
P a r t  I I I .  E q u i v a r i a n t  c o h o m o l o g y  of  toric varieties. 

15. Toric varieties. 

15.0.  In this par t  we present some applications of the theory developed in par ts  I 

and II. Namely, we work out the "simpliest" case of toric varieties. It turns  out that  

there exists a na tura l  complex which is a resolution of the equivariant intersection 

cohomology (with compact  supports)  of a toric variety. As a byproduct  we obta in  

some applicat ions to combinatorics (see theorem 15.7 below). 

We s tar t  by recalling the notion of a toric variety. Then we define some combi- 

nator ia l  s t ructure  (the minimal  complex) on the fan corresponding to a toric variety. 

After that  we s tate  our main result about  this s tructure and its relation with the 

equivariant intersection cohomology. The rest of the text is devoted to the proof of 

the main  theorem 15.7. 

15.1. Rev iew  of  toric varieties. 

We recall some basic notions and results in the theory of toric varieties. For 

the proofs the reader  is referred to [Dan] or [KKMS-D]. 

Let T = (~?.)n be a complex torus of dimension n. Let A := Hom(~'*, T) 

2~ '~ be the group of 1-parameter  subgroups in T. Denote by N = A |  ~ the 

corresponding real vector space of dimension n. Note that  N can be identified with 

the Lie a lgebra  of the compact torus (S 1)n C (~.)n.  

Let Y = y n  be an algebraic variety. We say that  Y is a toric variety (or a 

T- to r ic  variety) if T acts on Y and Y contains a dense orbit  isomorphic to T (this 

implies tha t  the number  of T-orb i t s  in Y is finite). 

A normal  toric varieiy Y is described combinatorial ly by a fan  Cy = �9 in N.  

Recall tha t  a fan ~ is a collection r = {a} of finitely many rational (with respect 

to the lat t ice A C N)  c o n v e x  p o l y h e d r a l  cones  a which intersect along common 

faces, such tha t  if a E �9 and r is a face of ~ then also r E ~.  

In tha t  description Y is a f i lne  if ~ consists of a unique cone c~ together  with 

its faces and X is c o m p l e t e  if U~e~a = N. 

The  orbits  O of T in Y are in 1 - 1  correspondence with the cones a E ~.  A cone 

a E ~ corresponding to an orbit  O will be denoted by a o ,  and vice versa, we denote 

by (9~ the orbit  corresponding to a cone a E ~.  We have din~(9 = n - d i m ~ ( a o ) .  

More precisely, the subspace of N spanned by a o  is the (real par t  of) Lie algebra 

of the stabil izer of O. We have (9t C (9 if and only if ar C a o , .  

15.2.  F ix  a torus T = (~'*)". Let A : ~ [ x l , . . . , x , ]  be the ring of polynomial  

functions on N.  We consider A as a graded ring, where deg(xi)  = 2. Let m C A be 

the maximal  ideal. For a cone a C N denote by A~ the (graded) ring of polynomial  

functions on a. The restr ict ion of functions defines the ring homomorphism A ---, A~. 

F ix  a fan ~ = {a} in N (not necessarily rational) .  
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Consider a complex 

/C : 0 ~ / C - "  0-" E_n+ l  o--+~ 0-1 /Co 

of graded A-modules ,  where/C - i  is a direct sum of terms/C~ for a E r d ima  = i: 

/C--i ~ ~d ima=i /Ccr .  

Assume tha t  each/Co is a free A~,-module, i .e . , /C,  is a direct sum of (shifted) topics 

of A , .  

We assume that  the differential 0 maps /C~ to ~*c~/C*. Let rr E 4' be a 

dimension i. Denote by 

a; "~+~ /Co ' / C , - - - ,  . . . - - ,  - - - ,o  
dirn'r=i--1 

the "restrict ion" of the complex/C to the cone a with its faces. 

15.3.  D e f i n i t i o n .  A complex /C as above is called m i n i m a l  if it satisfies the 

following conditions 

(a) /C o = E/[n], i.e. it is the A-module  Et = A / m  placed in degree - n .  

(b) Let I~, = kerO~ i+1 in the complex/C(a) .  Then the differential 0~ -i induces 

an isomorphism of Et-vector  spaces 

O~ i :/colm/c~,Z~I~lmI~. 

One can construct  a minimal  complex by induction on the dimension of a. 

15.4.  L e m m a .  Let/Ct;/C,, be two minimal complexes. Then they are isomorphic 
(noncanonically). 

P r o o f .  The  proof  is essentially the same as that  of the uniqueness of a minimal  

project ive resolution. Namely, one constructs an isomorphism between/C ~ and /C"  

step by step by induction on the dimension of a. 

15.5.  R e m a r k .  A minimal  complex/C is by definition "locally" exact (except in 

degree - n ) ,  i.e., imO;  i = kerO~ i+1 for all a. Hence the exactness of/C a t / c - i  is 

equivalent to the kernel ker 0 - i  being the sum of local kernels ker O~ i, d ima  = i. 

15.6.  Note that  the  ring A is canonically identified with the cohomology ring 

AT = H(BT,  ;It) (13.10). Hence in case of a rat ional  fan 4, one may hope tha t  the 

minimal  complex has a meaning in terms of the T-equivar iant  cohomology of the 

corresponding toric variety X.  This is so indeed. 
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15.7.  T h e o r e m .  Let q~ be a rational fan in N,  corresponding to a normal toric 

variety X .  Assume that �9 is complete or consists of a single cone of dimension n 

together with its faces. Then the following hold. 

(i) The minimal complex is e x a c t  except in degree - n .  

(ii) There is an isomorphism of A-modules 

Ker  0 -~ ~_ IHT,c(X) 

(iii) The free A,-module K., has a graded basis isomorphic to the stalk IC(X)lo. 
of the intersection cohomology sheaf I C ( X )  on the corresponding orbit Oa C X .  

15.8.  R e m a r k s .  1. The assumptions on the fan (I) in the theorem mean that  the 

corresponding variety X is complete or affine with a (unique) T-f ixed point. In 

these cases we know that  IHT, c(X) is a f ree  A-module  with a basis IHc(X)  (see 

13.4 and 14.3(ii')). Hence by (ii) in the theorem we get 

Ker 0 -~ ~ A | IH~(X). 

2. Assume that  the fan ~5 is simplicial. Then the variety X has only quotient 

singularities, i.e., I C ( X )  = Cx.  Then from (iii) we get/Ca ~- A~,. Hence a minimal  

complex is isomorphic to the complex of functions, i.e. K2~ = A~ and 0 is the 

restr ict ion of functions with 4- sign depending on some chosen orientation of the 

cones a. Can the reader check directly that  this complex of functions is exact 

except a t / C - " ?  

3. We will prove the theorem in two steps. First  of all we will construct  a 

certain c a n o n i c a l  "geometric" complex /; of A-module  coming from the variety 

X and prove that  it is a resolution of IHT,c(X). Then we will prove that  [ is a 

minimal  complex. We know no other way of proving that  a minimal  complex is 

exact (away from K; -n )  except by interpreting it geometrically as the complex s 

4. The complex L; mentioned above provides a n a t u r a l  resolution of IHT,c(X). 
Assume, for example,  that  a group I '  acts on the space N by automorphisms of the 

lat t ice A and preserves the fan q~. Then r also acts on the toric variety X and hence 

on its cohomology IHJX). It is sometimes easy to compute the (graded) character  

of F on each te rm/2  - i  of the complex/3 (for example, if the fan q~ is simplicial). This 

provides the charater  of F on the equivariant intersection cohomology IHT,~(X). 

But IHT,c(X) is a free A-module  with the basis IH~(X). Hence from the character  

of I" on I H T , J X )  one can find the character of F on IHc(X).  

Here is an example. Let T be a maximal  torus in an algebraic group G. We 

have the (simplicial) fan ~5 of the Weyl chambers in N. The Weyl group W acts 

on the fan �9 and hence on the corresponding toric variety X.  The above method 

a l lows  o n e  to compute the character of W on the cohomology H ( X )  (see [DL]). 
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15.9. C o n j e c t u r e .  The statement (i) in the theorem still holds if we drop the 

assumption on the rationallity of the fan (I). 

15.10.  P r o o f  of  T h e o r e m  15.7. 

Consider the following filtration of X by closed subsets 

O = X  -1 C X  ~ c X  1 C . . .  C X  n = X ,  

where X k := ]_IdimO<k O , k = - -1 ,O ,1 , . , , , n .  

Put  U k+l := X - X k, so that U n+l = 0, U ~ = X and U" = T is the dense 

orbit in X. Let Z k := X k - X k-1 = HdimO=k O. 

Denote by 
jk : U k "-~ X, 

ik : Z k ~-* X 

the open and the locally closed embeddings. 

Put  F = I C T ( X )  - the T~equivariant intersection cohomology sheaf on X,  and 

Fk := jk ! j~F.  

Consider the collection of exact triangles in D~,c(X): 

(1) Fk[k] --* ik!i~F[k] ---* Fk+l[k + 1] 

for k = O , . . . , n .  

Apply the funetor HT, c - equivariant cohomology with compact supports - to 

triangles (1). This produces complexes of A T - m o d u l e s  

ak  , .  bk 
(2) 0 ~ HT,r162 c(Fk+I)[k + 1] --* 0 

Consider the induced complex 

�9 * d o - *  d I n - 1  

(3) 0 ~ HT, c ( z o F ) - + H T , c ( h F ) [ 1 ] + . . ,  d HT,~(i*F)[n] ~ 0 

where d i = ai+ x �9 bi. 

15.11.  T h e o r e m .  (a) The complex (3) above is exact except at HT, c(i~F).  

(b) K e r d  ~ = I H T , c ( X ) .  

This theorem is equivalent to the following 

15.12.  C l a i m .  Complexes (~) are short exact sequences 

It is easier to prove a more precise statement. We need the following 



15 .13 .  D e f i n i t i o n .  

codimension k if 
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An A-modu le  P # 0 is called (cohomologically) pure  of 

E x t ~ ( P , A ) = 0  for i # k .  

The theorem follows from the following 

15.14.  P r o p o s i t i o n .  The sequences (2) are short exact and the A-module HT,~(Fk ) 

is pure of codimension k. 

P r o o f  o f  p r o p o s i t i o n  15.14.  

15.15.  L e m m a .  Let 0 C X be an orbit. Then the restriction FIo is a direct sum 

of (shifted) constant equivariant sheaves CO,T. 

P r o o f  o f  l e m m a .  Let U C X be the star  of the orbit  O, that  is, U is an open set 

consisting of orbits O I such that  O C O I. Let To = Stab(O) C T be the stabilizer 

of the orbit  O. Since X in normal,  one can show that  To is connected hence a 

subtorus in T. Let X o  = T o  C U be the closure in U of the subtorus To C T C U. 

Then the T-space  U is the induced one from the To-space  X o  

U = T • X o .  

The space X o  is an affine To- to r i c  variety with a fixed point q = X o  N O. 

Hence it satisfies assumptions of theorem 14.2. Thus the stalk ICxo ,vo  Iq is a direct 

sum of shifted constant  sheaves Cq,To (14.3(i')). Hence the corresponding s ta tement  

is true on the induced space U, which proves the lemma. 

15.16.  R e m a r k .  Notice that  HT, c(i*kF ) = @dimO=kHT, c(FIo ). Moreover, it 

follows from the above lemma and from theorem 13.11.4 that  

HT,~(FIo)[k ] = A~ |  I C ( X ) I o ,  

where k=dimO,  I C ( X ) I  o is the stalk of I C ( X )  at a point on O and a is the cone 

in (I) corresponding to the orbit  O. 

15.17.  C o r o l l a r y .  The A-module HT,c(i*~F) is pure of codimension k. 

15.18.  C o r o l l a r y .  The eodimension of the support of the A-module HT, c(F~) in 
SpecA is < k. Hence 

Ezt'A(HT,c(Fk),A) = O, f o r i  < k. 
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P r o o f  o f  c o r o l l a r y .  The A-module  HT, c(Fk) may be computed using the spectral  

sequence associated to the fil tration 

U" C ... C U T M  C U k. 

The E1 te rm consists of A-modules  HT,c(i*F), s _> k, which are pure of codimension 

s ( lemma 15.17) and hence have support  of codimension s. Hence the codimension 

of the suppor t  of HT, c(Fk) is >_ k (in fact = k). This proves the corollary. 

Now we can prove proposit ion 15.14. We use induction on k. For k = 0 we 

have the sequence 

0 --* HT, c(F) --* HT,c(iGF ) --* HT,~(F1 )[1] --* 0. 

This is a piece of the long exact sequence of cohomology arising from the tr iangle 

(1) (for k = 0). Hence it suffices to prove that  the connecting homomorphism 

HT,c(F1)[1]6--~HT, c(F)[1] is zero. We know that  HT, c(F)is a free A-modu le  (remark 

15.8(1)) and that  the support  of HT,c(F1) has codimension 1 in SpecA. Hence there 

exists no nonzero map ~. This shows that  the sequence above is short exact. By 

considering the long exact sequence of ExtA( ' ,  A) applied to this short sequence we 

find tha t  HT,r is pure of codimension 1 (use corollary 15.17). This finishes the 

proof for k = 0. 

Suppose we proved the lemma for k - 1. Consider the sequence 

0 --* HT,c(Fk)[k] --* HT,c(i*kF)[k ] --* HT, c(F~+I)[k + 1] --+ 0 

By induction we know that  HT,c(Fk) is pure of codimension k. On the other 

hand HT,c(Fk+I ) has support  of codimension k +  1. Hence the connecting homomor- 

phism HT, c(Fk+I)[k + 1]~-+HT, c(Fk)[k + 1] is zero and the sequence is short  exact. 

Applying ExtA(-, A) to this sequence we find 

0 --+ ExtkA(HT,~(i*kF)[k]) ~ EXtkA(HT,c(Fk)[k]) --* EXtkA+l(HT,~(Fk+l)[k + 1]) --* 0 

so that  HT,c(Fk+I) is pure of codimension k + 1. This finishes the induction step 

and proves proposi t ion 15.14 and theorem 15.11. 

15 .19 .  D e f i n i t i o n .  Let 

O_.l.~--na_~..~n~--nWla-_.~+l...~l~O......rO 

be the complex (3) shifted by n, i.e. 

~ - k  :=  n ~ , c ( i ; _ , F ) [ n  - k] 

0 q-k :_-- d n-k 



132 

Fix a cone a E ~ of dimension k. Consider the restr ict ion F[o,, of F to the 

corresponding orbit  O .  C X.  By remark 15.16 above we know tha t  HT,r )[n - 

k] is a free Aa module with the basis IC(X)[o ~. We put C .  := HT, c(FIo.)[n -- k], 
so tha t  

C - k  = (~dima----kCa. 

Clearly, the differential 

O--k : c - k  __, C-k+1 

maps 

0 -k : C~ -* @~c~C~. 

In view of theorem 15.11 above the theorem 15.7 follows from the following 

15.20.  P r o p o s i t i o n .  The complex C is minimal. 

P r o o f .  We have to check conditions (a), (b) of definition 15.3. 

(a)  C ~ = H y , c ( i ; , F ) [ n ]  = HT,JCTM)[n] ---- ~ [ n ]  (13.11.4).  

(b) Let a E r be a cone of dimension k. Let 

c . %  c d C  +'--. -* c0 o 
d i m r = k - 1  

be the restr ict ion of the complex C to a as on 15.2. Let Ic, = KerO~ k+l. We need 

to show that  a~ -k induces an isomorphism. 

(*) a~ k : L~I ,~C~S~I ,~S~ 

Put  O = O~. Let U C X be the open subset as in the proof of 1emma 15.15. 

Geometr ical ly the complex s corresponds to the "restriction" of the complex (3) 

to the open set U. Since 

U = T x T o X o  

(see the proof of lemma 15.15 above), the complex C(cr) is obta ined from the cor- 

responding complex (3) for Xo by restricting scalars from Ar to A and shifting 

(13.11.4). 

Hence we may (and will) assume that  O = q is the T-f ixed point (d ima = k = 

n) in the afflne toric variety U. By theorem 15.11 the complex C(a)  is exact except 

at Ca. Put  V = U - {q}. The kernell Ir is equal to HT, c(FIv[1]) and the map  

Og":C~-, L 

is the canonical boundary  map 

HT, JG) --* HT, JFIv)[1], 

which induces an isomorphism module the maximal  ideal (corollary 14.8). This 

proves proposi t ion 15.20 and theorem 15.7. 


