ,  7 * : D c ~ D A , a .  

Since r = 7* �9 a* , r = 7* " ~* it suffices to construct an isomorphism of 

functors a*~/~*. 

Let 6 : C ~ .AG be the homomorphism 6(r = 6(r = Xi ,  6(wi) = 0, and let 

6* : D e  ~ D~4a be the corresponding equivalence. Note that 6* �9 a* = id = 6* �9 fl*. 

Hence functors a*,/3* are canonically isomorphic. 

To complete the proof of the proposition we must show that a different choice 

of forms wi will produce the same isomorphism r162 We will only sketch the 

argument since it is similar to the one just given. 

Let w~ be a different choice of forms that produces the DG-subalgebra C' C 

A B a .  Since d(wi - w~) = 0 and the odd cohomology of B G  vanishes we can 

find ~i such that d~i = wi - w~. Let E C fltBa be the subalgebra generated by 

{r r wl, w[,rli}. Now all algebras A a ,  C, C' embed in E and it suffices to prove 

the equality of two morphisms in DE, which is done similarly. This proves the 

proposition. 

12.4.5.  Composing the equivalence of 1.2.4.4 with the localization functor of 12.4.3 

we obtain the functor 

E a  := DAa ~ D ( B G )  

which induces an equivalence 

~ : D(Aa)-%DbG,c(pt). 

But D(.A~) is the category D f  a studied in detail in section 11 (see 11.1.5). We call 

the obtained equivalence 
f~a: D f~ -%D~,c (p t )  

the localization. 

12.4.6.  P r o p o s i t i o n .  The localization functor  
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L 
is an equivalence of t-categories, which commutes with functors | RHom, D and 
the cohomological yunctor H : D~o --* ModAa. 

hi ,>0 p i  P r o o f .  Let P E D/Aa be a minimal K~-projective (11.4.6). Then P �9 ~'.4g ~e~ = 
Df , <_o 0, i < 0 and P �9 via ~ P is gener~ed by elements in nonpositive degrees (see 

prop. 11.4.14). Note that  s = Csa. H e n c e / : a  preserves the subcategories 

D ->~ and D -<~ and so is an equivalence of t-categories. 

Let M, N �9 D~6 be two E-projective DG-modules. Then 

L 
EG( M|  = ~~BG GAG ( M @via N). 

Define a mctrphism of complexes 

L 
0 : s  |  s  --* s174  

by the formula 

0 :  (w @ m) | (w' |  ~-* (-1)deg(m)deg(w')ww' | m | n. 

Since 0 is a quasiisomorphism if M = N = vie, it is an isomorphism of functors. 
L 

Hence s  commutes with | 

To prove the statement for RHom we need the following. 

12.4.7.  L e m m a .  Let M, N �9 DIAa be K-projective. Then Horn (M,N)  is also so. 

P r o o f .  Since the subcategory of/C-projectives in K:/Aa is generated by via, it 

suffices to prove the lemma for M = vie[i], N = via[j], in which case it is obvious. 

Let M, N �9 D/~a be/C-projective. Then by the lemma 

t~G( RH om( M, N ) ) = ~ BG | Horn(M, N ). 

Let i : /~G(N) ---* I be an injective resolution. Then 

Rgorn(f_,G(M), s = Horn(~BV | M, I). 

Define a morphism of complexes 

,~ : s  N))  --* RHorn(s  

by the formula 

6(w | f )(w'  | rn) = (-1)deg(/)deg(")i(ww ' | : (m)  ). 
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It is a quasi isomorphism if M = N = .Aa, hence is an isomorphism of functors. 

So /:-a commutes with RHom. Since ~a(.Aa) = CBG, it also commutes with the 

dual i ty  D. It remains to t reat  the cohomological functor H.  

Let M E D/~a be/C-project ive .  We have a map of DG-modules  

7 :  M -* r ( a B o  | M )  = P ( s  

m ~  l |  

It is a quasi isomorphism if M = .Aa, hence is so in general. This proves the 

proposit ion.  

12.4 .8 .  P r o p o s i t i o n .  The localization functor l:a : DA~ --* D(BG) induces an 
equivalence of full subcategories 

Ea : D + -~D+(pt) .4G 

L 
(see 11.1,11.1.5). It commutes with | and H. 

P r o o f .  We know that  D + is generated by bounded below direct sums ~ + . A a [ - i ]  .,to 
(11.1.5). If M = ~+,4a[i], N = @+Aa[j ]  E D+ a are two such modules then 

HomD., a (M, N)  = HOmD(Ba)(s s 

by proposi t ion 12.3.3, so s  is an equivalence of D + with its essential image, in .Aa 
D(BG). Since s  C D+(pt) it remains to show that  any complex S E 

D+(BG) with constant  cohomology sheaves lies in L a ( D +  ). 
Let S be such a complex. Then S is the direct limit 

S = lim r<,S. 

Each v < , S  lies in s  , say r_<,S _~ s for a /C-projective M , .  

modules Mn form a corresponding direct system in D+ a and if we put  

The 

M := lim M,, E D.ac,  

then s  --- S, since s preserves direct limits. It only remains to show that  M 

lies in D + . 4  a " 

Note tha t  r<,+lS -- C(H'+a(S)[-1] -~ ~'<nS). Hence we can put  Mn+l to be 

M,+I = C( Hn+I( S)[-1] | ~4a ~ Mn), 

so tha t  if M~ -- 0 for i < m, then the same is true for Mn+l .  But then clearly 

M = lirn Mn = UnMn E D+~ 
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This proves the first part of the proposition. 

The second part is prove similarly to proposition 12.4.6 above using lemma 

12.3.4. 

12.4.9. Corollary.  The subcategory D+(pt) C D(BG) coincides with D+(GCBG). 

Proof .  This follows from 11.1.5, 12.3.3, 12.4.8. 

12.4.10.To conclude this section we want to show that the constructed equivalences 

s : DIAG -* D~x(Pt) 

s  : D + Aa ~ D+(pt) 

do not depend on the choice of a smooth model for BG. 

Let 

Ma C M2 C . . .  

M; c M; c . . .  

be two smooth classifying sequences for G giving rise to smooth models BG, BG'. 

Consider the product sequence 

Ml X M~ c M2 x Ms c ... 

which produces the smooth model BG". We have the diagram of smooth maps 

BG" 
p /  \ p '  

BG BG' 

and the corresponding homomorphisms of DG-algebras 

~BG" 
r  r 

.ABG ABG, 

So we may assume that BG' = BG". Then the required result follows from the 

commutativity of the functorial diagram 

D.aBa,, ~ D(BG") 
r Tp* 

DABa f* D(BG), 

which is a special case of proposition 12.5.1 below. 
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12.5. Localization and inverse image. 
We keep the notations of section 12.3. Let f : X --~ Y be a (smooth) map. It 

induces functors of inverse and direct image f* : D(Y)  ~ D(Z) ,  f ,  : D(X)  --* D(Y)  

(see [Sp]). On the other hand we have the corresponding homomorphism of DG-  

algebras r : Jly --* A x  which induces functors r : DAr --* DAx, r  : A x  --* DAy. 

It is natural to ask if the above functors are compatible with the localization (see 

12.3), i.e. if the following diagrams are commutative. 

(1) 

ff-'X D.4 x ---* D ( X ) 

r  Tf*  

s  
D.4v ~ D(Y)  

(2) 

DAx ~ D(X)  

r +f, 
s  

D.av ~ D(Y)  

Here we discuss the inverse image. The direct image is discussed in the next section 

12.6. 

12.5.1.  P r o p o s i t i o n .  The diagram (1) is commutative. More precisely, there 

exists a canonical isomorphism of functors f * .  f~Y-%s r 

P r o o f .  Let N E D.4y be K:-projective. Then r  = A x  | N E DA x is also 

/C-projective. So 

Z:x �9 r  = f i x  | ( A x  | N)  = f i x  | N. 

Also ~ y ( N )  = f ly  | N mad 

f* . s  = f*( f ly  @.4v N)  

Given open subsets U C X, V C Y such that f (U)  C V we have the natural map 
of right .Ay-modules f l y (V)  ~ f ix (U)  which induces a quasiisomorphism on the 

stalks 

for each x E X. We get the corresponding map of complexes 

f*( f lY | N)  ~ f i x  | N 
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which is also a quasiisomorphism on stalks since N is E-projective. This proves the 

proposition. 

12.6. Local izat ion and the direct image.  
We keep notations of sections 12.3, 12.5. Let f : X --* Y be a map, and 

r : A y  ---* A x  be the correspondong homomorphism of DG-algebras. Recall (12.3.3) 

the equivalences 

s : D + ( @ A x )  ~ D+(@Cx) ,  

s  : D+((~Ay)  ~ D+(GCy) .  

12.6.1. P r o p o s i t i o n .  Assume that the direct image f ,  maps D+ ( @Cx ) to D+ ( OCy ). 

Then r  maps D+ ( r  to D+(@Ay)  and the following functorial giagram is com- 

mutative 
n + ( @ A x  ) C x D+(@Cx ) 

r  s  
D+(@Ay)  ~ D+(@Cy)  

P r o o f .  Recall that  the functor 

~,,y : D+(@Ay)  ~ D+(@Cy)  

has the inverse 

7Y : D+(@CY) --* D+(@AY)  

with canonical isomorphisms 

a : Id  ~ 7Y �9 s  

r : s  . T y  ~ Id  

(see 12.3.6). So it suffices to construct an isomorphism of functors 

a : ~b, ----~ Ty . f ,  . ~ x 

from D+(C2Ax) to D+((~Ay) .  

Let M E D + ( • A x )  be E-projective. We may (and will) assume that M i = 

0, i < <  0. Then r  = M considered as an My -module and 

7v"  f*" f~x (M)  = 7 v ( f , ( • x  | M)) 

= F(~y @cv .f,(~x | M)) 
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(Here we use the fact that  ~ x  | M is bounded below and consists of soft sheaves 

on a paracompact  space, hence acyclic for f . ) .  

The multiplication map 

f ly  | f . ~ x  -* f , ~ x  

induces a quasiisomorphism of bounded below complexes of soft sheaves 

9 v  @ f . ( a x  N.Ax M) ~ f .(~tx NAx M) 

(lemma 12.3.7) and hence a quasiisomorphism of left Ay-modules  

a : ~v" f," Z:x(M)-~r(f,(~x | M) 

= r ( ~ x  |  M ) .  

On the other hand the canonical morphism of .Ax-modules 

b : M ~ r ( ~ X |  m H l |  

is a quasiisomorphism, since M E D+(@Ax) (12.3.4). Hence we may put 

~ = a  -1 .b. 

This proves the proposition. 

12.7. A p p l i c a t i o n s  t o  Da(pt). 

2.7.0.  Let r : H --~ G be a homomorphism of c o n n e c t e d  Lie groups. Let 

M0 c M 1 C . . .  

N0 c N I C . . .  

be smooth classifying sequences for H and G respectively (12.4.1). Then 

Mo x No C M1 x N 1 c  ... 

is also a smooth classifying sequence for H and projections 

Mi • Ni ~ Ni 

induce a smooth map of the corresponding smooth models 

f : B H  ~ B G  
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Recall that we have canonical identifications of DbH,c(pt),D+H(Pt ) as certain full 

subcategories of D+(BH), and similar for G (2.7.2, 2.9.5). Consider 

pt ~ pt 

as a C-map. Then we get the functors 

Q*: D~,c(pt) ~ DbH,:(pt) 

Q*: D+(pt) - ,  D+(pt) 

Q , :  D+(pt) --, D+(pt) 

which under the above identification coincide with 

f * :  D+(BG) --, D+(BH) 

f , :  D+(BH) --+ D+(BG) 

respectively (6.11).Recall that we have the equivaienees of categories 

s : n + . •D+(p  t) 

s162 : D + -%D+(P t) Ac 

(12.4.8). The map f induces a homomorphism of the cohomology rings Ac --* AH 
and hence two functors r : D+Ac --* DA,,+ r : D + ,  ~ D+Ac" 

(1) 

and 

(2) 

Consider the functional diagrams 

n ~ ,  ~ n+(pt) 

r  TQ* 

D + s n~ ~ D+(P t) 

D+4x s --~ n+H(Pt) 

r  SQ,  

D +  ~ n+G(pt) 

12.7.1. P ropos i t i on .  The above diagrams (1) and (2) are commutative. 
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Proof .  Recall (12.4.5) that the localization functor s is the composition of the 

equivalence DAH-U-~DA. ~ (12.4.4) with the localization ~ B H  : D.ABH ~ D(BH) 
(and similar for G). 

We have the obvious commutative diagrams 

and 

DA. -%-% D.aB. 

r Tr 

DAG -% DABc 

D.a , -% D.a , , 

~.~ ~ ,  

DA~ -% D.ase. 

Hence the commutativity of (1) follows from 12.5.1. 
By the corollary 12.4.9 the category D+(pt) coincides with D+(GCBH) (and 

similar for G). Hence f ,  maps D+(@CsH) to D+((~CBG) and therefore by propo- 
sition 12.6.1 the following diagram is commutative 

D+(| ~ D+(pt) 

r  +Q* 

D+(@Asc) ~ g  D+(pt) 

is commutative. But D~ H = D+(@.AH) (11.1.5) and similar for G. Hence the 
diagram (2) is also commutative which proves the proposition. 

Let us now summarize the results of 12.4.6, 12.4.8, 12.7.1 in the following 

12.7.2. Main T h e o r e m .  Let G be a connected Lie group, A~ = H(BG). Let 
~4a = (AG,d = O) be the corresponding DG-algebra. 

(i) There exists an equivalence of triangulated categories 

Ea : D+G-%D+(pt) 

L 
which is unique up to a canonical isomorphism. It commutes with | and 
the cohomology functor (-) H ModAa. 

(ii) The above equivalence restricts to the functor between the full subcategories 

Es : DIAc-% D~,c(pt), 
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L 
which is an equivalence of t-categories commuting with | RHom, D and 

H. 

(iii) Let r : H --* G be a homomorphism of connected Lie groups. It induces 

a homorphism of rings r : AG --* AH and hence the fiunctors of extension 

and restriction of scalars 

r  D+ a ~ 0 +  

r  D +  ~ D+ a. 

Let Q*: D+(pt) --* D+H(Pt) and Q . :  D+H(Pt) --* D+(pt) be the ]unctors of 
the inverse and direct image corresponding to the C-map 

pt --~ pt. 

Then under the identification of (i) we have r -- Q*, r  = Q.. 

The above theorem gives an algebraic interpretation of the category DG(pt) 

and is our main tool in applications. 



13. Equivar iant  cohomology.  

13.0. Let G be a Lie group. Let X be a C-space and p : X --~ pt be the map to a 

point. It induces the direct image functor 

p . :  D+(X) --, D+(pt), 

where the category D + (pt) can be naturally realized as a full subcategory of D + (BG) 
for the classifying space BG (2.9.5). Put Aa = H(BG, R). Notice that for S �9 

D(BG) its cohomology H(S) = H(BG, S) is naturally a graded Aa-module. 

13.1. Definition. Let F �9 D+(X). The G-equivariant  cohomology  HG(X,F) 
of X with coefficients in F is by definition the graded Aa-module 

Ha(X, F) := H(p.F). 

13.2. Definition. Assume that X is nice (1.4) and let F �9 D~(X). The G- 

equivariant cohomology Ha,c(X, F) with compac t  suppor t s  of X with coefficients 

in F is by definition the graded Aa-module 

HG,r F) := H(p!F). 

13.3. Certainly the object p.F �9 D+(pt) (or p~F) carries more information than 

the AG-module Ha(X, F) (or HG,~(X, F)), and we usually prefer to work with 

the triangulated category D+(pt) rather than with the abelian one ModAa. In 

particular, if X is a pseudomanifold and we work with the constructible category 

D~,c(X), then we interpret the formula 

D.p! ~-p. .D 

as the equivarlant Poincare duality. Notice that in case of a connected Lie group 

G this formula relates the Verdier duality in D~,c(X ) with the "coherent" duality 

in D~a ~ DbD,c(pt) (see 12.7.2(ii)). 

For the rest of this section 13 we put R = /~ .  

13.4. Example .  Let G be a complex linear algebraic group acting algebraically on 

a complex algebraic variety X. Consider the G-equivariant intersection cohomology 

sheaf ICa(X). We denote by 

IHa(X) := Ha(X, ICa(X)) 

IHa,c(X) := Ha,c(X, ICa(X)) 
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the e q u i v a r i a n t  i n t e r s e c t i o n  c o h o m o l o g y  (resp. with compact supports)  of X.  

Assume that  X is proper.  Then by the decomposition theorem (5.3) the direct 

image p, I C G ( X )  = p~ICG(X) is a direct sum of (shifted) local systems on BG. If 

fur thermore the group G is connected then each local system is constant,  and we 

conclude that  I H a ( X )  is a free AG-module  with the graded basis I H ( X ) ,  i.e. 

I H c ( X )  : A c  | I H ( X ) .  

13.5.  Let r : H --~ G be a homomorphism of Lie groups. It induces a map of 

classifying spaces r : B H  ~ B G  and hence a map on cohomology AG --* AH. For 

an AH-modu le  M we denote by AG M the corresponding A a - m o d u l e  obtained via 

the restr ict ion of scalars. It is clear that  for S �9 D + ( B H )  we have 

(*) H(-~,S)  = AGH(S).  

Let f :  X ~ Y be a C-map and F �9 D + ( Z ) .  Let Q / , F  �9 D + ( Y )  be its direct 

image. The following formul a immediately follows from (*) and 6.12.2 

A c H H ( X ,  F)  = HG(Y~ Qf ,  F). 

13.6.  E x a m p l e .  Let f : X --* Y be a principal G-bundle .  Then we know that  

Q,Cx ,G  = Cy.  Hence by the above formula we have an isomorphism of graded 

groups 

H a ( X )  = H ( Y ) .  

Of course, HG(X)  has more structure,  namely the action of generators of A e  (the 

Chern classes of the G-bundle  X -* Y). 

13.7.  E x a m p l e .  In the previous example assume that  Y is a compact manifold 

and G = S 1. Assume moreover that  the manifold X is orientable. We want to make 

the equivariant Poincare duali ty explicit in this case. Consider the map p : X --* pt. 

We have As,  ~-/t~[x] and identify D~,,c(pt ) = D~s ' (12.7.2). Since X is compact  

we have p, Cx ,s l  = p!Cx,s l .  Also DCx , s ,  = Cx,s ,[dx] ,  dx  = dimX,  since X is 

orientable.  Hence the Poincare duali ty formula 

D .  p:Cx,s~ = p. " D C x , s ,  

becomes 

D . p, Cx,s~ = p, Cx ,s ,  [dx]. 

Put  p, Cx , s t  = M 6 DIAs,. Since H ( M )  has cohomological dimension < 1 as an 

As1 - module,  it follows from 11.3.3 that  M = H ( M ) ,  i.e., the D G - m o d u l e  M has 
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the zero differential. Note that  in fact M is a torsion module,  since M = H(Y, ~ ) .  

Hence by 11.3.1(i) we have 

D M  = Ext~s , (M, A s,  )[-1]  

So the Poincare dual i ty  is a canonical isomorphism for the As, - module 

g s , ( X )  

Hsl (Z)  = Ext~s  ` (Hs, (X),  As,  ) [ -dx  - 1] 

13.8.  R e m a r k .  Replace in the previous example S 1 by an arb i t ra ry  connected 

compact  Lie group K of rank r. If we knew that  the DG-modu le  p . C x , g  E DfAK 

had zero differential (which is probably  true), then we would obtain the similar 

formula 

HK(X)  = E x t ~ K ( g a - ( Z ) ,  A K ) [ - d x  - r] 

using the same argument.  

13.9.  E x a m p l e .  Suppose we are in the si tuat ion of Theorem 9.1. Namely, let 

0 --~ K --* H -~ G --~ 0 be an exact sequence of complex linear reductive algebraic 

groups. Let f : X -* Y be an algebraic morphism which is a C-map.  Assume tha t  

the following conditions hold. 

(a) The group K acts on X with only finite stabilizers. 

(b) The morphism f is affine and is the geometric quotient map by the action 

of K (all K--orbits  on X are closed). 

Then we know that  Q. ICH(X)  = IHe(Y)[dg],  where dg = dirn~K = d x - d y .  

Hence as in 13.5 above we obtain an isomorphism of A a - m o d u l e s  

AG IHH(X)  = IHa(Y) [dx  - dy]. 

13.10. Borel's interpretation of A~. 
Let G be a compact  Lic group and T be a maximal  torus in G. Let t be the Lie 

algebra of T and W be the Weyl group W = N ( T ) / T .  The group W acts on t and 

hence also on the ring of polynomial  functions S(t*) on t. By the classical result  of 

A. Borel ([Bo3]) we have a canonical isomorphism of graded algebras 

Aa = H(BG) ~_ S(t*) W, 

where linear functions in S(t*) are assigned degree 2. 

If G is connected then S(t*) W is a polynomial  ring and S(t*) is a free S(t*) W-  

module,  since the group W is generated by reflections. Let U C G be a closed 

subgroup with a maximal  torus T t C U and the Weyl group W ~. The d iagram of 

inclusions of groups 
T I ~ T 

U --* G 
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induces the diagram of classifying spaces 

BT I ~ BT 

l l 
BU ~ BG 

and the corresponding diagram of cohomology rings 

AT, e- AT 
T T 

Au ~ Aa. 

Borel showed that this diagram coincides with the natural diagram 

S(e*) ~ S(t*) 
t T 

s ( t , , ) ~ '  ,_  s ( t * )  W 

under the above identification (the horizontal arrows in the last diagram axe restric- 

tions of functions). 

Let G be a Lie group with finitely many components and K C G be a maximal 

compact subgroup. Then topolically 

G~_K • Et d. 

Hence AG = AK and the above picture can be applied to AG. 

13.11. E q u i v a r i a n t  cohomology  of  induced  spaces .  

13.11.1. Let G be a group and r : H ~ G be an embedding of a closed subgroup. 

Let X be an H-space and Y = G x H X be the induced G-space. The inclusion 

f : X  ~-* Y i s a r  Let F e  D+(X) a n d Q f . F � 9  D+(Y). Then by 13.5 we 

have 

AG HH(F) = HG(Qf.F). 

We want to derive a similax relation for the cohomology with compact supports. So 

let us assume in addition that X is a constructible space (1.10) and that H, G axe 

Lie groups with finitely many components. 

Consider the commutative functorial diagram 

nbH,c(X) q'*-, D~,c(y ) 
p.J, J.p, 

n~Apt) -% nko(pt). 

In order to find a relation between HH,~(F) and Ha,~(Q].F) we need to know how 

functors QI*, Q* behave with respect to duality. 

We denote by dM the dimension of a manifold M. 
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13.11 .2 .  Recall (7.6.3) that  if the group H is connected then there exists a canonical 

isomorphism of funetors from DbH,r to n~ ,~(Y)  

Q f .  . D = ( D .  Qf . ) [dg  -- da]. 

Denote by K ( H )  C H and K(G)  C G the maximal  compact  subgroups of H, G. 

13 .11 .3 .  P r o p o s i t i o n .  Assume that K ( H )  is connected. Then there exists a 

canonical isomorphism of funetors 

Q. . D = (D . Q.)[dK(H) -- dK(a)]. 

P r o o f .  We may (and will) assume that  K ( H )  = H, K(G)  = G. 

Let E be an oc-acyclic  free G-space,  hence also a free H-space .  Then G \ E  = 

BG,  H k E  = B H  and we have the na tura l  fibration 7r : B H  --* B G  with the fiber 

G / H .  Recall that  categories Db,~(pt) and Db,c(pt) are natural ly  identified as certain 

full subcategories in Db(BH)  and Db(BG) respectively. Under this identification 

the functor Q,  is 7r.. 

Consider the G-space  Z = G / H  and its cc-acycl ic  free resolution P = E • Z --~ 

Z. let P = G \ P .  Then D~,~(Z) is identified as a full subcategory in Oh(P).  Notice 

tha t  P = H k E  = B H  and the categories Db,~(Z) and DbH,e(pt) axe identified as 

the saxne full subcategory in Db(-P) = Db(BH).  Indeed, both  categories consist of 

bounded complexes S E Db(-P) with constant cohomology sheaves of finite rank. 

Moreover, the direct image functor 7r.: Db,~(pt) ~ Dbv,c(pt) is then identified with 

the direct image p . :  D~,r  ~ Db,~(pt) for the G - m a p  p:  Z --* pt. 

The space Z is compact,  hence p.  = p! and so by 13.3 

D . p . =  p . . D ,  

where the dual i ty  D on the right takes place in DbG,r So it remains to show tha t  

the equivalence of categories Dba,~(Z) --* DbH,r commutes with the dual i ty  up to 

the shift by dz  = dG - dH. Since the group H is connected this follows from 7.6.3. 

This proves the proposit ion.  

We can now state  our main result. 

13 .11 .4 .  T h e o r e m .  Assume that in the setup of 13.11.1 the group H is connected. 

There exists a natural isomorphism of functors 

Q.  " pT = p~ �9 Qf.[dK(H) -- dK(a) + da - dH] 

from DbH,c(X) to Dba,c(pt). 

In particular for F E DbH,c(X) we have a natural isomorphism of Aa-modules  

AaHH,c(F) = HG,c(QI.F)[dK(H) -- dK(G) q- dG -- dH] 
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P r o o f .  Recall that p! = D �9 p, �9 D. So it remains to apply 13.11.2 and 13.11.3. 

13.12.  Rela t ion  wi th  n o n e q u l v a r l a n t  cohomology .  

13.12.1.  Let G be a Lie group and X be a G-space. Let r : H ~-~ G be an embed- 

ding of a closed subgroup. We want to compare the G-equivariant cohomology of 

X with the H-equivariant  one. 

Consider the commutative diagram 

f = i d  
X --, X 
pl ~p 
pt ~ pt 

where horizontal arrows are C-maps. By theorem 7.3 we have a natural  isomorphism 

of functors 

p , .Q* l=Q• .p ,  

from D+(X) to n+(pt). 

13.12.2.  Coro l l a ry .  In the setup of 13.12.1 assume that the groups G,H are 
connected and identify D+(pt) = D~G,D+H(pt) = D +  (12.7.2(i),(iii)). Then for 
F E D+(X) we have 

L 
p, �9 ResH,GF = JiH| (p,F). 

In particular, if 1t = {e}, then the nonequivariant cohomology H(X,  For(F)) is 
computed from p ,F  E D + by the formula A a  

L 
H(X,  For(F)) = E~| (p,F). 

13.12.3.  R e m a r k .  Let F E D+(X). If we only know the equivariant cohomology 

HG(X, F) then we cannot in general recover the nonequivariant one H(X, For(F)). 
However, we have more information if we work with the DG-module  p . F  E D + 

. 4  G " 

If, for example p .F  E DIAa, then I t (X,  For(F)) is a graded basis of a m i n i m a l  

}C-projective JiG-module P quasiisomorphic to p . F  (11.4.6). 



14. F u n d a m e n t a l  e x a m p l e .  

We analyze the stalk of the equivariant intersection cohomology sheaf at a point 
fixed by a 1-parameter subgroup. 

14.1. Let 0 ~ ~* --- H ~ G ~ 0 be an exact sequence of complex connected 

reductive groups. Let X be an affine complex variety with an algebraic action of 

the group H. Assume that X has an H-fixed point q which is the unique C*-fixed 

point. Assume that q is the attraction point under the (~*-action on X, that is, the 

ring of functions on X is nonegatively graded by characters of r 

Let {q}~-~XJZo :=  X - {q} denote the corresponding closed and open em- 

beddings. Put  F := ICH(X)  and F~ := i 'F E D~({q}), F0 := j*F E DbH(Xo). 
Consider the exact triangle in Dbi_i,c(X) 

(1) i,F~ --* F -* j,Fo 

and its direct image in DbH,c(pt) under the map p : X --* pt 

(2) p,F~ ~ p ,F  -* p, Fo. 

We identify the categories DbH.c(pt) = DIA, (12.7.2(ii)) and denote the DG-  

module p,Fo by M. Consider the canonical exact triangle in D/A, 

(3) (~>0M)[-1] -~ ~<0M - -  M. 

14.2. T h e o r e m .  

(i) The triangles (~), (3) above are isomorphic. 

(ii) The objects r<oM, r>0M E DIA, are free Au-modules with zero differential 
and a basis given by I H ( X )  and the costalk i~IC(X) respectively. 

The proof of this theorem uses the decomposition theorem and the hard Lef- 

schetz theorem. Let us first of all deduce an important corollary. 

14.3. Coro l l a ry .  (i) The costalk F~ is a di rec t  s u m  of (shifted) constant equiv- 
ariant sheaves Cq,H at q: 

Fr = Cq,H | i~'IC(X) 

(i') Similarly for the stalk Fq = i 'F:  

Fq = Cq,H | i* I C ( X )  

(ii) The equivariant intersection cohomology I H ( X )  is a free AH-module with a 
basis IH(X) ,  i.e. 

IHH(X)  = AH | I H ( X )  
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(ii') Similarly for IHH,c(X): 

IHH,c(X) = A s  | IHc(X) 

P r o o f .  (i) and (ii) follow immediately from the theorem; (i') and (ii') follow from 
(i) and (ii) by duality, since all basic functors commute with the forgetful functor. 

14 .4 .  P r o o f  o f  t h e o r e m  14.2 .  

By our assumptions the action of the subgroup ~7" C H defines on X the 
structure of an affine quasihomogeneous cone over the projective variety X = ~7*\X0. 

Note that the group G acts naturally on X and the projection f : X0 ~ X is a 

C-map. 
(i) Let Q0, Q-1 �9 D~n be minimal/C-projective DG-modules quasiisomorphic 

to p , F  and p,F~ respectively, so that the triangle (2) is isomorphic to a triangle 

(2') * Q-1---*Qo --~ M 

By remark 13.12.3 the free AH-modules Q0, Q-1 have bases IH(X)  and i~IC(X) 
respectively. It is known that IH(X)[-1] and i~IC(X)[1] are isomorphic to the prim- 
itive and the coprimitive parts of IH(X)  with respect to the Lefschetz operator on 

X. Hence is particular Q0 is generated in degrees < 0 and Q-1 is generated in de- 

grees > 0. This implies that in the/C-projective module Q = cone(e) = Q0 �9 Q-1 [1] 

we have 

dQQ C mQ, 

where m C AH is the mzLximal ideal. Therefore Q is the minimal/C-projective 
quasisomorphic to M (11.4.7). Moreover, 

Qo = T<oM 

Q_, = (r_>oM)[-l]. 

Hence triangles (2') and (3) are isomorphic. This proves (i). 

(ii) The homomorphism r : H ~ G induces an embedding Aa ~ AH. We 

have (non canonically) 

AH "" AG[A] 

where A has degree 2. 
Consider the C-map f : X0 ~ X. Since r acts with only finite stabilizers, 

Qf. Fo = ICG(X)[1] (9.1(iv)). Therefore 

(*) AGM =- IHa(X)[1] 
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(13.5). The variety X- is projective, so IHa(-X) is a free Aa-module  and 

I g a ( x )  = Aa OR I H ( X )  

(13.4). Therefore we obtain an isomorphism of/R-vector spaces 

(4) ~ OAa M "~ IH(X)[1]. 

Notice that the left hand side in (4) is naturally an/R[A]-module. 

14.5. L e m m a .  Under the identification (4) the action of A on I H ( X )  coincides 

(up to a scalar) with the Lefschetz operator for the projective variety "X. 

Let us postpone the proof of the lemma and finish the proof of the theorem. 

Since the Aa-module  AaH(M) = IHa(X-)[1] is free, ,the AH-module H ( M )  

has cohomological dimension _< 1. So by proposition 11.3.3 the DG-module M has 
zero differential M = H(M).  

Let Pr and CPr  be the primitive and the coprimitive parts of the cohomology 

I H ( X )  with respect to the Lefschetz operator A. By considering the Hilbert poly- 

nomial of the Au-module M we find that it has a minimal projective resolution of 
the form 

O -~ P-  I ~ Po -~ M -~ O, 

where Po = AH |  Pr[1] , P-1 = AH |  CPr[-1]. Hence Cone(~) -= P0 @ P - ,  [1] 
is a minimal/C-projective quasiisomorphic to M. Moreover 

Po = r<oM 

P-1 = (r>0M)[- l ]  

(use Hard Lefschetz for X). Hence P0 = Q0, P-1 = Q-1 and hence Q0, Q-1 have 
zero differential which proves part (ii) in the theorem. 

P r o o f  o f  L e m m a  14 .5 .  

Consider the commutative diagram of group homomorphisms 

~* ~ H 

{e} --, G. 

Since r : H ~ G is surjective the assumption of theorem 7.3 is satisfied. Consider 
the diagram 

x0 Z X 
p l  ~p 
pt -~, pt 
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where the horizontal arrows are the C-maps. Then by theorem 7.3 and proposi t ion 

7.2 the functors of the direct image QI*, Q~*,P* commute with the restr ict ion func- 

tors Res{~},a, 
Res r \u have to prove something about the object 

Res{r - Q~..  p.Fo = ~ | M �9 D~i(Pt). 

But by above mentioned results it is equal to 

Q~. �9 p. �9 Re,s r Fo. 

So we may (and will) assume that  G = {e}, H =~7". 

Let E be an oo-acyclic free~7*-space and~7*\E = B~7* be the classifying space. 

Put  X ~ .  =•'*\(Xo x E). We have natural  projections 

~ f  "~r P r'~,'~* 
( 1 )  A , - . ~ : .  - - ~  . 

If we embed D+.(Xo) C D+(Xw*) then the direct image QI .  : D+.(Xo) ---+ D+(X)  

becomes 7 ,  : D+(Xo~ ") --+ D+(X)  . We know that  7 , C x ~ .  = C~- (9.1(ii)), hence 

(2) H ( X )  = H(X~v.).  

But g ( z o r  ) is a module over H(B~'*) = ~q~[k] via the project ion p in (1); and the 

image of A on H(X-) via the identification (2) above is the first Chern class of the 

(almost)  pr inc ipa lg '*-bundle  f : X0 ---+ X.  This proves the lemma. 

14.6.  C o r o l l a r y .  In the previous setup the natural map of Ag-modules 

IHH(X)  --+ IHH(Xo) 

induces an isomorphism modulo the maximal ideal 

I H ( X )  = ~ | IHH(X)  T+i~ | IHH(XO) 

P r o o f .  Indeed, in the proof of the above theorem 14.2 we saw that  this map is the 

minimal  projective cover 

Hence the assertion follows. 

14.7.  Consider the dual  picture. 

(1') 

P0 --+ M .  

Put  Fq := i * F  and consider the exact triangle 

F [ - 1 ]  --+ i .Fq [ -1 ]  --+ j!Fo 
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which is the dual to the triangle (1) in 14.1. Consider its direct image with compact  

supports  in DbH,c(pt) 

(2') p , F [ - l ]  ---, p, Fq[ - l ]  --* p, Fo. 

Since D F  = F we find that  the triangle (2') is dual to the triangle (2) in 14.1. 

By the above theorem 14.2 the triangle (2) in 14.1 is of the form 

(3) (r>_0M)[-1] ---} r<oM --* M 

where all modules have zero differential. Moreover, the Ag-modules  T>_0M, r<0M 

are free and the diagram (3) is the minimal projective resolution of the AH-module  

M. Hence the dual traingle is 

(3') T>0(DM)[-1]  ---+ T<_o(DM) --+ DM,  

which is also a minimal projective resolution of the AH-module D M  = Ext~x (M, AH) 

(11.3.1(i)). Identifying terms in isomorphic triangles (2') and (3') we find the fol- 
lowing 

14.8. Co ro l l a ry .  The natural map of AH-modules 

(ICx,H)q[-1]---* IHH,~(Xo) 

induces an isomorphism modulo the maximal ideal 

ICX,q[-1] -~. .~ (~A.~ ( fCx,H)q[--1] -~,~ (~A. IHH,c(Xo ). 


