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CHAPTER I

Elementary Analysis and Representation Theory

Fix F a local, non-archimedean field. That is, F is a finite extension of Qp or
F = Fq{{t}}. We want to do analysis on X(F) where X is an algebraic variety
defined over F.

1. l-Spaces

1.1. Definitions and Lemmas.

Definition 1. (1) An l-space is a topological space which is Hausdorff, lo-
cally compact and 0-dimensional (i.e. totally disconnected: any point has
a basis of open compact neighborhoods).

(2) An l-group is a Hausdorff topological group such that e (= identity) has a
basis of neighborhoods which are open compact groups.

It is easy to see that if G is an algebraic group over F then G(F) is an l-group.

Definition 2. Let V be a representation of an l-group G. A vector v ∈ V is
smooth if its stabilizer in G is open.

We will denote the set of smooth points by V sm ⊂ V .

Proposition 1. (1) V sm is a G-invariant subspace of V .
(2) If V is a topological representation, then V sm is dense in V .

Proof. Clear.

We will study smooth representations, that is, representations V such that V sm =
V . Here are some easy lemmas.

Lemma 1. Let X be an l-space.

(1) If Y ⊂ X is locally closed (i.e. the intersection of an open and a closed
subset), then Y is an l-space.

7



8 I. ELEMENTARY ANALYSIS AND REPRESENTATION THEORY

(2) If K ⊂ X is compact and K ⊂
⋃
α Uα is an open covering, then there exists

disjoint open compact Vi ⊂ X, i = 1 . . . k such that Vi ⊂ Uα for some α
and

⋃
Vi ⊃ K.

Lemma 2. Let G be an l-group which is countable at infinity (i.e. G is a count-
able union of compact sets). Suppose that G acts on an l-space X with a finite
number of orbits. Then G has an open orbit X0 ⊂ X so that X0 ≈ G r H for
some closed subgroup H ⊂ G.

It is obvious that by applying this lemma to X rXi, we can get a stratification
X0 ⊂ X1 ⊂ X2 ⊂ · · · ⊂ X such that Xi rXi−1 is an orbit.

Example. Let G = GL(n, F ), B = the upper triangular matrices. Then we
may set X = G/B and consider the action of B on X (on the left). When n = 2,
X = P1 and there are two orbits: a single point and the complement of that point.

1.2. Functions and Distributions. If X is an l-space, let C∞(X) be the
space of locally constant complex-valued functions on X. Let S(X) ⊂ C∞(X)
be the space of locally constant, compactly supported functions on X. S(X) will
serve as the “test functions” for our analysis on X. Thus, S∗(X) = the set of
functionals on S(X) are called distributions. Note that as S(X) has no topology,
there is obviously no continuity assumed.

Proposition 2 (Exact Sequence of an Open Subset). Let U ⊂ X be
open and set Z = X r U . Then

0 → S(U) → S(X) → S(Z) → 0

is exact.

Proof. For the injection at S(U) just extend functions on U by zero to all of
X. For the surjection at S(Z) we must explain how to extend functions from a
closed subset. Since f ∈ S(Z) is locally constant and compactly supported, we
may assume that Z is compact and has a covering by a finite number of open sets
Uα with f |Uα

= cα constant. Let Vi be as in Lemma 1 (2). Then we can extend f
by defining f(x) = cα if x ∈ Vi ⊂ Uα and zero otherwise.

Corollary. The sequence of distributions

0 → S∗(Z) → S∗(X) → S∗(U) → 0

is exact.

It will be important for us to distinguish compactly supported distributions. For
future reference, we record the definition

Definition 3. If X is an l-space, the support of a distribution E ∈ S∗(X) is
Supp E = the smallest closed subset S such that E|XrS = 0.
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Let us now consider the algebra structure on S(X). Unless X is compact, S(X)
has no identity element; 1 is not compactly supported. However, if L ⊂ X is open
and compact, eL = characteristic function of L is an idempotent in S(X).

Definition 4. (1) An algebra H is an idempotented algebra if for every finite
collection of elements of H, {fi}, there exists an idempotent e ∈ H such
that efi = fie for all i.

(2) A module M of an idempotented algebra H is called non-degenerate or
unital if HM = M .

It is clear that S(X) is an idempotented algebra: let L be an open compact set
containing the support of the fi’s; then e = eL works.

As a matter of notation, if H is an idempotented algebra, we will denote by
M(H) the category of non-degenerate H-modules.

1.3. Sheaves. As ususal, spaces of functions on l-spaces may be viewed as
cannonical examples of more general objects: sheaves.

Notation: Suppose X is an l-space. Let Sh(X) be the category of sheaves of
C-vector spaces onX. If F ∈ Sh(X), set S(F) = the space of compactly supported
global sections of F . For an open subset U ⊂ X, define S(U,F) = S(F|U).

Theorem 1. If F ∈ Sh(X) then S(F) is a non-degenerate S(X)-module and
F 7→ S(F) gives an equivalence of categories between Sh(X) and M(S(X)).

Proof. As we are considering only compactly supported sections, the first
statement is clear. For the second statement, we define the inverse map as follows:
let M be a non-degenerate S(X)-module. Define F by S(L,F) = eLM for com-
pact open subsets L ⊂ X, and S(U,F) = limL⊂U S(L,F) for U ⊂ X an arbitrary
open subset.

Suppose X is an l-space and F is a sheaf on X. If π : X → Y is a continuous
map of l-spaces, let π!(F) be the sheaf on Y defined by

π!(F)(W ) = {ξ ∈ S(π−1(W ),F)| the map Supp(ξ) → W is proper}

for W ⊂ Y open.

Proposition 3. Let π : X → Y be a continuous map of l-spaces.

(1) The functors π∗ and π! are exact.
(2) Base Change: Consider the pull-back diagram

X ×Y Z
τ ′

−−−→ X

π′

y
yπ

Z
τ

−−−→ Y
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If F is a sheaf on X, then τ ∗(π!F) = π′
!(τ

′)∗F .

Proof. Omitted.

Proposition 4. Let j : U → X and i : Z → X be the natural embeddings where
U is an open subset of X and Z = X r U . Let F be a sheaf on X. Then

(1) 0 → j!(F|U) → F → i!(i
∗F) → 0

(2) 0 → S(F , U) → S(F , X) → S(F , Z) → 0 and
(3) 0 → S∗(F , Z) → S∗(F , X) → S∗(F , U) → 0

are exact.

Proof. (1) is a well-known general statement about these functors. For (2)
and (3), the proof is the same as the special case F = S(X) which was given in
section 1.2.

Definition 5. Let G be an l-group acting on an l-space X. Let

p : G×X → X be the projection, and

a : G×X → X be the action.

An equivariant sheaf on X is a pair (F , ρ) where F ∈ Sh(X) and ρ is an isomor-
phism ρ : p∗(F) ∼= a∗(F) which is compatible with the group structure on G.

Important Example. If X = {x} is a point, then an element of Sh(X) is just a
vector space V . In this case, p = a : G→ x is trivial so a∗(V ) = p∗(V ) = {locally
constant functions on G with values in V }. If V and ρ define an equivariant
sheaf on X = {x} and g ∈ G, then by considering stalks at g, we get a map
ρ(g) : V → V . This clearly defines a representation of G on V .

Fact. This representation is smooth.

Proof. Consider the stalk at the identity. As G is totally disconnected, each
germ may be represented by the constant section on a sufficiently small open
neighborhood which we can take to be an open compact subgroup. It follows that
each v ∈ V has an open stabilizer.

Corollary. There is a bijective correspondence between equivariant sheaves
on a point and smooth representations of G.

Historical Note/Geometric Intuition. Bernstein and Zelevinsky origi-
nally gave the following equivalent defintion for Sh(X).

Definition 6. An l-sheaf on X is

(1) A family of vector spaces Fx, x ∈ X.
(2) A family of sections, called regular sections, φ : x→ vx ∈ Fx.
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such that

i: A section ϕ which is locally regular is regular.
ii: any vector vx ∈ Fx extends to a regular section.
iii: ϕ(x) = 0 implies ϕ = 0 in a neighborhood of x.

2. The Hecke Algebra

We are interested in studying M(G) = the category of smooth representations
of an l-group G.

2.1. The Hecke Algebra. Recall that, if X is an l-space, the support of a
distribution E ∈ S∗(X) is the smallest closed subset S = Supp E so that E|XrS = 0.
Let us consider the case Supp E = L, a compact open set. Then E defines a
functional on the space of all locally constant functions, C∞(X), by

< E , f >
def
=< E , eLf > .

Moreover, it is clear that, for X = G an l-group, the set S∗(G)c of compactly
supported distributions is an algebra under convolution, denoted E ∗E′. Let G act
on this algebra by left translation. A distribution on an l-group is called locally
constant if it is invariant by some open subgroup of G.

Definition 7. The algebra of locally constant, compactly supported distribu-
tions on an l-group G, H(G) ⊂ S∗(G)c is called the Hecke Algebra.

If Γ is a compact subgroup, then normal Haar measure on Γ, eΓ, is in S∗(G)c; if Γ
is open and compact, then eΓ ∈ H(G).1 Moreover, if g ∈ G, the delta distribution
at g, Eg ∈ S∗(G)c (but not in H(G); it is not locally constant). These satisfy the
relations eΓ ∗ eΓ = eΓ, eΓ ∗ Eg = Eg ∗ eΓ = eΓ if g ∈ Γ.

The various spaces of functions and distributions on an l-group G that we have
defined are summarized in Table 1. Note that all of them except H(G) make sense
for an arbitrary l-space.

Proposition 5. (1) Multiplication by Haar measure gives an isomorphism
S(G) → H(G).

(2) Any h ∈ H(G) is locally constant with respect to right translation.

This proposition follows from the fact that compact open subgroups form a basis
of neighborhoods of the identity and the following obvious but important lemma.

1We have previously used the notation eL for the characteristic function of L. Our use of eΓ

for Haar measure reflects the usual identification of functions and distributions on a compact
group.
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Functions Distributions
S∗(G) All – dual of S(G)⋃

Locally Constant C∞(G) S∗(G)c Compactly Supported⋃ ⋃

Locally Constant
Compactly Supported

S(G) H(G)
Compactly Supported
Locally Constant

q
Hecke Algebra

Table I.1. Spaces asssociated with an l-group G.

Lemma 3. Suppose K is a compact open subgroup of G and h is a K-invariant
distribution with compact support. Then there exist g1, . . . , gk ∈ G and a1, . . . , ak ∈
C such that

h =
k∑

i=1

ai(eK ∗ Egi
).

The point is that K-invariant distributions are supported on translates of K.
Next, we turn to the most important aspect of the Hecke algebra: its relation

to the representation theory of G. If (π, V ) is a smooth representation of G, we
can give V the structure of an H(G)-module (in fact, of an S∗(G)c-module) as
follows. For fixed v, π(g)v may be considered as a locally constant function on G
with values in V , and thus as an element of C∞(G)⊗V . Therefore, it makes sense
to define

π(E)v =< E , π(g)v >

for E ∈ H(G). We will sometimes write Ev for π(E)v.

Theorem 2. Let G be an l-group.

(1) H(G) is an idempotented algebra.
(2) If V is a smooth G-module, then the corresponding H(G)-module is non-

degenerate.
(3) This gives an equivalence of categories

M(G) ∼= M(H(G))

between smooth representations of G and non-degenerate H(G)-modules.

Proof. (1) follows from proposition ??, but it is easy to give a direct proof:
Clearly, if K is a compact open subgroup of G, eK is an idempotent in H(G). In
fact, eK is the unit for the algebra HK = eKH(G)eK . As H(G) =

⋃
HK , this

proves part (1) of the proposition. For (2), suppose v ∈ V is smooth. Then it is
invariant by some K; hence eKv = v. For (3) we need a lemma.
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Lemma 4. Let H be any idempotented algebra, a : H → H an operator commut-
ing with the right action of H. Then, for any non-degenerate H-module M , there
exists an operator A : M →M such that for all morphisms ϕ : M → N there is a
commutative diagram

M
ϕ

−−−→ N

A

y

yA

M
ϕ

−−−→ N

and furthermore, for h ∈ H, A ◦ h = a(h) as operators on M .

Proof. Since M is non-degenerate, each element of M has the form hm for
some h ∈ H. Thus, we may define A(hm) = a(h)m.

To complete the proof of the proposition we must show, given an H(G)-module
M , how to define a G-module. First observe that if E ∈ S∗(G)c, then h 7→ E ∗ h
is an operator on H(G) commuting with convolution on the right. By the lemma,
this extends to an operator E : M → M . Specializing E = Eg, this gives M the
structure of a G-module.

2.2. Applications. Let M be an abelian category, P an object in M (we will
write P ∈ Ob(M).) Recall that P is projective if the functor

M → Abelain Groups

given by

X 7→ Hom(P,X)

is exact.

Theorem 3. If H is an idempotented algebra, then the category M(H) has
enough projectives.

Proof. Let e ∈ H be any idempotent. Consider the H-module Pe = He. This
is projective since HomH(Pe, X) = eX is clearly exact. Note that the direct sum
of any collection of the Pe is also projective.

If M ∈ ObM(H) and ξ ∈ M , then it follows from non-degeneracy that there
exists an idempotent e so that eξ = ξ. Hence, ξ is in the image of the map Pe →M
given by he 7→ hξ. Taking the direct sum over all ξ ∈ M of the associated Pe, we
see that M is a quotient of a projective object.

In order to prove that M(H) has enough injectives, we would like to just take
duals. However, it is easy to see that the dual of a smooth representation may not
be smooth. Instead, we use
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Definition 8. If (π, V ) is a smooth representation, the contragredient repre-
sentation (π̃, Ṽ ) is given by Ṽ = the smooth part of V ∗ and π̃ = π∗(g−1)|Ṽ .

Proposition 6. (1) For all compact open subgroups K ⊂ G, π̃(eK)Ṽ =
(π(eK)V )∗.

(2) HomG(V, W̃ ) = HomG(W, Ṽ )

(3) V →֒ ˜̃V

Proof. (1)Let V K be the vectors fixed by K. Then π(eK)V = V K so (1)
reduces to Ṽ K = (V K)∗, which is obvious from the definition of smooth. For (2),

HomG(V, W̃ ) = HomG(V,W ∗)

= HomG(V ⊗W,C)

= HomG(W,V ∗)

= HomG(W, Ṽ )

where the first and last equalities follow since the image of a smooth module is
always smooth. (3) Follows from (1).

Lemma 5. If P is a projective object, then P̃ is an injective object.

Proof. We must show that X 7→ Hom(X, P̃ ) is exact. But Hom(X, P̃ ) =
Hom(P, X̃) by the proposition, so this is clear.

Definition 9. A smooth representation (π, V ) of G is called admissible if for
every open compact subgroup K, the space VK is finite dimensional.

It is straightforward to prove that

Proposition 7. V is admissible if and only if V → ˜̃V is an ismorphism.

In Chapter 2 we will prove that every irreducible representation is admissible.
This is a non-trivial fact. Using it, we can show

Theorem 4. M(H) has enough injectives.

Proof. Fix X. We may assume that X is irreducible. The proposition implies
that X̃ is also irreducible. As we have enough projectives, there is an epimorphism

P ։ X̃. Since X̃ is irreducible, the corresponding map X ∼=
˜̃X → P̃ is injective.

This proves the theorem since by lemma 5 P̃ is injective.
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3. Some Functors

The way to make an advance in representation theory is to find a way to con-
struct representations. Practically our only tool is the induction functor which
we will discuss after reviewing adjoint functors. Finally, we discuss the Jacquet
functor which will be very important for us.

3.1. Adjoint Functors. In this section, we review some standard facts about
adjoint functors. All functors are covariant. Let A and B be categories, F : A → B

and G : B → A functors. Recall that G is left adjoint to F if there is an equivalence
of functors

HomB(−,F−) ∼= HomA(G−,−).

In this case, we also say the F is right adjoint to G. If it exists, the left (right)
adjoint is unique.

Associated to a pair of adjoint functors, as above, and objects X ∈ Ob A and
Y ∈ ObB, we cannonically associate two adjunction morphisms:

α : GFX → X

β : Y → FGY.

The morphism α is the image of the identity in HomB(FX,FX) under the given
equivalence, and similarly for β.

It is obvious that the adjunction maps satisfy the condition that the composi-
tions

FX
βFX
−−→ FGFX

Fα
−→ FX

GY
Gβ
−→ GFGY

αGY−−→ GY

are canonically the identity. Conversly, given maps which are functorial in X and
Y and satisfy these conditions we can recover the adjointness of F and G.

Proposition 8. Suppose that F : A → B and G : B → A are functors between
abelian categories. Suppose G is left adjoint to F. Then

(1) G is right exact and F is left exact.
(2) If G is exact then F maps injective objects to injective ones.
(3) If F is exact then G maps projective objects to projective ones. The converse

also holds in the case that B has enough projectives.

The next theorem is known as the adjoint functor theorem.

Theorem 5. Suppose that A is a “reasonably small” abelian category and that
F : A → B is a functor. Then F has a left adjoint if and only if F preserves limits.
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We will not pursue precisely what “reasonably small” means. Suffice it to say
that we will not have to worry about this condition.

3.2. Induction. If H is a closed subgroup of G, we may restrict G-modules
to H. This gives a functor Res = ResGH : M(G) → M(H). As usual, there is a
version of Frobenius reciprocity. We omit the (standard) proof.

Claim. Res has a right adjoint: Ind = IndGH : M(H) → M(G), defined as
follows: Let (ρ, V ) be a smooth H-module. Consider L(V ) = {f : G→ V |f(hg) =
ρ(h)f(g)} with the action π(g)f(x) = f(xg). The induced module is the smooth
part of L(V ).

It is convenient to have another model for Ind. Recall that an H-module is
equivalent to an H-equivariant sheaf on a point (see section 1.3). Let Y = H\G
be the homogeneous space. It is not hard to see that we have an equivalence of
categories between H-equivariant sheaves on a point and G-equivariant sheaves on
Y . Thus, to define a map from H-modules to G-modules, it is enough to define a
map from G-equivariant sheaves on Y to G-equivariant sheaves on a point.

Fact. If p : Y → {point} is the trivial map, and F is a G equivariant sheaf on
Y , then p!F is a G-equivariant sheaf on the point.

Proof. Use Base Change from section 1.3.

Remarks. 1. This claim would be false if we used p∗ instead of p!. 2. It can be
checked that this functor is equivalent to Ind.

There is another functor ind : M(H) → M(G) given by

ind(V ) = {f ∈ L(V )|f has compact support modulo H}.

Proposition 9. These functors have the following properties.

(1) indGH ⊂ IndGH
(2) Both are exact.
(3) If H\G is compact, Ind = ind.
(4) If H\G is compact, induction maps admissible representations to admissible

representations.

Proof. (1) and (3) are obvious. For (2), use the second description of Ind and
recall from Proposition 3 that p! is exact. The result for ind follows from the result
for Ind. (4) Let V be an admissible representation of H and fix K ⊂ G a compact
open subgroup. Let {HgiK} be a system of coset representatives for H\G/K. By
our assumption, this is a finite set. It is clear that an element, f , of L(V )K is
determined by its values on the gi. Moreover, the image of gi under f must lie
in the subset of V fixed by H ∩ giKg

−1
i which is finite dimensional since we are
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assuming that V is admissible. Therefore, there can be only finitely many linearly
independent such f .

3.3. Jacquet Functor. If G is any group, let CG be the trivial representation.
When G is a finite group, it is often usefull to consider the space of invariants =
V G = HomG(CG, V ). It turns out that for l-groups this notion is almost totally
useless. However, we often use the space of coinvariants, VG = V/V (G) where
V (G) is the subspace spanned by π(g)v−v. It is easy to see that this is equivalent
to JG(V ) where JG : M(G) →vector spaces is the Jacquet Functor defined by
JG(V ) = CG ⊗G V .

Proposition 10. The Jacquet functor J has the following properties.

(1) J is right exact.
(2) If G is compact then J is exact.
(3) If G is the union of an increasing family of compact groups, then JG is

exact.

Proof. (1) is obvious. (2) We have an exact sequence

0 → V G → V → VG → 0.

G compact implies that eGV = V G = VG. But V G is clearly left exact. (3) If
G =

⋃
Ui then JG(V ) = lim JUi

(V ). But the direct image of exact functors is
exact so done by (2).

4. Irreducible Representations

A representation is irreducible if it is algebraically irreducible, that is if contains
no invariant subspaces.

Example 1. If G is a compact group then every smooth G-module M is
completely reducible, that is M ∼=

⊕
Wα where the Wα are irreducible. Thus, the

representation theory is entirely controlled by the irreducibles and in a simple way.
Example 2. G = F ∗ (This is “almost” compact.) Let π be a generator for the

maximal ideal in the ring of integers O ⊂ F . Then

F ∗ ∼= Zπ ⊕O∗.

Here O∗ is compact and M(Z) = M(C[t, t−1]), which is equivalent to the category
of sheaves on C∗. Thus,

M(G) ∼=
∏

irred reps
of O∗

M(Z) =
∏

irred reps
of O∗

M(C[t, t−1]).

We see that the structure of the representations is half discrete and half continuous.
Specifically, it is a discrete sum of the category of sheaves on some space. This
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example will be a model for our study. In this section we establish some of the
machinery that we will need.

4.1. Decomposing Categories. In this section we discuss categories which
satisfy enough conditions so that our definitions make sense. We will only be
interested in categories of modules as we have been discussing.

Definition 10. Let M be a category, M ∈ ObM an object. Then M is
irreducible if it has no non-trivial subobjects.

(1) Denote by IrrM the set of equivalence classes of irreducible objects.
(2) If M ∈ M, then the Jordan-Holder content of M , JH(M), is the subset of

IrrM consisting of all irreducible subquotients of M .

Remark. If G is an l-group, we write IrrG instead of IrrM(G) for the set of
equivalence classes of irreducible representations of G.

Lemma 6. Let N,M ∈ ObM.

(1) If N is a subquotient of M , then JH(N) ⊂ JH(M).
(2) JH(M) = ∅ if and only if M = 0.
(3) If M =

∑
αMα then JH(M) =

⋃
α JH(Mα).

Proof. This is straightforward. Note that (2) uses Zorn’s lemma.

If M is a category, then M = M1 × M2 means that for any object M ∈ M,
there exist subobjects Mi ∈ Mi so that M = M1 ⊕M2. Of course, if V ∈ IrrM,
then this implies that either V ∈ M1 or V ∈ M2. This leads to a decomposition

IrrM = IrrM1

∐
IrrM2.

(Here
∐

means ‘disjoint union’.) Conversly, we will see that such a decomposi-
tion on the level of sets completely determines the decomposition on the level of
categories.

Let S ⊂ IrrM. Denote by M(S) the full subcategory of M consisting of objects
M with JH(M) ⊂ S.

Claim. If S, S′ ⊂ IrrM do not intersect, then the categories M(S) and M(S ′)
are orthogonal, i.e. M ∈ M(S) and M ′ ∈ M(S ′) imply Hom(M,M ′) = 0.

Proof. Suppose α ∈ Hom(M,M ′). Set N = α(M). So, JH(N) ⊂ JH(M) ⊂ S
and also JH(N) ⊂ JH(M ′) ⊂ S′. But S ∩S′ = ∅ so by the last lemma, N = 0.

If S ⊂ IrrM, M ∈ M, we will denote by M(S) the union of all subobjects
of M which lie in M(S). By the lemma, this is the maximal submodule with
Jordan-Holder content lying in S.
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Definition 11. Let S ⊂ IrrM and S ′ = IrrM r S. S is called splitting if
M = M(S) ×M(S ′). That is, if M = M(S) ⊕M(S′) for each M ∈ M. In this
case we say that S splits M .

Claim. A decomposition of categories M = M1 × M2 is equivalent to a de-
composition of sets IrrM = S

∐
S ′ where S is a splitting subset.

Proof. Obvious.

4.2. Lemmas on Irreducible Representations.

Lemma 7. Let (ρ,W ) be a representation of G. Then (ρ,W ) is irreducible if
and only if for every open compact subgroup K ⊂ G, (ρ|HK

,WK) is either 0 or an
irreducible representation of HK . Furthermore, every irreducible representation of
HK appears in this way for some irreducible ρ. Also, this ρ is unique. In other
words, two irreducible representations of G, (ρ1,W1) and (ρ2,W2), are equivalent if
and only if there is some compact open K such that (ρ1|HK

,WK
1 ) and (ρ2|HK

,WK
2 )

are non-zero and equivalent.

Proof. For the first statement, suppose ρ is irreducible. Let w1, w2 ∈ W and
denote by w̃1, w̃2 their images in WK . There is an h ∈ H such that hw1 = w2.
Then, eKheKw̃1 = w̃2. Thus, WK is irreducible. The converse is clear: if Y ⊂ W
is an invariant subspace, then ρ|HK

is reducible whenever YK 6= 0.
For the next statement, let V ∈ M(HK) be irreducible. Set U = H ⊗HK

V ∈
M(H). It is obvious that V ∈ JH(UK). Moreover, taking K-fixed vectors gives
an onto map JH(U) → JH(UK).

For the final claim, assume that α : WK
1

∼
→ WK

2 is an HK-isomorphism. Then
α lifts to an H-isomorphism W ′

1 → W ′
2 where W ′

i = HWK
i ⊂ Wi, i = 1, 2. But Wi

irreducible implies W ′
i = Wi. The converse is trivial.

As would be expected, there is a version of Schur’s lemma for smooth represen-
tations of l-groups.

Schur’s Lemma. Suppose G is countable at infinity. Let (ρ, V ) be an irre-
ducible representation of G. Then EndG V = C.

Proof. Since V is irreducible, A = End V is a skew-field. Moreover, A has
countable dimension over C. Indeed, by irreducibility, it is enough to show that
the dimension of V is countable. If ξ ∈ V , then V is spanned by the ρ(g)ξ for
g ∈ G. But since G is countable at infinity and the function g 7→ ρ(g)ξ is locally
constant (smoothness), we can find a countable spanning set.

Thus we are reduced to proving

Lemma 8. If A is a skew-field of countable dimension over C, then A = C.
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Proof. Let a ∈ A. Suppose a − λ 6= 0 for any λ ∈ C. Since A has only
countable dimension, the elements (a−λ)−1 cannot be linearly independent. Thus,
there are ci ∈ C so that

k∑

i=1

ci(a− λi)
−1 = 0.

Multiplying through by
∏

(a− λi), we get a non-zero polynomial over C with a as
a root. Factoring this polynomial, we see that there are µj ∈ C so that

∏

j

(a− µj) = 0.

Now one of these factors must be zero because otherwise A would have zero divi-
sors. Hence a ∈ C.

Remarks. 1. We will eventually show that the irreducible represetations of any
reductive p-adic group are admissible. Then we will be able to stop worrying about
technical conditions like “countable dimension”. 2. To see how Schur’s lemma can
fail (really the only way that it can fail), let K be a field properly containing
another field k. Consider the discrete group G = K∗ and its representation in the
k-vector space K. This representation is obviously irreducible, but Schur’s lemma
fails: the intertwining operators are K, strictly bigger than k.

We do, however, have the following extension of Schur’s lemma. The key point
is that we need some sort of finite-type control to get Schur’s lemma. (For a proof
see Dixmier Algebras Envelopantes.)

Quillen’s Lemma. Let K be an algebraically closed field of characteristic 0,
g a finite dimensional lie algebra over K with U = U(g) its universal enveloping
algebra. Then for any irreducible U-module M , EndU(M) ∼= K.

Also, if G is a reductive p-adic group, H(G,K) the Hecke algebra with coeffi-
cients in an algebraically closed field of characteristic 0, then Schur’s lemma holds.
Again, in this case we have some finite-type control.

The next lemma is the statement that our Hecke algebra resembles a semisimple
algebra in a crucial sense.

Separation Lemma. Suppose that G is countable at infinity. Let h ∈ H(G),
h 6= 0. Then there exists an irreducible representation ρ such that ρ(h) 6= 0.

Proof. Consider the map inv : G → G given by inv : g 7→ g−1. This induces a
map inv : H(G) → H(G). Set h+ = inv(h), and u = hh+.
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Let us suppose for the moment that G is unimodular, so that h = ϕµG for some
(two sided) Haar measure µG and some ϕ ∈ S(G). In this case, h+ = ϕ+µG where
ϕ+(g) = ϕ(g−1). Thus, u = hh+ = ψµG where

ψ(g) =
∫

r∈G
ϕ(r)ϕ(gr)dr.

Setting g = 1, it is obvious that this is not the zero function. What we have shown
is that h 6= 0 implies u 6= 0. (With a bit more care, one can prove this without
the assumption that G is unimodular. (Exercise.))

It is enough to find a representation ρ so that ρ(u) = ρ(h)ρ(h+) 6= 0. Note that
u+ = u. Thus, from the last paragraph it follows that u2 = uu+ = (hh+)(hh+)+ 6=
0 and more generally that un 6= 0. So we are reduced to proving that if A is
a countable-dimensional algebra, a ∈ A a non-nilpotent element, then there is a
representation of A that does not kill a. This is lemma 9 below.

Lemma 9. Let A be an algebra of countable dimension over C with unit. Let
a ∈ A be not nilpotent. Then there exists a simple A-module M such that a|M 6= 0.

Proof. The proof is similar to that of Schur’s lemma. First we establish:

Claim. There exists λ ∈ C r 0 such that a− λ is not invertible in A.

Proof. If a ∈ C, this is trivial. Otherwise, by countable-dimensionality, the
elements the (a− µ)−1 are linearly dependent. Thus there exists ci ∈ C so that

k∑

i=1

ci(a− µi)
−1 = 0.

Multiplying through by
∏

(a− µi), we get a non-zero polynomial over C with a as
a root. Thus, there are λj ∈ C r 0 and integers nj ≥ 0 so that

an0
∏

j

(a− λj)
nj = 0.

As a is not nilpotent, the (a− λj) are zero divisors, and hence not invertible.

By the claim, we may suppose that a − λ is not invertible. Let M be an
irreducible quotient of A/(a − λ)A which we may take to be non-trivial. Then
(a− λ)1 = 0 in M and so a1 = λ1 6= 0. Hence, a acts non-trivially on M .

This completes the proof of the Separation Lemma.
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5. Compact Representations

We have two general goals: First, to show that any irreducible representation is
admissible. Second, guided by the examples at the beginning of the last section,
we wish to show that the category of all representations can be decomposed into
managable pieces. In this section, we realize these goals for a special type of
representation.

5.1. Definition and Properties.

Definition 12. Let (π, V ) be a smooth representation of G. We say that π is
compact if for every ξ ∈ V and every open compact subgroup K ⊂ G, the function
Dξ,K : g 7→ π(eK)π(g−1)ξ has compact support.

Remarks. 1. The idea here is that compact representations are those which
behave like representations of compact groups. In particular, we will see that
compact representations are completely reducible 2. Compact representations are
sometimes called finite representations. 3. It is obvious that if π is compact then
so is any subquotient of π.

N.B. Although the definition makes sense for any G, we will use compact rep-
resentations only in the case G unimodular. (Indeed, it would be reasonable to
hypothesise that if G has a compact representation then it must be unimodular.)
For this reason we will assume G unimodular when usefull.

If ξ ∈ V , ξ̃ ∈ Ṽ then the function mξ̃,ξ(g) =< ξ̃, π(g−1)ξ > is called a matrix
coefficient. We may now state an equivalent definition of compact representations:

Theorem 6. Every compact representation has compactly supported matrix co-
efficients. Conversly, if all matrix coefficients of π are compactly supported, then
π is compact.

Proof. Suppose that K ⊂ G is a compact open subgroup which stabilizes
ξ̃ ∈ Ṽ . Then the support of mξ̃,ξ is contained in the support of Dξ,K . Thus,
compact representations have compactly supported matrix coefficients.

For the converse, our strategy is to find a finite number of ξ̃i ∈ Ṽ K , i = 1, . . . , k,
so that SuppDξ,K ⊂ Supp

⋃k
i=1mξ̃i,ξ

. It is clear that if ν 6= 0 is in the image of

Dξ,K, then there is a ξ̃ ∈ Ṽ K so that 〈ξ̃, ν〉 6= 0. Hence, it is enough to show
that the image of Dξ,K is finite dimensional. If this were false, there would be
a sequence of group elements, g1, g2, . . . , so that the νi = Dξ,K(gi) are linearly
independent. Observe that the {gi} is not contained in any compact set. Define
the functional ν̃ ∈ Ṽ K by 〈ν̃, νi〉 = 1 and extend by zero. Then {gi} ⊂ Suppmν̃,ξ

which contradicts our assumption that all matrix coefficients are compactly sup-
ported.
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Proposition 11. Any finitely generated compact representation is admissible.

Proof. Let (π, V ) be such a representation. If V is generated by ξ1, . . . , ξk,
then V is spanned by π(g)ξi. Thus, if K is a compact open, V K = π(eK)V is
spanned by π(eK)π(g)ξi. But by the definition of compact representation, there
are a finite number of linearly independent such vectors. Hence, VK is finite
dimensional.

Corollary. Irreducible compact representations are admissible.

The next theorem may reasonably be called the main theorem on compact
representations.

Theorem 7. Let W be an irreducible compact representation. Then,

(1) {W} splits the category M(G). In other words, every M ∈ M(G) can be
decomposed as M = MW ⊕M⊥

W where JH(MW ) ⊂ {X} and JH(M⊥
W ) 6∋ W .

(2) MW is completely reducible. That is, MW
∼=
⊕
Wi where Wi

∼= W .

Remarks. 1. This theorem is obviously a generalization of the situation for com-
pact groups. 2. This theorem tells us nothing about the irreducible representations
themselves.

The proof will follow some preliminaries.

5.2. The Formal Dimension. We assume that G is unimodular so we may
find a left- and right-invariant measure µG. Using µG we may identify S(G) and
H(G) as two sided modules.

Proposition 12. Let (ρ,W ) be an irreducible compact representation of G.
Then there exists a natural morphism of G×G-modules

ϕ : S(G) ∼= H(G) → W ⊗ W̃ .

Moreover, ϕ is unique up to scaler and can be normalized so that tr ρ(h) =<,>
◦(ϕ(h)). Here <,> : W ⊗ W̃ → C is the natural pairing.

Proof. Consider EndW as a G × G-module under the action (g1, g2)(a) =
ρ(g1)aρ(g2)

−1. Let EndW sm be the smooth part of this module. Clearly, ρ maps
H(G) to EndW sm. We will show that there is an isomorphism

α : W ⊗ W̃→̃EndW sm;

then ϕ = α−1 ◦ ρ.

Lemma 10. The map α : W ⊗W̃ → EndW sm given by α(ξ⊗ ξ̃)(w) =< w, ξ̃ > ξ
is an isomorphism of G×G modules.
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Proof. Injectivity is obvious. Recall that irreducible compact representations
are admissible. Thus, we may prove surjectivity at each finite stage by counting
dimensions. Let K ⊂ G be an open compact subgroup. Then (EndW )K×K is
naturally a subset of EndWK which has dimension at most (dimWK)2 ≤ dim(W⊗
W̃ )K×K . Hence, surjectivity follows from injectivity.

To see that ϕ is unique up to a scaler, we pass to contragredients. Specifically,
using proposition 6,

HomG×G(H(G),W ⊗ W̃ ) = HomG×G(W̃ ⊗W, H̃(G))

⊂ HomG×G(W̃ ⊗W,C∞(G×G/diagonal))

= HomG×G(W̃ ⊗W,C∞(G))

= HomG×G(W̃ ⊗W, IndG×G
G CG)

= HomG(W̃ ⊗W,CG)

by Frobenious reciprocity

= C

by Schur’s lemma.
Finally, the normalization is obvious from the definition of α.

If (ρ,W ) is an irreducible compact representation then the last proposition gives
a map

ϕ : H(G) →W ⊗ W̃ .

On the other hand, there is a map in the other direction which assigns to two
vectors the associated matrix coeficient:

m : W ⊗ W̃ → S(G) ∼= H(G)

(ξ, ξ̃) 7→ mξ,ξ̃(g) =< ρ(g−1)ξ, ξ̃ > .

It is natural to consider the composition ϕ ◦m : W ⊗ W̃ →W ⊗ W̃ .

Proposition 13. Given G, ρ and W as above, there exists a nonzero number
d(ρ), called the formal dimension of (ρ,W ), such that ϕ ◦m = d(ρ) · Identity.

Proof. As W ⊗ W̃ is an irreducible representataion of G × G, the existence
of the formal dimension follows from Schur’s lemma. We must show that it is
non-zero. Let w ∈ W ⊗ W̃ be so that h = m(w) is non-zero. We will be finished if
we show that ϕ(h) 6= 0. By the definition of ϕ, it is enough to prove that ρ(h) 6= 0.
We will prove this be showing that for any irreducible representation, (τ, V ), not
equivalent to ρ, τ(h) = 0. Then, by the separation lemma, ρ(h) 6= 0.
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Lemma 11. Let (τ, V ) be any irreducible representataion of G not equivalent to
ρ, then τ(h) = 0.

Proof. Let v ∈ V and consider the morphism of G-modules W ⊗ W̃ → V
given by ξ ⊗ ξ̃ 7→ τ(m(ξ ⊗ ξ̃))v. Here we have thought of m as a map into H(G)
and (τ, V ) as an H(G)-module. As a G-module (acting on the first component),
W ⊗ W̃ is completely reducible and is a sum of copies of W . Thus, the same is
true of ImW ⊗ W̃ . In particular, when V is irreducible and not equivalent to W ,
ImW ⊗ W̃ = 0. In particular, τ(h)v = 0 for all v ∈ V . Thus τ(h) = 0.

Remarks. 1. d(ρ) depends on the choice of Haar measure. 2. If G is compact and
we normailize so the measure of G is 1, then the formal dimension is the reciprocal
of the actual dimension of the representation. 3. The formal dimension can be
defined more generally for representations whose matrix coefficients are L2 but not
necessarily compactly supported. 4. If W is unitrizable, ξ ∈ W and ξ̃ ∈ W̃ then
it can be shown that ∫

G
|mξ,ξ̃(g)|

2dµG = d(ρ).

This gives another proof that the formal dimension is non-zero.

5.3. Proof of the Main Theorem. In this section, we will prove a theorem
which clearly implies the main theorem on compact representations (theorem 7).
Recall that we identify S(G) and H(G) via the Haar measure µG and that we have
an isomorphism α : W ⊗ W̃ → EndW sm.

Theorem 8. Let (ρ,W ) be an irreducible compact representation with m and
ϕ as in the last section, and let (η, V ) ∈ M(G) be any smooth representation of
G. Set

EW,K = d(ρ)−1m(ϕ(eK)) ∈ H(G)

V0 =
∑

K⊂G

Im η(EW,K) and

V1 =
⋂

K⊂G

Ker η(EW,K)

where K runs through all compact open subgroups. Then,

(1) V0 and V1 are G-submodules of V .
(2) V = V0 ⊕ V1.
(3) V1 does not have subquotients isomorphic to W .
(4) V0 is a direct sum of copies of W .
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Proof. (1) and (2) are clear. By proposition 13, ϕ(EW,K) = ϕ(eK). Thus, for
any subquotient of V isomorphic to (ρ,W ) there must be elements not killed by
some EW,K . But by construction V1 does not have any such vectors, proving (3).

For (4), it is enough to show that V0 is generated by irreducible submodules
isomorphic to W . But by definition, V0 is generated by the images of various
maps W ⊗W̃ → V0. As W ⊗W̃ is completely reducible and a direct sum of copies
of W , so is V0.



CHAPTER II

Cuspidal Representations

In this chapter we prove the important result that every irreducible representation
of an l-group G is admissible. In fact, we will obtain a stronger statement, the so-
called Uniform Admissibility theorem, which, if V is an irreducible represention,
gives an explicit bound for dim VK depending only on G and the open compact
subgroup K ⊂ G (and not on V ).

This general result is deduced from the special case of cuspidal representations,
that is, those killed by the Jacquet functors JU where U is a non-trivial standard
unipotent subgroup of G. The first step in the study of cuspidal representations
is to relate them to the compact representations introduced in the last chapter.
This is based on some important geometric results.

We begin by specializing to the case G = GL(n). Here the geometry is fairly
straightforward. For the general case, we will quote at least one hard geometric
result without the proof as that would take us too far afield. On the other hand,
most of the consequences of the geometry are proved in substantially the same
way for the general case as for GL(n).

In the last section, we use uniform admissibility to prove that the set of irre-
ducible cuspidal representations splits the category M(G). Consequently, we may
divide the problem of understanding representations of G into two parts: first, the
study of cuspidal representations, and second, the understanding of the so-called
induced representations. Finally, we complete our analysis of the first problem
by showing that the subcategory of cuspidal representatins, may be decomposed
as the sum of categories of modules over algebras which are explicitly described.

1. The Geometry of GL(n)

In light of the results of the previous chapter, the statement that all irreducible
smooth representations of an l-group G are admissible is equivalent to the state-
ment that, if K ⊂ G is a compact open subgroup, then all irreducible representa-

27
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tions of the Hecke algebra, HK(G) = eKH(G)eK , are finite dimensional. The first
step is to prove that HK(G) is “almost” an algebra of finite type.

Definition 13. Let A be a C-algebra with unit. A is of finite type if there is
a commutative, finitely generated C-algebra C and a homomorphism α : C → A
such that (i) α(C) lies in the center of A, and (ii) A is a finitely generated C-
module.

Remarks. 1. Clearly, any irreducible representation of an algebra of finite type
is finite dimensional. 2. Such objects are in the world of algebraic geometry, and
so may be studied using algebra-geometric techniques.

Except where otherwise indicated, G = GL(n).

1.1. Basic Results. Set K0 = GL(n,O); this is a maximal compact subgroup.
If Mn(O) designates the n × n matrices with entries in O and π generates the
maximal ideal in O, then for each i > 0 we define Ki = {1 + πiMn(O)}. The Ki

are open compact subgroups and K0 normalizes each Ki. The Ki, i > 0 are called
congruence subgroups. They clearly form a basis for the topology of G.

Let M0 be the diagonal subgroup of G. We will denote the maximal compact
subgroup of M0 by M◦

0 . Clearly, M◦
0 = M0 ∩K0, that is all diagonal matrices with

entries in O∗. Let Λ = M0/M
◦
0
∼= Zn. Fix an embedding Λ →֒M0 by

λ = (l1, . . . , ln) 7→




πl1

. . .

πln


 .

Our goal is to describe HK(G) for G = GL(n). First we have some simple
lemmas that are true for general G. If K ⊂ G is an open compact subgroup, we
will use the notation

a(g) = eK ∗ Eg ∗ eK ∈ HK(G)

for any g ∈ G. Here Eg is the delta distribution at g.

Lemma 12. a(g) depends only on the double coset KgK = Supp a(g).

Lemma 13. Given a double coset σ = KgK ⊂ G, a(g) = eK ∗ Eg ∗ eK is the
unique K-left-and-right-invariant distribution supported on σ and with integral 1.

Lemma 14. As g runs through a system of representatives for the double cosets
K\G/K, the a(g) form a basis for HK(G).

In light of these lemmas, to understand the multiplication in HK(G) we must
study double cosets. For example, (KgK)(Kg′K) ⊃ Kgg′K. If in fact

(KgK)(Kg′K) = Kgg′K,

then a(gg′) = a(g)a(g′).
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In general, a description of K\G/K is given by the Cartan decomposition. For
GL(n) this is as follows:

We know Λ ∼= Zn = {(e1, . . . , en)}. The Weyl chamber, Λ+ ⊂ Λ, is given by
Λ+ = {(l1, . . . , ln) | l1 ≤ l2 ≤ · · · ≤ ln}. Equivalently

Λ+ =








πl1

. . .

πln




∣∣∣∣∣∣∣∣
l1 ≥ l2 ≥ · · · ≥ ln




.

The Cartan decomposition is

G = K0Λ
+K0.

The proof follows from simply manipulating the matrices involved.
Fix a congruence subgroup K = Ki, i > 0. Choose a set of representatives

x1, . . . , xr for K\K0. Let H0 = HK(K0) ⊂ HK(G) be the finite-dimensional
subalgebra spanned by the a(xj) = eK ∗ Exj

∗ eK . Observe that, as K0 normalizes
K, Kxj = xjK for all j. Therefore, for any g ∈ G, we have (KxjK)(KgK) =
KxjKgK = KxjgK. Equivalently, a(xjg) = a(xj)a(g). In the same way, a(gxj) =
a(g)a(xj).

Let C be the span of {a(λ)|λ ∈ Λ+}. The next theorem is fundamental.

Theorem 9. (1) HK(G) = H0CH0.
(2) C is a commutative, finitely generated algebra.

Remark. This is saying that that HK(G) is of finite type in some sense, but it
is not generated over C on the left nor on the right, but rather “in the middle”.

Proof of (1). By the Cartan decomposition, G =
⋃
λ∈Λ+ K0λK0. Moreover,

K0 =
⋃
iKxi =

⋃
i xiK. Therefore,

G =
⋃

λ∈Λ+

i,j

KxiλxjK.

This implies that the a(xiλxj) form a basis for HK(G). But we showed above that
a(xiλxj) = a(xi)a(λ)a(xj) which implies (1).

The proof of part (2) of the theorem will occupy the remainder of this section.
It is clearly enough to prove that a(λµ) = a(λ)a(µ) for λ, µ ∈ Λ+. Essentially, we
must show that (KλK)(KµK) = KλµK. This is not trivial because the elements
of Λ+ do not normalize K. The idea is to decompose K into parts that can be
moved right or left.

Let U be the standard maximal unipotent subgroup of G (i.e. upper triangular
matrices with 1’s on diagonal) and U the lower triangular unipotent subgroup.
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Set K+ = K ∩ U and K− = K ∩ U . Also, KM0 = K ∩M0, where M0 = diagonal
matrices as before. Here is the decomposition.

Proposition 14. K = K+KM0K−

Proof. Just do elementary row and column reductions on the elements of K.
These correspond to multiplying by K+ and K− on the left and right, respec-
tively.

Corollary. K = K−KM0K+

Proof. K = K−1 = K−1
− K−1

M0
K−1

+ = K−KM0K+

Proposition 15. If λ ∈ Λ+ then λK+λ
−1 ⊂ K+ and λ−1K−λ ⊂ K−.

Proof. Observe that Ad(λ)|U is (not strictly contracting. In fact, if λ =
diag(λi), then λ(ui,j)λ

−1 = (λiλ
−1
j ui,j). But for j > i, λiλ

−1
j ∈ O. This proves the

first statement. The second is similar.

We can now prove part (2) of theorem 9. We have reduced the problem to
showing KλKµK = KλµK. Now,

KλKµK = KλK+KM0K−µK

= K(λK+λ
−1)λµ(µ−1K−µ)K

⊂ KλµK

by the last proposition. The reverse inclusion always holds so theorem 9 (2) is
proved.

1.2. Modules. We have shown that HK = H0CH0 with C commutative and
so, in particular, a(λn) = a(λ)n. (Recall that a(λ) = eKEλeK .) In this section we
use this to study modules. Let (π, V ) be a representation of G, πK the associated
representation of HK on V K . We will consider the problem of computing the
kernel of a(λn) on V K .

First we have a simple lemma. Recall that for any compact subgroup Γ ⊂ G, eΓ
is the unique distribution which is supported on Γ, bi-Γ invariant and with integral
1; i.e. just Haar measure. Using this uniquness, it is easy to prove

Lemma 15. If Γ = Γ1Γ2, then eΓ = eΓ1 ∗ eΓ2. Moreover, egΓg−1 = Eg ∗ eΓ ∗ Eg−1.

By the lemma and proposition 14, we have

eK = eK+ ∗ eKM0
∗ eK−

and

Eλ ∗ eK+ ∗ Eλ−1 = eλK+λ−1
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for λ ∈ Λ+ (we will often suppress the ∗’s). Moreover, proposition 15 immediatedly
implies

Lemma 16. If ν ∈ Λ+, then

(1) eK ∗ eνK+ν−1 = eK
(2) eν−1K−ν ∗ eK = eK
(3) eK ∗ eKM0

= eKM0
∗ eK = eK .

(4) eνKM0
ν−1 = eν−1KM0

ν = eM0

Proposition 16. If ν ∈ Λ+, then Ker a(ν)|V K = Ker eν−1K+ν |V K .

Proof. Using the preceding lemmas, we have

a(ν) = eK ∗ Eν ∗ eK

= eK+ ∗ Eν ∗ eν−1KM0
ν ∗ eν−1K−ν ∗ eK

= Eν ∗ eν−1K+ν ∗ eK .

But on V K , eK acts as the identity. Moreover, Eν is invertible. It follows that the
kernel is as claimed.

Recall that we are trying to compute Ker(a(ν)) for ν = λn. Proposition 16
suggests that we should look at ν−1K+ν. If (ki,j) ∈ K+, we have

ν−1(ki,j)ν = λ−n(ki,j)λ
n = (λ−ni λnj ki,j).

Since K+ = K ∩U , ki,j = 0 for i > j and ki,j = 1 for i = j. It remains to consider
i < j. We begin with a special case.

Special Case. Suppose λ = diag(πm1 , . . . , πmn) where m1 > m2 > · · · > mn;
the mi are strictly increasing. Then λ−ni λnj gets big (in valuation) with n for i < j.
Thus, ⋃

n

λ−nK+λ
n = U.

This gives a filtration by compact subgroups U1 ⊂ U2 ⊂ · · · ⊂ U with
⋃
Ui = U .

Remark. Recall from chapter I.3.3 the Jacquet module JU(V ) = V/V (U).
Since U has a filtration by compact subgroups, proposition 10 shows that JU is an
exact functor.

We are interested in the kernel of eUn
. Of course, Ker eU1 ⊂ Ker eU2 ⊂ · · · .

Proposition 17.
⋃
i Ker eUi

= V (U), the subspace of V spanned by elements
of the form π(u)v − v.

Proof. It is obvious that Ker eUi
= V (Ui). But V (U) is the union of the

V (Ui).

Corollary.
⋃
n Ker a(λn) ∩ V K = V (U) ∩ V K.
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Proof. Immdiate from propositions 16 and 17.

General Case. Now we suppose that λ = diag(πm1 , · · · , πmn) where the mi

are not strictly increasing. Say m1 = m2 = · · · = mn1 > mn1+1 = · · · = mn1+n2 >
· · · . The ni’s give a partition of n. We will carry out the same analysis as before
except that now we must work with an arbitrary standard parabolic subgroup
instead of just the minimal parabolic. With this in mind we make an aside on
parabolic subgroups.

Parabolic Subgroups. Suppose that G is reductive group. Pick g ∈ G. Set

Pg = {x ∈ G | {Ad(gn)x;n ≥ 0} is relatively compact in G}

Ug = {x ∈ G | Ad(gn)x→ 1 as n→ ∞}

Claim. Let G be any reductive group. For each g ∈ G, Pg and Pg−1 form a pair
of opposite parabolic subgroups. Moreover, if M = Pg ∩ Pg−1, then Pg = MUg and
Pg−1 = MUg−1 .

Proof. Exercise.

Remarks. 1. M is called a Levi subgroup and P = MU is the Levi decomposi-
tion. 2. If g is unipotent or central, Pg = G and Ug = 1.

It is not hard to see that in the case G = GL(n), g = λ ∈ Λ+, Pλ is the
group of block-upper-triangular matrices corresponding to the partition of n that
we associated to λ above. Similarly, Pλ−1 and Mλ are the corresponding block-
lower-triangular and block-diagonal groups, respectively. We call Pλ a standard
parabolic subgroup and Uλ a standard unipotent subgroup.

Set KP
+ = K ∩ Uλ, K

P
− = K ∩ Uλ−1 and KP

M = K ∩Mλ (we will often suppress
the P and λ). Exactly as before, we can prove

Proposition 18. For G = GL(n)

(1) K = KP
+K

P
MK

P
− , λKP

+λ
−1 ⊂ KP

+ and, λ−1KP
−λ ⊂ KP

−

(2) (Adλn)|K+ → 1 as n→ ∞, and (Adλ−n)|K−
→ 1 as n→ ∞

(3)
⋃
n Ad(λ−n)KP

+ = Uλ
(4)

⋃
n Ker a(λn) ∩ V K = V (Uλ) ∩ V K.

In light of the preceding results, it is not surprising that the Jacquet functors
JU where U is a unipotent subgroup are particularly important.

Jacquet Functors. Let G be an arbitrary (reductive) l-group. Let P = MU
be a standard parabolic subgroup of G. Let (π, V ) be a representation of G. So
far we have viewed JU(V ) only as a vector space. However, M normalizes U and
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thus preserves V (U). Consequently, JU(V ) is naturally an M -module. Define the
functor

rM,G : M(G) → M(M)

by
rM,G(V ) = JU(V ).

The choice of P = MU is understood here.
The key fact about rM,G is that it is related to induction. First we state an

important geometric fact which we do not prove.

Iwasawa Decomposition. If P is a parabolic subgroup and K0 is a maximal
compact subgroup of G, then G = K0P . In particular, G/P is compact.

Corollary. If P is any parabolic subgroup of G, then P is conjugate to a
standard parabolic by an element of K0. Moreover, G/P is compact.

Theorem 10. rM,G has a right adjoint functor,

iG,M : M(M) → M(G)

defined as follows: if W is a representation of M , extend it to P by letting U act
trivially. Then

iG,M(W ) = indGP (W ).

Remarks. 1. The Iwasawa decomposition implies that indGP = IndGP . 2. We
will later modify the definitions of r and i slightly. See chapter 3.

Proof. Let W ∈ M(M), V ∈ M(G). We must show that there is a functorial
isomorphism HomG(V, iG,M (W ))→̃HomM(rM,GV,W ). Well,

HomG(V, iG,M (W )) = HomG(V, IndGP (W ))

by Frobenious reciprocity

= HomP (V,W )

as U acts trivially

= HomP (V/V (U),W )

= HomP (rM,GV,W )

= HomM(rM,GV,W )

as required.

Proposition 19. Let M be a Levi subgroup of G. Then, the functors rM,G and
iG,M satisfy the following properties.

(1) rM,G is right adjoint to iG,M .
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(2) If N is a Levi subgroup ofM , then rN,M◦rM,G = rN,G and iG,M◦iM,N = iG,N .
(3) iG,M maps admissible to admissible.
(4) rM,G maps finitely generated to finitely generated.
(5) iG,M and rM,G are exact.

Proof. We have already proved (1), and (2) is a simple verification. (3) follows
from the fact that, asG/P is compact, indGP takes admissible modules to admissible
modules (see section I.3.2). Recall from chapter 1 that ind is exact. Hence the
first part of (5) is clear. For the second part of (5), we must show that U is the
union of compact subgroups. If G = GL(n) this is discussed before proposition
17. It is also true in general (see section 2.1).

For (4), let (π, V ) be a finitely generated G-module. It is enough to show that V
is finitely generated as a P -module because then so is V/V (U); but U acts trivially
here so V/V (U) = rG,M (V ) is finitely generated as an M -module.

Suppose V is generated by ξ1, . . . , ξl. Then G = PK0 implies that V |P is
generated by all π(k)ξi, k ∈ K0. But because we are considering only smooth
representations, k 7→ π(k)ξ is locally constant. As K0 is compact, this proves that
V |P is finitely generated.

The essential usefulness of the functors iG,M and rM,G is, first of all, to build
representations of G out of representations of M – a smaller and presumably
simpler group – and second, to understand which representations may be obtained
in this way. One feature of this situation is that even when studying a particular
group, such as GL(n), we are led to consider other groups, such as M = GL(n1)×
· · · × GL(nk).

1.3. Quasi-Cuspidal Representations.

Definition 14. A representation (π, V ) is called quasi-cuspidal if for any stan-
dard Levi subgroup M except M = G, rM,G(V ) = 0.

Remark. Another formulation is that (π, V ) is quasi-cuspidal if for any stan-
dard unipotent subgroup U except U = 1, JU(V ) = 0.

Definition 15. Let K ⊂ G be a fixed compact subgroup. A representation
(π, V ) is called compact modulo center if whenever ξ ∈ V , Dξ,K(g) = π(eK)π(g−1)ξ
has compact support modulo center.

It is easy to see that this definition is independent of the choice of K.

Theorem 11. (π, V ) is quasi-cuspidal if and only if it is compact modulo center.
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Proof. Let (π, V ) be a quasi-cuspidal representation, ξ ∈ V . We may assume
that K = Ki is a congruence subgroup and, by choosing i large enough, that ξ is
K-invariant. Then, Dξ,K(g) = π(eK)π(g−1)π(eK)ξ.

As in section 1.1, let {x1, . . . , xr} be a system of representatives for K\K0. We
proved that g ∈ KxiλxjK = xiKλKxj for some λ ∈ Λ+ and some i, j. Thus, it is
enough to show that λ 7→ π(xi)π(a(λ))π(xj)ξ has compact-modulo-center support
on Λ+. This is true precisely if λ 7→ π(a(λ))ξ has compact-modulo-center support
on Λ+. (Recall that a(λ) = eKEλeK .)

Let ν1, . . . , νn be a basis for Λ+. Let λ =
∑
miνi. Since we are assuming V is

quasi-cuspidal, for each µ ∈ Λ+ so that Uµ 6= 1,

V K ∩
⋃

n

Ker a(µn) = V (Uµ) ∩ V
K = V K .

Hence, for each η ∈ V we can find kµ,η so large that π(a(µk))η = 0 whenever
k ≥ kµ,η. In particular, we can find L so large that π(a(λ))ξ = 0 if any mi ≥ L.

We now have an upper bound on the mi’s. If we could similarly put a lower
bound on them, we would prove that λ 7→ π(a(λ))ξ has compact support. We
can do this only “modulo center”. Observe that by replacing λ with λR where
R = diag(πr, . . . , πr) is in the center of Λ+, we can get mi ≥ 0.

Conversly, suppose that (π, V ) is compact modulo center. By reversing the rea-
soning given above, we see that λ 7→ π(a(λ))ξ has compact-modulo-center support
in Λ+. But, for λ non-central, the sequence λn eventually leaves all compact-
modulo center subsets of Λ+. That is, a(λn) eventually acts trivially, and so for
large n Ker a(λn) = V K . However, we know that

V K ∩
⋃

n

Ker a(λn) = V (Uλ) ∩ V
K .

Therefore, V (Uλ) ∩ V K = V K for all congruence subgroups K. As our represen-
tations are smooth, this implies that JU = V/V (U) = 0 whenever U = Uλ and
λ is a non-central element of Λ+. That is, JU(V ) = 0 whenever U is a standard
unipotent subgroup except U = 1. Therefore, (π, V ) is quasi-cuspidal.

In the last chapter we had many nice results concerning compact representa-
tions. As yet we know very little about compact modulo center ones. We now
introduce machinery to deal with the “modulo center”, and use our information
about compact representations to draw conclusions about quasi-cuspidal ones. For
now we are most interested in the case G = GL(n). However, even for this case
we will need to consider G = GL(n1) × . . .× GL(nk).

Suppose G = GL(n). Set G◦ = {g ∈ G| det g ∈ O∗}. G◦ is an open, dense,
normal subgroup of G with

Λ(G)
def
= G/G◦ ∼= Z = F ∗/O∗.
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Moreover, it is easy to see that G◦ contains all compact subgroups of G.
Remark. More generally, for G arbitrary, there is a G◦ which contains all
compact subgroups of G and so that G/G◦ = Λ(G) is a lattice. (See section 2.1.)
For example, when G = GL(n1) × · · · × GL(nk), then Λ(G) ∼= Zk.

Let Z(G) be the center of G. Then Z(G)G◦ is an open subgroup of finite index
in G (see section 2.1 for the general case). For example, for G = GL(n), the index
is n.

The idea is that we can study representations of G◦ and Z(G) separately, and
then, up to finite information, make conclusions about representations of G. More-
over, by restricting to G◦ we no longer have to worry about “modulo center”. We
first see the simplification in the Cartan decomposition. Take G = GL(n).

The Cartan decomposition states that G = KΛ+K. Moreover, Λ+ contains
diag(πr, . . . , πr) for all r ∈ Z and thus is not a strict cone. This is precisely why
we needed the “modulo center” assumption in the last theorem, as is clear from
the proof. Set Λ+◦ = Λ+ ∩G◦. Then,

G◦ = KΛ+◦K.

Moreover, Λ+◦ ∼= (Z+)l, l = n−1 (and thus is a strict cone). In other words, there
is a basis ν1, . . . , νl such that Λ+◦ = {

∑
miνi|mi ≥ 0}.

Harish-Chandra’s Theorem. Representations of G◦ are compact if and only
if they are quasi-cuspidal.

Remarks. 1. As all standard unipotent subgroups lie in G◦, it makes sense
to talk of quasi-cuspidal representations. 2. The key point is compact, not just
compact modulo center.

Proof. The proof is identical to the last theorem, only easier. As before, if
(π, V ) is quasi-cuspidal, we fix a K compact and ξ ∈ VK and easily reduce to
proving that λ 7→ π(a(λ))ξ has compact support in Λ+◦.

Let ν1, . . . , νl be a basis for Λ+◦. Write λ =
∑
miνi where (unlike last time)

mi ≥ 0. Next we prove that there is a constant L so that for π(a(λ))ξ to be non-
zero, we must have mi ≤ L. Thus, we get finite (and hence compact) support.

The converse similarly parallels the proof of theorem 11.

Definition 16. A representation is called cuspidal if it is both quasi-cuspidal
and finitely generated.

Corollary. Any irreducible cuspidal representation of G is admissible.

Proof. Let (ρ,W ) be the representation. First we show that W |G◦ is finitely
generated. Let Z = Z(G). Because [G : ZG◦] is finite, W |ZG◦ is finitely generated.
But by irreducibility, Z acts by scalers. Hence W is finitely generated as a G◦-
module, as claimed.
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By Harish-Chandra’s theorem, W |G◦ is compact. Proposition 11 says that
finitely generated compact representations are admissible. Thus, W |G◦ is admis-
sible. As G◦ contains all compact subgroups, the corollary follows.

In order to extend this result to all irreducible representations, we use the func-
tors rM,G and iG,M , and their properties. We have the following easy but important
lemma.

Lemma 17. Let (τ,W ) be an irreducible representation of G, then there is a
parabolic P = MU and an irreducible cuspidal representation (ρ, E) of M , so that
there exists an embedding W →֒ iG,M (E).

Proof. Let M be a Levi subgroup, minimal subject to the condition E′ =
rM,G(W ) 6= 0. We claim that E′ is cuspidal. This follows from proposition 19.
Indeed, by part (2), if N $ M then rN,M (E ′) = rN,M ◦ rM,G(W ) = rN,G(V ) = 0
by choice of M . This proves E′ quasi-cuspidal. Also, W is irreducible and so
certainly finitely generated. Thus, by proposition 19 (4), E′ is finitly generated.

Let E be an irreducible quotient of E′. E is an irreducible cuspidal representa-
tion of M , as required. Moreover, there is a nonzero map rM,G(W ) = E ′ → E. By
the adjunction property (proposition 19), we get a non-zero map W → iG,M(E).
As W is irreducible, this must be an embedding.

Remark. This use of the adjunction property is typical. Namely, we show that
something exists and is non-zero. It never gives more detailed information than
that.

Theorem 12. Any irreducible representation is admissible.

Proof. Let W and E be as in the lemma. E is irreducible cuspidal and there-
fore admissible by the corollary to Harish Chandra’s theorem. By part (3) of
proposition 19, iG,M (E) is also admissible. But W →֒ iG,M(E) so W is admissi-
ble.

1.4. Uniform Admissiblity. The theorem that we just proved says the fol-
lowing: given an open compact subgroup K and an irreducible representation V
of G, then V K is finite dimensional. However, as far as we know, dimVK may be
arbitrarily large for a given V .

Uniform Admissibility Theorem. Given an open compact subgroup K ⊂
G, then there is an effectively computable constant, c = c(G,K), so that whenever
V is an irreducible representation of G, dimV K ≤ c.
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Reformulation. All irreducible representations of the algebra HK(G) have
dimension bounded by c(G,K).

Our main tool will be the decomposition HK(G) = H0CH0. However, we first
need some linear algebra. Consider the following question: Given N ∼= Cm and C
a commutative subalgebra of EndN , what is a reasonable bound for dimC?

Conjecture. If C is generated by l elements, then dimC ≤ m + l.

Bernstein does not know how to prove this. However, we do have

Proposition 20. If N ∼= Cm, C ⊂ EndN is commutative and generated by l
elements, then

dimC ≤ m2−1/2l−1

.

Proof. Omitted. See [BZ0]

We now prove the Uniform Admissibility theorem.

Proof. Let (ρ, V ) be an irreducible representation of HK(G). Let k = dimV .
We want to find c = c(G,K) so that k ≤ c. We know that k ≤ ∞. By a
general algebraic result (Burnside’s Theorem), it follows that ρ : HK(G) → EndV
is surjective.

We may write HK = H0CH0 with C commutative and finitly generated (say
l generators). Let d = dimH0. Clearly, k2 = dim EndV = dim ρ(HK) ≤

d2 dim ρ(C). But by the proposition, dim ρ(C) ≤ k2−1/2l−1
. Thus,

k2 ≤ d2k2−1/2l−1

.

Therefore, if we set c(G,K) = d2l

, we have k ≤ c.

Consider G◦ ⊂ G as before, and consider K ⊂ G◦ compact. We have seen
that cuspidal representations of G◦ are compact. Thus, given any irreducible
cuspidal representation (ρ,W ) of G◦, and ξ ∈ W , then Dξ,K(g) = ρ(eK)ρ(g−1)ξ
has compact support in G◦. We will now show how the uniform admissibility
theorem can strengthen this result.

Proposition 21. Given K ⊂ G◦ ⊂ G as above, there exists an open compact
subset Ω ⊂ Ω(G,K) ⊂ G◦ such that SuppDξ,K(g) ⊂ Ω for all (ρ,W ) irreducible
cuspidal and ξ ∈ W .
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Proof. It follows from the proof of Harish-Chanda’s theorem that compact
representations of G◦ are exactly those for which λ 7→ ρ(a(λ))ξ has finite (and
hence compact) support in Λ+◦. This in turn is equivalent to the statement that
for ξ ∈ WK there is a constant kξ so that any ν ∈ Λ+◦\{1} satisfies ρ(νk)ξ = 0
whenever k ≥ kξ. It is easy to see that our proposition amounts to the statement
that these constants can be chosen independent of ξ and W . But this is obvious
because we know that there is a constant c = c(G,K) so that dimWK ≤ c.

Corollary. Given K ⊂ G◦, there are only finitly many equivalence classes of
irreducible cuspidal representations of HK(G◦).

Reformulation. There are a finite number of equivalence classes of irre-
ducible cuspidal representations of G◦ with a K-fixed vector.
Remark. By working through the proofs in this section, one can obtain a
bound on this number.

Proof. It is easy to see that the support of the matrix coefficients of all irre-
ducible cuspidal representations must lie in Ω(G,K) (see the proof of theorem 6).
Hence, the corollary follows from the following general lemma.

Lemma 18. The matrix coefficients of any set of pairwise non-isomorphic ma-
trix coefficiets are linearly independent functions.

The proof is standard.

2. General Groups

In this section we will discuss many of the results that hold for general reductive
groups but so far we have only discussed for GL(n). We will omit the proofs of
many of the geometric results. Most of these are standard although one (Bruhat’s
theorem) is quite hard.

2.1. Geometric Results. Let G be the F-points of a connected reductive
algebraic group where F is a totally disconnected field. Most of the geometric
results that were almost obvious for GL(n) also hold for G but the proofs are
more difficult.

Proposition 22. (1) G is an l-group.
(2) Let G◦ be the subgroup of G generated by all compact subgroups. Then G◦

is an open normal subgroup with compact center.
(3) G/G◦ = Λ(G) is a lattice.
(4) If Z is the center of G then G◦Z is of finite index in G.



40 II. CUSPIDAL REPRESENTATIONS

Definition 17. A parabolic subgroup is one of the form

P = Pg = {x ∈ G | {Ad gn(x)} is relatively compact}.

Fix a minimal parabolic P0. A standard parabolic is a parabolic containing P0.

Proposition 23. (1) Any subgroup which contains P0 is a parabolic.
(2) Any parabolic is conjugate to exactly one minimal parabolic.
(3) Parabolic subgroups are equal to there own normalizers.

Iwasawa Decomposition. There is a maximal compact subgroup K0 so that
G = P0K0.

Corollary. If P is any parabolic subgroup of G, then P is conjugate to a
standard parabolic by an element of K0. Moreover, G/P is compact.

Levi Decomposition. There is a unipotent group, U0, and a reductive group
M0, so that P0 = M0U0.

Claim. M0 is compact modulo center if and only if M ◦
0 is compact.

We prove this because it introduces a technical point that will be important
later.

Proof. Let Λ = Λ(M0) be the lattice M0/M
◦
0 . In case G = GL(n), there is a

natural lifting of Λ to the center Z(M0) (see section 1.1). In general, however, the
situation is more subtle.

Let ΛZ be the image of Z(M0) in Λ. ΛZ can be lifted to the abelian group
Z(M0) ⊂ M0. Moreover, it follows from proposition 22 that ΛZ is a lattice of
finite index in Λ. Thus, modulo the center, M0 is compact if and only if M◦

0 is.

It is important to note that we may write

Λ(M0) =
⋃

ΛZµi

and then choose a setwise lifting of Λ to M0 so that restricted to ΛZ it is a group
lifting.

Choose a minimal parabolic with fixed Levi decomposition, P0 = M0U0. (Note
that this also determines a Levi decomposition for P ⊃ P0; namely, choose M
containing M0.) K0 is a maximal compact subgroup so that G = P0K0.

Fix a lift of Λ toM0 as above. Let Λ+ = {λ ∈ Λ | Ad(λ)|U0 is (not strictly) contracting}.
As with GL(n), there is a subtlty when G does not have compact center. In this
case, Z(G)∩Λ+ is non-trivial. However, most of the results below are trivially true
for central elements. Of course, we can always work with G◦ which has compact
center. In this case, Λ+ is a cone. Note that for λ ∈ Λ+, P0 ⊆ Pλ.
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In general, the proofs of the results in this section are nearly identical to the
case G = GL(n) discussed in previous lectures. The next theorem, however, is
hard.

Bruhat’s Theorem. There are arbitrarily small congruence subgroups K sat-
isfying

(1) K is normalized by K0.
(2) For any standard parabolic subgroup P = MU , we have a decomposition,

K = KUKMKU , where KU = K ∩ U , KM = K ∩M and KU = K ∩ U .
(3) (a) KM is Ad Λ-invariant.

(b) KU is Ad Λ+-invariant.
(c) KU is (AdΛ+)−1-invariant.

Remarks. 1. Sometimes condition (2) is expressed by saying that P and K are
in good position. For λ ∈ Λ+, condition (3) says that λ is dominant with respect
to the pair (P,K). 2. We will sometimes need to consider the lattice Λ(M) for
M a non-minimal (standard) Levi subgroup, say P = MU . (Our convention is
that Λ = Λ(M0).) Although Λ(M) is not necessarily contained in Λ, we do have
Λ(Z(M)) ⊂ Λ(Z(M0)). (This situation is somewhat clarified by the introduction
of the root system, section IV.2.1.)

3. Let Λ(M)++ be the set of λ so that P = Pλ; these are called strictly dominant.
Equivalently, we could require that Ad(λ)|U and Ad(λ−1)|U are strictly contracting,
and that the family of operators Ad(λn)|M , n ∈ Z, is uniformly bounded. Suppose
that P and K are in good position. If λ ∈ Λ(M)++ and furthermore λ is dominant
with respect to (P,K), then we say that λ is strictly dominant with respect to the
pair (P,K). Note that this set includes Λ(M)+ ∩Λ+ but will in general be larger.
We will denote the set of λ which are strictly dominant with respect to (P,K) by
Λ(M,K)++

Lemma 19. For any standard parabolic P = MU , we may find arbitrarily small
K so that P and K are in good position and there exists λ strictly dominant with
respect to the pair (P,K).

Proof. Follows from Bruhat’s theorem and the preceding remarks.

Corollary. Any standard unipotent subgroup U has a filtration by compact
subgroups.

Proof. Suppose P = MU . Then by the lemma there is an open compact
subgroup K and a λ strictly dominant with respect to the pair (P,K). Let Un =
λ−nKUλ

n with KU = K ∩ U as in Bruhat’s theorem. Then U1 ⊂ U2 ⊂ · · · and⋃
n Un = U .
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As for was the case for GL(n), an important role is played by distributions of
the form a(λ) = eKEλeK , λ ∈ Λ+.

Lemma 20. Suppose λ, µ ∈ λ+. Then a(λµ) = a(λ)a(µ).

Remark. the proof is the same as for GL(n) except that, as discussed above,
the lifting Λ+ →֒ M0 is only as sets, not as groups. However, this does not effect
the proof.

We need one more geometric result.

Cartan Decomposition.

G = K0Λ
+K0

If we write Λ =
⋃

ΛZµi as before, µi will also denote the corresponding (setwise)
lift to M0. Let N(K) be the normalizer of K in G. Let x1, . . . , xr ∈ K0 be a
(setwise) lift of the image of K0 → N(K)/K.

The last two results easily imply

Theorem 13. Let C = Span{a(λ) | λ ∈ Λ+
Z}, D = Span{a(µi)} and H0 =

Span{a(xi)}. Then

(1) HK(G) = H0DCH0.
(2) C is a commutative algebra.

Remark. Unlike in the case of GL(n), the decomposition in (1) is not a product
of subalgebras; D and H0 are finite dimensional vector spaces but not in general
subalgebras.

2.2. Representation Theory. Theorem 13 is weaker than the result that we
obtained for GL(n) (theorem 9). Nevertheless, it is suficient to imply in general
the results that followed theorem 9. In particular, as for GL(n), we have

Proposition 24.
⋃

n

Ker a(λn) ∩ V K = V (Uλ) ∩ V
K

As before, the next step is to apply this to quasi-cuspidal representations. For
each standard parabolic P = MU , we can define the functors iG,M : M(M) →
M(G) and rM,G : M(G) → M(M) as before. A representation is quasi-cuspidal
if rM,G(π) = 0 for all Levi subgroups M $ G. Cuspidal representations are

quasi-cuspidal and finitely generated, as before.

Theorem 14. A representation (π, V ) is quasi-cuspidal if and only if it is com-
pact modulo center.

Harish-Chandra’s Theorem. (π, V ) is a quasi-cuspidal representation of G
if and only if π|G◦ is compact.
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The proofs of these theorems for GL(n) can be easily modified to handle the
gerneral case. The proofs of all the remaining results are exactly the same as for
GL(n).

Corollary. Any cuspidal irreducible representation is admissible.

Theorem 15. Any irreducible representation is admissible.

Uniform Admissibility Theorem. Given K ⊂ G a congruence subgroup,
there is a constant c = c(G,K) such that for any irreducible (ρ,W ), dimWK < c.

Theorem 16. Given K ⊂ G, there is a compact modulo center subgroup Ω =
Ω(G,K) ⊂ G which contains the supports of all matrix coeffiecients of the form

mξ̃,ξ(g) =< ξ̃, ρ(g−1)ξ > where ξ̃, ξ are K-invariant and lie in some quasi-cuspidal
representation (ρ,W ).

Corollary. There are a finite number of equivalence classes of irreducible
cuspidal representations of G◦ with a K-fixed vector.

3. Cuspidal Components

3.1. Relations between G and G◦. Here we investigate to what extent the
representation theory of G◦ controls the representation theory of G. Note that
Λ(G) = G/G◦ is a lattice.

Definition 18. An unramified character of G is a character ψ : G→ C∗ which
is trivial on G◦. The set of unramified characters is denoted Ψ(G).

Remark. Ψ(G) = Hom(Λ(G),C∗) ∼= (C∗)l. In this way, we introduce (com-
plex) algebraic geometry into the study of G.

Proposition 25. Let (ρ, V ) and (ρ′, V ′) be irreducible representations of G.
Then

(1) ρ|G◦ is semisimple of finite length.
(2) The following are equivalent

(a) ρ|G◦
∼= ρ′|G◦

(b) JH(ρ|G◦) ∩ JH(ρ′|G◦) 6= ∅
(c) ρ′ = ψρ for some unramified character ψ ∈ Ψ

Proof. (1) Let Z be the center of G. ρ|G◦Z is semisimple of finite length
because ρ on G is and G◦Z has finite index in G. But irreducibility implies that
Z acts as a scaler so ρ|G◦ is also semisimple.

(2) (a)⇒(b) and (c)⇒(a) are obvious. Thus, it is enough to show that (b)⇒(c).
Let H = HomG◦(V, V ′). There is an action, τ , of G on H given by τ(g)f =

ρ′(g)fρ(g)−1 where g ∈ G and f ∈ H. By definition of H, τ |G◦ is the identity.
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Thus, we may think of τ as a representation of Λ(G). Let h ∈ H be an eigen-
function for τ with eigencharacter ψ; i.e. τ(g)h = ψ(g)h for all g ∈ G. From the
definition of τ , it is now obvious that as a map of C vector spaces, h : V → V ′,
h intertwines the G-action of ψρ on V with the G-action of ρ′ on V ′. As both
actions are irreducible, it follows that ρ′ = ψρ.

We have an action of the algebraic group Ψ(G) on the set IrrG, namely ψ : π →
ψπ. We now investigate the orbits of this action.

Lemma 21. Every orbit of Ψ(G) on IrrG has a finite stationary subgroup.

Proof. Let Z = Z(G), Λ = Λ(G) and ΛZ the image of

Z → G→ Λ

as in the last section. Let Z′ ⊂ Z be a lifting of ΛZ . As Z ′ ∼= ΛZ , there will be no
confusion if we write Ψ(Z′) for both the characters of Z ′ and Hom(ΛZ ,C∗).

The group Ψ(G) acts on Ψ(Z ′) via the restriction Ψ(G) → Ψ(Z ′). Furthermore,
there is a Ψ(G) equivariant map

IrrG→ Ψ(Z ′)

which takes an irreducible representation to its central character restricted to Z′.
Thus, to prove the lemma, it is enough to show that the action of Ψ(G) on Ψ(Z′)
has finite stabilizers. But this is clear from the fact that ΛZ has finite index in
Λ.

Definition 19. A cuspidal component is an orbit, D, of Ψ(G) in the set IrrcG
of cuspidal representations of G.

Remark. This makes sense becase, by Harish-Chandra’s theorem, ψρ is cusp-
idal whenever ρ is.

We have shown that each cuspidal component D has the form Ψ(G)/G where
G is a finite subgroup. Therefore, D has the structure of a connected complex
algebraic variety. Moreover, the action of Ψ(G) is compatible with this structure.

3.2. Splitting M(G).

Proposition 26. Let D ⊂ IrrG be a cuspidal component. Then D splits the
category M(G).

Recall that this means that every V ∈ M(G) can be written V = VD ⊕ V ⊥
D

where JH(VD) ⊂ D and JH(V ⊥
D ) ∩D = ∅.
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Proof. We begin by restricting the situation to G◦. By proposition 25, all
elements of D are equivalent upon restriction to G◦, say D|G◦ = {ρ}. Of course,
ρ may no longer be irreducible. But by the same proposition, it is semisimple and
of finite length, say ρ1, . . . , ρr. These are irreducible cuspidal representations of
G◦ and therefore compact (Harish-Chandra’s theorem). Moreover, compact rep-
resentations are splitting (the main theorem on cuspidal representations, section
I.5.1). Thus, on the level of G◦-modules, there is a decomposition V = VD ⊕ V ⊥

D

where JH(VD|G◦) ⊂ {ρ1, . . . , ρr} and JH(V ⊥
D |G◦) ∩ {ρ1, . . . , ρr} = ∅.

It only remains to observe that this decomposition is preserved by the action of
G. But this follows from the fact that G permutes the ρi.

The next result is a “uniform” version of the proposition.

Theorem 17. The subset of irreducible cuspidal representations, IrrcG ⊂
IrrG, splits M(G). In other words, if V ∈ M(G), we may write V = Vc ⊕ Vi
where JH(Vc) consists only of cuspidal representations and Vi has no cuspidal

Jordan-Holder components.

Proof. Let K be a congruence subgroup. It is a corollary of the uniform admis-
sibility theorem that there are only a finite number of irreducible representations
of G◦ with K-invariant vectors. By proposition 25, this implies that there are only
finitly many cuspidal components, say D1, . . . , Dj(K), which include representa-
tions with K-fixed vectors. Furthermore, if one representation in D has a K-fixed
vector, then all representations in D contatain such a vector.

Proposition 26 says that the D’s split M(G). Therefore, for V ∈ M(G),

V = VD1 ⊕ VDj(K)
⊕ V ⊥

c,K = Vc,K ⊕ V ⊥
c,K .

Consider a decreasing sequence of congruence subgroups, K1 ⊃ K2 ⊃ . . . . Set

Vc =
⋃

Ki

Vc,Ki

Vi =
⋂

Ki

V ⊥
c,Ki

Obviously, JH(Vc) ⊂ IrrcG and JH(Vi) ∩ IrrcG = ∅.
It only remains to show that V = Vc ⊕ Vi. Let ξ ∈ V . Then for one of our

congruence subgroups, say K, ξ ∈ VK . We have ξ = ξc,K ⊕ ξ⊥c,K . We will write ξ′

for ξ⊥c,K . It is obvious that ξc,K ∈ Vc. We will be done if we show that ξ′ ∈ Vi.
Let V ′ ⊂ V be the module generated by ξ′. We must show that JH(V ′) does

not intersect any cuspidal components D. Since ξ is K-invariant, any projection
of ξ (and so, a fortiori, ξ ′) onto a representation without K-fixed vectors must be
zero. Thus, JH(V ′) does not intersect any D without K-fixed vectors. On the
other hand, ξ′ is, by definition, the part of ξ which has zero projection onto the
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cuspidal components with K-fixed vectors. Thus, JH(V ′) does not intersect any
D with K-fixed vectors. This proves ξ′ ∈ Vi as needed.

We will use the notation Mcusp for the category of cuspidal representations and
Mind for the remaining ones. These are called induced representations. We have
shown

Corollary. M(G) = Mcusp ×Mind. Moreover, Mcusp =
∏
DM(D) where D

runs through the cuspidal components of G.

This result separates the problem of understanding representations of G, that
is the category M(G), into two parts, namely Mcusp and Mind. Furthermore, we
have decomposed Mcusp into a sum of much smaller categories. In the next section
we will give a description of the M(D) as a category of modules over an explicitly
described ring. In this sense, we can say a lot about Mcusp. The category Mind,
on the other hand, is more subtle. Nevertheless, a similar though somewhat less
complete analysis may be given for Mind. This is the topic of chapter 3.

3.3. The Category M(D). In this secion we investigate M(D), the category
of representations whose Jordan-Holder components are contained in a cuspidal
component D, say

D = {ψρ | ρ = fixed cuspidal representation, ψ ∈ Ψ(G)}.

Recall that Ψ(G) is the set of unramified characters on G. Let F be the algebra
of regular functions on Ψ(G). F is a G-module in the obvious way. Clearly,

F ∼= C[Λ = G/G◦] = indGG◦ C.

Definition 20. Let Π be a projective object in a category M. We say Π is a
generator if the functor

FΠ : X → Hom(Π, X)

is faithful.

Remark. Since FΠ is exact, it is enough to check that X 6= 0 implies FΠ(X) 6=
0.

Proposition 27. Let Π(D) = F ⊗ ρ. Then

(1) Π(D) ∈ M(D).
(2) Π(D) is a projective object in M(G), and hence in M(D).
(3) Π(D) is finitely generated.
(4) Π(D) is a generator of the category M(D)
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Proof. For (1), just observe that JH(Π(D)|G◦) ⊂ JH(ρ|G◦). For (2), we must
show thatX 7→ HomG(Π(D), X) is exact. It is easy to see that Π(D) = indGG◦(C)⊗
ρ = indGG◦(ρ|G◦). The idea now is to use Frobenieus reciprocity to get

HomG(Π(D), X) = HomG◦(ρ|G◦ , X|G◦).

We know that ρ|G◦ is semisimple (proposition 25) and compact (Harish Chan-
dra’s theorem). Furthermore, irreducible compact representations are splitting.
Exactness follows, proving (2).

(3) is obvious. For (4), suppose that X ∈ ObM(D), X 6= 0. Then JH(X) 6= ∅
and so X has an irreducible subquotient τ = ψρ. Then, FΠ(τ) is a subquotient of
FΠ(X). But it is obvious that FΠ(τ) 6= 0. Therefore FΠ(X) 6= 0.

This proposition is a powerful tool for illucidating the structure of M(D) when
combined with the following general lemma.

Lemma 22. Let M be an abelian category with arbitrary direct sums. Let Π ∈
M be a finitly generated, projective generator. Set Λ = EndM Π. Then M ∼=
rM(Λ) = category of right Λ-modules.

Proof. Define

F : M → rM(Λ) by

X 7→ Hom(Π, X)

which is naturally a right Λ module. As Π is projective and finitely generated, F
is exact and commutes with arbitrary direct sums. Therefore, theorem 5 implies
that F has a left adjoint, say G : rM(Λ) → M with

HomΛ(L,F(X)) ∼= Hom(G(L), X)

for X ∈ M and L ∈ rM(Λ). In particular, it follows that G is right exact and
commutes with direct sums (proposition 8).

By definition, F(Π) = Λ. We claim that G(Λ) = Π. There is an adjunction
morphism

α : G(Λ) = GF(Π) → Π.

This map has the property that the composition FΠ → FGFΠ
Fα
−→ FΠ is the

identity (see section I.3.1). As F is faithful, this implies that α is onto. Further-
more, Π is projective so GFΠ = Π ⊕K where K = Kerα.

On the other hand, GFΠ = G(Λ) and G maps projective objects to projective
objects (proposition 8). Obviously, Λ is projective in rM(Λ). This shows that
GFΠ is projective, and hence so is K. Using this and the fact that Π is a generator,
it is easy to see thatK 6= 0 implies that Hom(K,Π) 6= 0. Thus, Hom(GFΠ,Π) 6= Λ
which is false. This proves that GFΠ ∼= Π.
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We will be done if we show that the adjunction map is an isomorphism, α : GFX ∼=
X, for any object X ∈ ObM. But since Π is a generator there is an exact sequence

⊕

S1

Π →
⊕

S2

Π → X → 0.

Since G and F commute with direct sums and GFΠ ∼= Π, we get a commuting
diagram ⊕

S1
GFΠ −−−→

⊕
S2
GFΠ −−−→ GFX −−−→ 0

∼=

y ∼=

y α

y
⊕

S1
Π −−−→

⊕
S2

Π −−−→ X −−−→ 0.

By the five lemma, α is an isomorphism.

In our case, this lemma implies that

M(D) ∼= rM(Λ(D))

where Λ(D) = End(Π(D)).1 Our next goal is to describe this ring explicitly. First
we have a digression on how to think about Π(D).

Digression. Think of Π = F ⊗ ρ as a family of 1-dimensional representations of
G parametrized by the points of Ψ.

More generally, let B be the algebra of regular functions on some algebraic
variety M . Define a (G,B)-module to be a B-module together with a smooth
G-action which commutes with B. If V is a (G,B)-module, then we can think of
it as a family of G-modules parametrized by the points of M . Namely, if x ∈ M
and mx ⊂ B is the associated maximal ideal, we define the specializ ation of V at
x to be Vx = V ⊗ B/mx = V/mxV .

We now describe the ring Λ(D) = End(Π(D)).
Simple Case. Here we assume that ψρ 6∼= ρ for ψ 6= 1. In this case we will prove

that Λ(D) = F , the ring regular functions on Ψ(G).
Consider the G-module Π = F ⊗ρ as a (G,F )-module in the obvious way. Then

it is easy to see that for each ψ ∈ Ψ, the G-module Πψ
∼= ψρ. Note that this is

irreducible. Now suppose that α : Π → Π is an element of Λ(D). According to our
philosophy, we should think of α as a collection of maps

α : Πψ → Πφ.

Now we use our assumption to conclude that ψ = φ, and so by Schur’s lemma,
this map is multiplication by a constant. In other words, giving an element α ∈ Λ is
equivalent to giving a function on Ψ. This correspondence yields the isomorphism,
Λ(D) ∼= F .

1We have also used Λ to denote lattices such as M0/M
◦

0
. It will be clear from context which

is meant.
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General Case. Let G ⊂ Ψ(G) be the subgroup of ψ so that ψρ ∼= ρ. We proved
in section 3.1 that G is finite. For each ψ ∈ G, pick an intertwining operator
νψ : ρ → ψρ. This determines maps Πφ → Πφψ and so an element of Λ(D) which
we will also denote by νψ Of course, these choices are not cannonical so there are
constants cψφ so that νψνφ = cψφνψφ.

In this case, α ∈ Λ(D) leads to maps

α : Πφ → Πφψ

for any ψ ∈ G. Of course, then ανψ−1 ∈ F . This proves part (1) of

Proposition 28. Let D be a cuspidal component. Let G, νψ be as above.

(1) Λ(D) is isomorphic to ⊕

ψ∈G

Fνψ.

(2) There are the following relations:
(a) If f ∈ F and ψ ∈ G, then

fνψ = νψf̃

where f̃ is f translated by ψ.
(b) νψνφ = cψφνψφ.

Proof. The only thing that remains to be checked is (2)a. But this is obvi-
ous.

Remark. We have seen that if A is ring with unit which is a projective generator
of a category M, then M ∼= rM(EndA). It is important to keep in mind that there
may be more than one projective generator and consequently different realizations
of the category. For example, we took Π = indGG◦(ρ|G◦) as our projective generator
for M(D). We could also have taken Π′ = indGG◦ τ for some τ ⊂ ρ|G◦ .
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CHAPTER III

General Representations

Let V be an irreducible representation of a reductive p-adic group G. We have
shown that there is a cannonical decompostion V = Vc ⊕ Vi associated to the
decomposition Irr(G) = Irrc(G)

⋃
Irri(G). Also, Irrc is the disjoint union of the

cuspidal components D and we have shown that Vc =
⊕
VD. In this section, we

work towards a similar decomposition for Irri.

1. Induction and Restriction

In order to pass from cuspidal representations to general representations, we
must understand the functors iG,M and rM,G. First, we normalize these func-
tors. This leads to many nice formulas throughout the subject. A very important
instance of this is the basic geometric lemma which expresses the composition
rN,GiG,M in geometric terms.

1.1. Normalization. Let P = MU be a parabolic subgroup. Then we have
defined functors

iG,M : M(M) → M(G)

rM,G : M(G) → M(M).

Let X = P\G. Let e = P ∈ X. Recall from section I.3.2 that there is a bijection
between smooth representations (τ, V ) ofM andG-equivariant sheaves onX which
have fiber at the point e the representation τ considered as a P -module (U acts
trivially). Call this sheaf Fτ . One realization of iG,M (τ) is as the space of sections
of Fτ . To see that this definition should be altered, observe that iG,M does not
commute with taking contragredients; i.e. iG,M (τ̃) is not necessarily isomorphic

to ˜iG,M (τ). For example, take G = GL(2), M = diagonal matrices, and τ = CM .

Then τ ∼= τ̃ but iG,M (CM) 6∼= ˜iG,M (CM) as is easily checked.

51
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In this section we will normalize iG,M by twisting the sheaf F by an appropriate

character so that we get iG,M (τ̃ ) ∼= ˜iG,M (τ), among other results.
To construct our isomorphism, it is enough to find a pairing iG,M(τ̃ )×iG,M (τ) →

C. We know that over each point there is a pairing of the fibers (Fτ̃)x×(Fτ )x → C,
and hence a pairing Fτ̃ × Fτ → sheaf of functions on X. We could try to obtain
the required pairing by composing this with integration over X. The problem is
that there is no G-equivariant measure on X so we cannot get a G-equivariant
pairing this way.

Let ∆ be the sheaf of locally constant measures (distributions) on X. The key
point is that ∆ is is a 1-dimensional G-equivariant sheaf. Thus, unlike for the
sheaf of functions, there is a natural G-equivariant morphism S(∆) → C given
by evaluation at the identity function. (Here S(∆) is the space of compactly
supported sections.) The next lemma is easy to prove

Lemma 23. There is a G-equivariant sheaf δ and an isomorphism δ2 ∼= ∆.

We will also write δ for the associated equivalence class of representations of P .
It is clear that ∆ is trivial on U , so we may think of δ as a representation of M
extended trivially to P .
Remark. In general, δ may not be unique. Over C, it is possible to give ∆
a positivity structure which makes the choice of square root cannonical. Over
other algebraically closed fields, it is not clear how to do this. (The situation is
similar with half-spin structures on curves and the half sum of positive roots in
Lie theory.)

Definition 21. The functor iG,M : M(M) → M(G) is given by

iG,M (V ) = indGP (δ ⊗ V )

where (τ, V ) is extended trivially to P . Also, rM,G : M(M) → M(G) is given by

rM,G(V ) = δ−1 ⊗ V/V (U).

Of course, an essential feature of these definitions is that they preserve the
properties of iG,M and rM,G that we have already established. Furthermore, now

iG,M(τ̃ ) ∼= ˜iG,M(τ). We see this as follows:
If F ′

τ = δ ⊗ Fτ then iG,M (τ) may be considered as the space of compactly
supported sections of F ′

τ . There is a pairing iG,M (τ̃ ) × iG,M (τ) → C because we
have Fτ̃ × Fτ → δ2 = ∆, fiberwise. Thus,

S(Fτ̃) × S(Fτ ) → S(∆) → C

which is equivariant.
We summarize the properties of these functors:
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Proposition 29. Induction and restriction (Jacquet functor) have the follow-
ing properties:

(1) iG,M is right adjoint to rM,G.
(2) rM,G and iG,M are exact.
(3) If G ⊂ M ⊂ N are Levi subgroups, then there are cannonical isomorphisms

iG,N ∼= iG,M ◦ iM,N and rN,G ∼= rN,M ◦ rM,G.

(4) There is a cannonical isomorphism iG,M (τ̃ ) ∼= ˜iG,M (τ).

Remark. If we fix an identification of δ with the field of the representation
(C in our case), then an equivalent definition for iG,M is the space of functions
f : G → V satisfying f(mug) = τ(m)∆(m)1/2f(g) for m ∈ M and u ∈ U . This
is a less satisfactory formulation because it is less canonical. Note that under
such an identification, ∆ becomes the usual modulus character. In particular, if
U1 ⊂ U2 ⊂ · · · ⊂ U is a filtration of U by compact subgroups (see section II.1.2),
then ∆(m) equals the index [Ui : m

−1Uim] for any i.

1.2. Basic Geometric Lemma.

Lemma 24. Let Q = NV and P = MU be parabolics in G. Then Q has finitely
many orbits on X = P\G.

Proof. This follows from our general geometric results (section II.2.1).

Remark. Let w1, . . . , wk be representatives for the orbits (=double cosets).
For each w = wi, let N ′ = N ∩ w−1Mw and M ′ = M ∩ wNw−1. Then N ′,M ′ are
Levi subgroups for N,M respectively, and Adw : N′ →M ′ is an isomorphism.

Basic Geometric Lemma. Let Q = NV , P = MU and w1, . . . , wk be as
above. Let

Γ = rN,G ◦ iG,M : M(M) → M(N).

Then there is a finite filtration of Γ by subfunctors with quotients

Γr = iN,N ′ ◦ w̃r ◦ rM ′,M

where N ′,M ′ are Levi subgroups of N,M as above, Adwi : N
′ → M ′ is an iso-

morphism as above, and w̃i : M(M ′) → M(N ′) is the associated equivalence of
categories.

Proof. Set X = P\G. Let E be an M -module and FE the associated G-
equivariant sheaf on X so that FE(e) = δ ⊗ E. Recall that

iG,M (E) = S(X,FE)

the space of compactly supported sections. Our strategy is to define a filtration
on iG,M (E) and then show that it is preserved by rM,G.
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We will denote the orbit wiQ on X by Oi. As discussed in section I.1.1, we can
order the orbits so that O1, O1 ∪ O2, O1 ∪ O2 ∪ O3 etc. are open. Set

Sr = S(
⋃

i≤r

Oi,FE).

Then we have a filtration

S1 ⊂ S2 ⊂ · · · ⊂ Sr = S(X,FE) = iG,M(E).

Moreover,

Sr/Sr−1
∼= S(Or,FE).

Let us for now ignore our normalization of the Jacquet functor. Thus we will
write Γ(E) = JV (Sr). As JV is exact, Γ(E) is filtered by JV (Sr) with quotients
JV (S(Or,FE)). Examining the action of V gives

JV (S(Or,FE)) = S(Or/V,F
′)

where F ′ is the sheaf associated to rM ′,M (E). Another way to write this is as
S(N/Q′, wrF

′) where Q′ is a parabolic inside N with Levi component N′. But
this is precisely what it means to take iN,N ′ of w̃rrM ′,M (E).

We have now proven that the functor Γ is filtered by subfunctors with quoteints
that differ from Γr by at most a character (because we have ignored the normal-
izations). But it is easy to see that the normalizations cancel.

Remark. To each orbit of Q in P\G we have associated a functor which turns
out to be a subquotient of Γ. It follows from the proof of the basic geometric
lemma that in case the orbit is closed, it is actually a quotient if Γ; in case the
orbit is open, we get a subfunctor of Γ.

For example, when P = Q, there is a unique closed orbit, namely e = P ∈ X.
The associated functor is trivial so we see that Γ has a trivial quotient. For
example, when ρ is a cuspidal representation of M , there is a map

rG,M iM,G(ρ) → ρ.

This is, in fact, the adjunction morphism coming from Frobenius reciprocity.

On the other hand, when Q = P , the parabolic opposite P , there is a unique
open orbit, namely the image of P in X. Again the associated functor is trivial.
Thus, in this case Γ has a trivial subfunctor. We will return to this situation in
section 3.1.
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2. Classification of Non-cuspidal in Terms of Cuspidal

2.1. Cuspidal Data.

Definition 22. A cuspidal data is a pair (M, ρ) where M ⊂ G is a Levi sub-
group and ρ ∈ Irrc(M). Two cuspidal data, (M, ρ), (M ′, ρ′) are associate if there
is a g ∈ G so that

Ad g : M→̃M ′ and

Ad g : ρ→̃ρ′

Remark. We do not assmue that g maps the standard parabolic P ⊃ M to

itself. For example, M =

(
∗

∗

)
, P =

(
∗ ∗

∗

)
, and g =

(
0 1
−1 0

)
.

Claim. Let κ be an irreducible representation of G. Then there is a stan-
dard Levi subgroup M , an irreducible cuspidal representation ρ and a surjection
rM,G(κ) ։ ρ.

Proof. As κ is irreducible, quasi-cuspidal is the same as cuspidal. But by the
definition of quasi-cuspidal, either κ itself is quasi-cuspidal (so we take M = G)
or some rM,G(κ) is non-zero and so has an irreducible quotient, ρ. To insure that
ρ is cuspidal, the transitivity of rM,G implies that we can take M minimal so that
rM,G(κ) 6= 0.

Corollary. If κ is an irreducible representation of G, then there is a cuspidal
data (M, ρ) so that

κ →֒ iG,M (ρ).

Proof. Follows from the claim and Frobenius reciprocity.

Theorem 18. Let κ be an irreducible representation of G. Then all cuspidal
data (M, ρ) such that ρ ∈ JH(rM,G(κ)) are associate.

The theorem and the last corollary immediately give:

Corollary. Up to associate, there exists a unique cuspidal data with κ →֒
iG,M(ρ).

For the proof of theorem 18 we will need the basic geometric lemma from the
last section and the following lemma.

Lemma 25. Suppose τ is a representation of M $ G. Set π = iG,M (τ). Then
πcusp = 0.

Remark. Here we have written πcusp instead of πc for emphasis. See section
II.3.2
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Proof. Write π = πcusp ⊕ πi. If πcusp 6= 0, then Hom(πcusp, π) 6= 0. But by
adjunction (Frobenius reciprocity),

Hom(πcusp, π) = Hom(rM,G(πcusp), τ) = 0

by definition of cuspidal.

Now we prove the theorem.

Proof. We know that κ →֒ iG,M (ρ) for some (M, ρ). Let (N, σ) be any cuspidal
data so that

σ ∈ JH(rN,G(κ)cusp) ⊂ JH(F (ρ)cusp)

where Γ = rN,G ◦ iG,M . We will be finished if we show that (N, σ) and (M, ρ) are
associate.

By our basic geometric lemma, Γ(ρ)cusp is filtered by (iN,N ′ ◦ w̃ ◦ rM ′,M )(ρ)cusp

where N ′,M ′ are Levi subgroups of N,M respectively and w : M′ → N ′ is an
isomorphism. By the last lemma, this is nonzero only if N′ = N . Also, by
definition of cuspidal, we must have M = M′. This proves that

σ ∈ JH(F (ρ)cusp) ⊂
⋃

w

{wρ}

where the w : N → M are isomorphisms. Thus, (N, σ) is associate to (M, ρ) via
w, as needed.

Let Ω(G) be the set of cuspidal data, (M, ρ), up to associate. Theorem 18
suggests that Ω(G) is an important object to study. In fact, we will see that Ω(G)
has the structure of an algebraic variety whose geometry has great significance for
the representation theory of G.

Define

pr : IrrG→ Ω(G) by

κ 7→ {(M, ρ) | ρ ∈ JH(rM,G(κ))}.

pr is well defined by Theorem 18.

Proposition 30. pr is a finite-to-one epimorphism.

Proof. Let (M, ρ) be a cuspidal data. We want to show that there are only
finitely many irreducible κ so that ρ ∈ JH(rM,G(κ)). It is enough to show that
this implies a surjection rM,G(κ) ։ ρ, because then by adjunction, κ →֒ iG,M (ρ)
which has finite length.

It is convenient to prove this in the form of a general lemma.

Lemma 26. If π and τ are representations of G with π of finite length, τ cusp-
idal, and τ ∈ JH(π), then there is a surjection π ։ τ .
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To prove the proposition, apply the lemma to the M -modules π = rM,Gκ and
τ = ρ.

Proof. We wish to show that HomG(π, τ) 6= 0. If we restrict our representa-
tions to G◦, then τ is compact and so splits off as a direct summand of π. It follows
that the space S = HomG◦(π, τ) has finite dimension; that is 0 < dimS < ∞.
Let Λ = Λ(G) = G/G◦. Then Λ acts on S is such a way that the invariants
SΛ = HomG(π, τ). In this language, the assumption that τ ∈ JH(π) implies that
S has a quotient module T with TΛ 6= 0. It is now an exercise in commutative
algebra to show prove that SΛ 6= 0.

Proposition 31. Ω(G) is an algebraic variety.

Proof. The first step is

Lemma 27. If M is any group, IrrcM is an algebraic variety (with an infinite
number of components).

Proof. Irrc is the union of the cuspidal components, D, which we know are
connected algebraic varieties (section II.3.1).

Let M1, . . . ,Mk be representatives of the conjugacy classes of the standard
parabolic subgroups. Let Wi = W (Mi) be the finite group N (Mi)/Mi where
N (Mi) is the normalizer of Mi in G. By the lemma, IrrcMi is an algebraic variety,
and, as the quotient of an algebraic variety by the action of a finite group is again
an algebraic variety, so is (IrrcMi)/Wi. But it is obvious that

Ω(G) =
k⋃

i=1

(IrrcMi)/Wi

proving the proposition.

Remark. Each connected component of Ω(G) can be expressed as D/W (M,D)
where W (M,D) is the subgroup of W (M) which preserves D. In particular, each
component is a cuspidal component modulo a finite group. However, the choice
of D – even M – is not unique. Indeed, (M,D) may be replaced by any (M′, D′)
which is associate in the obvious sense.

If Ω is a component of the variety Ω(G), then we will denote by IrrΩ its pre-image
under the surjection IrrG → Ω(G). We will also say that IrrΩ is a component of
IrrG. We get

IrrG =
⋃

IrrΩ .
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2.2. The Decomposition Theorem. In this section we show that the decom-
postion on the level of irreducible representations, IrrG =

⋃
IrrΩ (which comes

from the decomposition of Ω(G) into its connected components, Ω), leads to a
decompoistion on the level of categories.

Let V be a G-module. Set V (Ω) = maximal submodule such that JH(V (Ω)) ⊂
IrrΩ. We say that V is split if V =

⊕
V (Ω).

Decomposition Theorem. Each component IrrΩ splits the category M(G).
In other words, every V ∈ M(G) is split. We will write

M(G) =
∏

Ω

M(Ω).

As a first step in the proof, there is the following lemma.

Lemma 28. If V ′ ⊂ V and V is split, then V ′ is split.

Proof. V ′(Ω) = V (Ω) ∩ V ′. Set

W = V ′/
⊕

V ′(Ω).

Then our claim will be proved if we show that JH(W ) = 0 (because then W = 0).
Fix a component Ω0 and consider

pΩ0 : V →
⊕

Ω 6=Ω0

V (Ω).

We will write pΩ0
for the corresponding map

pΩ0
: W → (

⊕

Ω 6=Ω0

V (Ω))/ Im(
⊕

V ′(Ω)).

Since V is split, Ker pΩ0 = V (Ω0). Consequently,

Ker(pΩ0 |V ′ →
⊕

V (Ω)) = V ′(Ω0).

Thus, pΩ0
is an injection of W into a subquotient of

⊕
Ω 6=Ω0

V (Ω). Therefore,

JH(W ) ⊂
⋃

Ω 6=Ω0

IrrΩ .

But this holds for all Ω0 and Irr is the union of the IrrΩ. So, JH(W ) = ∅.

The idea for the proof of the decomposition theorem is that we can show that
a module splits by embedding it into one that we know splits, and then using the
lemma.

Define
M(cusp) =

⊕

M⊂G

M(M)cusp
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where M runs through the standard Levi subgroups of G. Define functors

I : M(cusp) → M(G)

R : M(G) → M(cusp)

by I((M, ρM)) =
⊕
M iG,M(ρM ) and R(π) = the set of rM,G(π)cusp for M ⊂ G.

Lemma 29. (1) R is left adjoint to I.
(2) R is exact, faithful and maps finitely generated objects to finitely generated

ones.
(3) For each V ∈ ObM(G), the adjunction morphism α : V → IR(V ) is an

embedding.

Proof. Parts (1) (2) follow from the corresponding properties for i and r (see
proposition 19). For part (3), suppose α is not an embedding, say τ ⊂ Kerα.
Then, as I kills nothing, Rτ = 0. We want to show that this is impossible.
We may as well assume τ is irreducible. Let M be a minimal parabolic so that
rM,G(τ) 6= 0. Then rM,G(τ) is cuspidal and so Rτ 6= 0. Contradiction.

We now come to the proof of the decomposition theorem.

Proof. Let V ∈ ObM(G). We must show that V is split. By lemma 28 it
is enough to embed into a split module. Lemma 29 shows that V embeds in a
representation of the form

⊕
M⊂G iG,M (τM ) where τM is a cuspidal representation

of M . Thus, to prove the theorem, it is enough to prove that the iG,M(τM ) are
split. But as τM is cuspidal, we may write τM =

⊕
D τ(D) where the D run through

the cuspidal components of M . This reduces our problem further; we must prove
that iG,M (τ(D)) is split. We will show, in fact, that there is a component Ω so
that JH(iG,M (τ(D))) ⊂ IrrΩ.

Let Ω be the connected component of Ω(G) which is a quotient of D (see remark
following the proof of proposition 31). If π ∈ JH(iG,M (τ(D))) then pr(π) is some
cuspidal data (M, ρ) with ρ ∈ D. Therefore, as an element of Ω(G), pr(π) ∈ Ω.

To some extent, the decomposition theorem does for general representations
what we did for cuspidal representations, namely break the category into smaller
pieces parametrized be the connected components of some algebraic variety. In the
cuspidal case, however, we went further; we obtained a description of the pieces
as categories of modules over explicitly determined rings, the endomorphism rings
of projective generators. So far, we have nothing like this in general.

Naively one could try to find a projective generator for M(Ω) by inducing
the projective generator of M(DM), for an appropriate Levi subgroup M and
cuspidal component DM . In fact, this approach works, but there are many things
to check. One of the most difficult turns out to be the statement that what you
get is projective; it is not clear that iG,M takes projective objects to projective
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objects. However, this is an immediate corollary of the deep fact, proved in the
next section, that iG,M has a right adjoint. We will use this result in section 4
to obtain a description of M(Ω) as a category of modules over an endomorphism
ring.

To finish this section, here are some further consequences of lemma 29 for the
category M(G).

Definition 23. A Noetherean category is one in which every finitely generated
object is Noetherean.

Remark. Of courese Noetherean objects are always finitely generated.

Proposition 32. M(G) is a Noetherean category.

Proof. We have defined M(cusp) =
⊕

M(M)cusp. Of course, each M(M)cusp

may be further decomposed according to its cuspidal components. Thus, we may
view R as a functor

R : M(G) →
∏

M(DM)

where the product on the right runs through all cuspidal components of all stan-
dard Levi subgroups fo G. In chapter II we showed that M(DM) is equivalent to
the category of right modules over a Noetherean ring. As it is easy to see that a
product of Noetherean categories is Noetherean, M(cusp) is Noetherean.

Suppose that V is a finitely generated object of M(G) with a chain

V1 ⊂ V2 ⊂ · · · ⊂ Vn ⊂ · · · .

Lemma 29 states that R is exact and faithful. Hence, if this chain did not stabilize
then neither would

R(V1) ⊂ R(V2) ⊂ . . .

in R(V ). But this chain must stabilize because it is in a Noetherean category and
R(V ) is finitely generated (lemma 29, again).

Proposition 33. The functors rM,G and iG,M map fintely generated modules
into finitely generated modules.

Proof. We already know this for rM,G (proposition ??). Suppose that V ∈
M(M) is finitely generated. By the last result, we may assume that V is Noetherean.
We wish to show that iG,MV is also Noetherean.

Suppose for the moment that V is cuspidal. Then the basic geometric lemma
implies that rM,GiG,MV has a filtration with quotients of the form wV . These are
clearly Noetherean. Thus, rM,GiG,MV is Noetherean. But rG,M is exact and in
this case acts faithfully. Hence, iG,MV is Noetherean, as needed.
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In the general case, lemma 29 provides an embedding

V →֒ IR(V ) =
⊕

N⊂M

iM,N (ρN )

for appropriate (cuspidal) ρN . Applying iG,M to both sides, the last paragraph
shows that we get an embedding of iG,MV in a Noetherean module. Thus V is
Noetherean.

3. A Right Adjoint for iG,M

3.1. The Statement. Let P = MU be a parabolic subgroup of G. We know
that rM,G is left adjoint to iG,M . Thus, if π is a representation of M ,

HomM(rM,GiG,M(π), π) = HomG(iG,M (π), iG,M(π)) 6= ∅.

In other words, the functor Γ = rM,G ◦ iG,M has a trivial quotient. In fact, this is
obvious from the filtration of Γ in the basic geometric lemma as we now explain.

The basic geometric lemma gives a filtration of the functor Γ whose subquotients
correspond to the orbits of P acting on X = P\G. There is a distinguished orbit
of this action, namely the point {P} ∈ X, which is the only closed orbit. It is
clear that this orbit corresponds to the trivial (i.e. identity) functor, and, as the
orbit is closed, the trivial functor is a quotient (rather than just a subquotient) of
Γ. (See remark at end of section 1.2.) The point is that the adjointness property
is related to the existence of the distinguished orbit.

Let P = MU be the parabolic opposite to P . Consider the action of P on X.
In this case also there is a distinguished orbit, namely, the unique open orbit. It is
generated by P →֒ G ։ X. Call this orbit O. Again, it is clear that the functor
associated with this orbit is trivial. Moreover, as O is open, it is a subfunctor.
Next we show how the existence of this functor leads to an adjunction property.

Set, rM,G = rPM,G. That is rM,G(V ) = V/V (U). In this case, Γ = rM,G◦iG,M . We
have shown that Γ has a trivial subfunctor. In other words, for τ any representation
ofM , there is an embedding τ →֒ Γ(τ). Now suppose ϕ ∈ HomG(iG,M(τ), π). Then
we get a morphism of M -modules by considering the composition

β(ϕ) : τ → Γ(τ) = rM,G ◦ iG,M (τ)
ϕ
→ rM,G(π).

In other words, there is a map

β : HomG(iG,M(τ), π) → HomM(τ, rM,G(π)).

Theorem 19. β is an isomorphism. In other words, rM,G is right adjoint to
iG,M .

The proof will be given in the next section. This is a deep and somewhat
mysterious theorem. Here we give some applications.
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Corollary. rM,G commutes with infinte direct products. In particular, any
product of quasi-cuspidal representations is quasi-cuspidal.

Proof. As rM,G has a left adjoint we may apply theorem 5.

To give some idea of the power of this result, we use it to derive the uniform
admissibility theorem:

Fix K ⊂ G compact. Recall that ρ is a quasi-cuspidal representation if and
only if the matrix coefficients of ρ are supported on some compact modulo center
set S(ρ) If uniform admissibility failed then there would be a sequence of cuspidal
representations ρ1, ρ2, . . . so that the sets S(ρ1), S(ρ2), . . . grow without bound.
However, if π =

∏
ρi, then π is quasi-cuspidal by the corollary. Moreover, S(ρi) ⊂

S(π) which is compact modulo center. (c.f. theorem 16.)
Here is another important corollary of the adjointness.

Corollary. iG,M maps projective objects to projective objects.

Proof. Since iG,M has a right adjoint which is exact, this follows from propo-
sition 8.

We will use this result in our study of the category M(G). Let Ω be a connected
component of Ω(G). There is a Levi subgroup M and a cuspidal component of
M , say D, so that Ω is the quotient of D by a finite subgroup. We have defined a
representation Π(D) which is a finitely generated projective generator of M(D).
Set

Π(Ω) = iG,M (Π(D)).

By the last corollary, Π(Ω) is projective. It will turn out that Π(Ω) is a finitely
generated projective generator for M(Ω) and so by lemma 22, M(Ω) ∼= rM(Λ(Ω))
where Λ(Ω) = End Π(Ω). We are not quite ready to prove this yet.

3.2. Proof of Adjointness.

Theorem 20. iG,M is left adjoint to rM,G. In other words, for any smooth
representations of M , τ and π, there is a functorial isomorphism

HomG(iG,M (τ), π)
∼
−→ HomM(τ, rM,G(π)).

Remark. In the last section we constructed a map which we claimed was an
isomorphism. Here we will define another map, show that it is an isomorphism,
and then show that the maps coincide.

We will not prove theorem 20 directly. Instead we will prove
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Theorem 21. For σ a smooth representation of G

rM,G(σ̃) = ˜rM,G(σ).

Claim. Theorem 20 and theorem 21 are equivalent.

Proof. Let τ be any representation of G. Recall proposition 6 (2) states that
if γ and κ are representations of G, then

HomG(κ, γ̃) = HomG(γ, κ̃)

This fact, together with our normalization of induction (section 1.1) and Frobenius
reciprocity imply

HomG(iG,M (τ), σ̃) = HomG(σ, ˜iG,M (τ))

= HomG(σ, iG,M (τ̃))

= HomM(rM,G(σ), τ̃)

= HomM(τ, ˜rM,G(σ)).

On the other hand, theorem 20 implies that

HomM(τ, rM,G(σ̃)) = HomG(iG,M (τ), σ̃).

Consequently,

HomM(τ, rM,G(σ̃)) = HomM(τ, ˜rM,G(σ)).

Finally, it is easy to see that this statement for every τ is equivalent to theorem
21.

For the converse statement, first observe that by reversing each step in the
preceding argument, we get that theorem 21 implies the special case of theorem
20 in which π has the form σ̃ for some representation σ (in particular, for π
admissible). However, this case is sufficient because of the following trick:

For general π, set π1 = ˜̃π and π2 = ˜̃π1. Observe that π1 and π2 are each the
contragredient of something so theorem 20 is valid for π1 and π2. Also, we have a
sequence

0 →֒ π →֒ π1 →֒ π2.

Using general functorial nonsense, the theorem for π follows from the theorem for
π1 and π2.

Remark. This last part of the proof is clearly somewhat unsatisfying.
The proof of theorem 21 rests on a classical result known as Jacquet’s lemma.

However, the usual formulation of Jacquet’s lemma assumes that our representa-
tions are admissible. The main step in our proof of theorem 21 will be to show
that Jacquet’s lemma holds without assuming admissibility. This in turn relies on
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the Stabilization theorem which we will prove in the next section. This is a deep
and difficult theorem.

LetK ⊂ G be a congruence subgroup, P = MU a parabolic, and λ ∈ Λ++(M,K)
strictly dominant with respect to (P,K). (See section II.2.1.)

Jacquet’s Lemma (Preliminary Version). With the notation as above, let
KM = K ∩M . Then, if V is an admissible representation of G, the natural map

V K → JU(V )KM

is onto.

Notation. We will write J for JU and J for JU . Let p denote either the
projection V → J(V ) or the projection V K → J(V )KM .

Proof. Let ξ′ ∈ J(V )KM . The first step is to show that for large enough n,
λnξ′ ∈ ImV K . Let ξ be a lift of ξ′ to V KM . Let K ′ be a congruence subgroup so
small that ξ is invariant under K′. Then η = λnξ is invariant with λnK ′

U
λ−n as well

as KM . However,
⋃
n λ

nK ′
U
λ−n = U . In particular, we may choose n so large that η

is invariant with respect to KU . Set φ = eKU
η. Then φ = eKU

eKM
eK

U
η = eKη and

so φ ∈ V K . Moreover, the action of eKU
is killed by J and so p(φ) = p(η) = λnξ′.

Thus, for large enough n, λnξ′ ∈ Im V K .
Let A : J(V )KM → J(V )KM be the action of λ ∈ M . We have shown that

each element of J(V )KM is mapped to Im(V K) by a sufficiently large power of A.
However, as A is invertible and J(V )KM is finite dimensional (by admissibility),
this implies that Im(V K) is the whole space.

Remark. Recall (from section II.2.1) that a(λ) = eKEλeK . It is clear that,
under p : V K → J(V )KM , the action of a(λ) gets mapped to A. Using this obser-
vation, we can give an equivalent version of Jacquet’s lemma. First we introduce
some terminology:

Definition 24. Let L be a linear space and a ∈ End(L). The localization of L
with respect to a will be denoted by (La, A). Let L′ = L/κ where κ =

⋃
n Ker(an).

Let a′ be the endomorphism of L′ corresponding to a. Then La is an extension of
L′ together with an invertible operator A so that

(1) A coincides with a′ on L′ ⊂ La, and
(2) La =

⋃
nA

−n(L′).

The following lemma is obvious:

Lemma 30. If La is finite dimensional, then La = L′.
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If λ is as before and a = a(λ), proposition 24 says that
⋃
n Ker an|VK = V (U) ∩

V K . Thus, the fist step in the proof of Jacquet’s lemma is equivalent to the
statement

(JU(V )KM , λ) is the localization of V K with respect to a. (⋆)

The second step is lemma 30, together with admissibility. In particular, the
only place that we used admissibility was the final argument. If we could find
a substitute for this argument, that is, a broader condition to insure La = L′,
we could strengthen Jacquet’s lemma. This is possible using the stabilization
theorem.

Definition 25. Let L be a linear space, a ∈ End(L). We say that (L, a) is
stable if L = Ker a⊕ Im a and on Im a, a is invertible.

Remark. The last condition is equivalent to Ker a2 = Ker a and Im a2 = Im a.

Stabilization Theorem. Let K ⊂ G be a congruence subgroup, P = MU
a parabolic, λ ∈ Λ(M,K)++ (i.e. λ strictly dominant with respect to (P,K)).
Suppose V is any smooth representation of G, then for n ≥ c(G,K), a(λn) ∈
End(V K) is stable.

Remark. 1. The constant c appearing here is the same one as in section II.2.2.
We will use the notation V K

0 = Ker a(λn) and V K
∗ = Im a(λn).

Jacquet’s Lemma (Final Version). (1) Jacquet’s lemma holds without
assuming admissibility. That is, if KM = K ∩ M and V is any smooth
representation, then the natural map

p : V K → JU(V )KM

is onto.
(2) Furthermore, p has a natural inverse. In other words, JU(V )KM may be

realized as a direct summand of V K in a way that is functorial in V .

Proof. As before, we have an invertible map A : J(V )KM → J(V )KM so that
each element of J(V )KM is mapped into Im(V K) by a sufficiently large power of
A. Moreover, by the stabilization theorem, there is a power of A, say A = Am,
which is stable and in particular, ImAn = ImA. Thus, ImA ⊂ Im(V K). But A
is invertible so J(V )KM = Im(V K).

For the second claim, the stabilization theorem says that VK = V K
0 ⊕ V K

∗ . But
we have just seen that J(V )KM = V K

∗ .

Remarks. 1. Although the proof of Jacquet’s lemma involved a specific choice
of λ, the result itself is independent of this choice. 2. This argument essentially
shows that, in the language of lemma 30, if (L, a) is stable, then La = L′.

We will now prove theorem 21:
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Proof. We have shown that V K = V K
0 ⊕ V K

∗ and V K
∗

∼= J(V )KM . Similarly,
Ṽ K = Ṽ K

0 ⊕Ṽ K
∗ and Ṽ K

∗
∼= J(Ṽ )KM . To prove the theorem, we must find a pairing

between J(V ) and J(Ṽ ). We do this as follows: given ξ ∈ J(V ) and ξ̃ ∈ J(Ṽ ),
find a K so small that they are invariant under K. View them as elements of VK

and Ṽ K and take the natural pairing. It is clear that this does not depend on
the choice of K and gives a non-degenerate pairing. Finally, the definition of the
pairing is independent of the choice of λ so we may take λ in the center of M . It
is then clear that the pairing is M -equivariant. We summarize:

Lemma 31. There is a unique non-degenerate, M-equivariant pairing of J(Ṽ )

with J(V ) such that for ξ̃ ∈ Ṽ , ξ ∈ V then

〈ξ̃, π(λn)ξ〉 = 〈p(ξ̃), J(π)(λn)p(ξ)〉

for all n > n0. Here n0 depends only on the stabliizer of ξ̃, ξ.

Two things remain to be checked. First, that J(V ) is the complete contragre-
dient of J(Ṽ ). Namely, for any compact subgroup KM , J(Ṽ KM ) = (J(V )KM )∗, or
equivalently, Ṽ K

∗ = (V K
∗ )∗. But this follows from the (nearly obvious) fact that

(V K)∗ = (V K
0 )∗ ⊕ (V K

∗ )∗.
Second, we must check that the normalizations cancel out so that we get a

nice pairing between rM,G(σ̃) and rM,G(σ). This amounts to finding a cannonical
isomorphism δP ⊗ δP ∼= C. This can be done (but we will not discuss it).

Remark. For admissible representations, theorem 21 was proved by Casselman
using (the original version of) Jacquet’s lemma. For the more general result, the
stabilization theorem is needed.

Important Comment on Theorem 20. The proof of Theorem 20 as stated
is now complete. However, at the end of the last section we introduced a specific
map

β : HomG(iG,M (τ), π) → HomM(τ, rM,G(π))

coming from our basic geometric lemma. We would like to see that this is the
same as the isomorphism above. It will be sufficient if we show that, for each M -
module τ , the pairing between rM,GiG,M (τ̃) and rM,GiG,M (τ) determined by the
basic geometric lemma coincides with the one coming from theorem 21. We will
use the notation A = rM,GiG,M (τ̃ ), B = rM,GiG,M (τ), and 〈a, b〉BGL and 〈a, b〉 for
the pairings coming from the basic geometric lemma and theorem 21, respectively.

The basic geometric lemma gives filtrations of A and B. For example, τ̃ is a
submodule of A and τ is a quotient of B; 〈a, b〉BGL induces the canonical pairing on
τ and τ̃ . Similarly, a submodule of A/τ̃ is paired with a quoteint of Ker(B → τ)
etc. It is obvious that the pairings on the filtrations determines 〈a, b〉BGL. Thus,
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it is enough to check that 〈a, b〉 respects the filtrations in the same way. We will
do this at the first stage: τ̃ →֒ A. The others are similar.

Let X = G/P . Recall that τ̃ and τ may be realized as G-equivariant sheaves
on X. Then iG,M (τ̃) and iG,M (τ) are the spaces of compactly supported sections

of certain sheaves F̃ and F . (See section III.1.1.) A and B are then quotients of
these spaces. The elements τ̃ →֒ A are those which come from sections supported
on the image of U in X.

The stalks of F̃ and F are in duality. We will write 〈·, ·〉F . The pairing between
iG,M(τ̃ ) and iG,M (τ) is

∫

G
〈·, ·〉F .

For a ∈ A and b ∈ B, 〈a, b〉 may be described roughly as follows: pick special
liftings of a and b (coming from Jacquet’s lemma), sa and sb to iG,M (τ̃) and
iG,M(τ) and then

〈a, b〉 =
∫

G
〈sa, sb〉F .

(This is not quite accurate because really we must work with K-invariant elements
where K is in good position with respect to (P, P ). However, since we may take
arbitrarily small K, this is essentially correct.)

Suppose that a ∈ τ̃ ⊂ A and b ∈ B. Let sa and sb be any sections of F̃ and F
which project to a and b. Then it is not hard to see that

〈a, b〉BGL =
∫

U
〈sa, sb〉F .

This is independent of the choice of sa and sb. Moreover, since sa is supported on
U , it would be the same to write this as an integral over G. But then it is precisely
the same as 〈a, b〉.

3.3. Proof of Stabilization. We begin with some terminology. Recall that a
map t : V → V is stable if V = V0 ⊕ V∗ with tV0 = 0 and t invertible on V∗. We
say that t is eventually stable if some power of t is stable. It turns out that the
direct sum of two stable modules is stable. Moreover, if ϕ intertwines two stable
maps, (t, V ) and (t′, V ′), then Kerϕ and Cokerϕ are also stable. In other words,
stable modules form an abelian category.

Recall that if B is a commutative Noetherean algebra, a (G,B)-module is a
G-module which is also a B-module so that the actions commute. It follows that
if V is a (G,B)-module and K ⊂ G is a compact subgroup, then VK is again
a B-module. We say that V is B-admissible (or just admisible where there is
no confusion) if for each compact K ⊂ G, V K is a finitely generated B-module.
Exactly as for the usual concept of admissible, we can prove
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Lemma 32. If M ⊂ G is a Levi subgroup, then the functor

iG,M : M(M,B) → M(G,B)

maps admissible modules to admissible modules.

Here M(G,B) is the category of smooth (G,B)-modules. We will need the
following algebraic lemma.

Lemma 33. Let B be a commutative Noetherean algebra, L a finitely generated
B-module, and α an element of EndB(L). If L localized at α is a finitely generated
B-module, then L is eventually stable with respect to α.

Proof. Recall the notation (Lα, A) for L localized at α. By the definition
of localization, we may consider A−1 ∈ EndB(Lα). If Lα is a finitely generated
B-module, then so is EndB(Lα). Consequently, there is an equation

A−i + b1A
−i+1 + · · · + bi = 0,

which implies A−1 = b1 + b2A + · · ·+ biA
i−1. Thus, A−1 ∈ B[A].

We claim that the map L → Lα is onto. Indeed, set L′ = Im(L) ⊂ Lα.
Then L′ is A-invariant. But A−1 ∈ B[A] and so L′ is also A−1-invariant. Thus,
Lα =

⋃
nA

−n(L′) = L′.
Let κ be the kernel of the map L → Lα. By definition each element of κ is

killed by some power of α. Moreover, since both L and Lα are finitely generated
B-modules, so is κ. This implies that there is a constant m so that αmκ = 0. We
claim that L is αm-stable. Set I = Imαm. We must show that αm is invertible
on I. This follows from the fact that the map L → Lα is onto because then
(I, αm) ∼= (Lα, A

m) and Am is invertible.

Now we turn to the stabilization theorem. Recall that Λ(M,K)++ is the set of
λ that are strictly dominant with respect to the pair (P,K), which are in good
position (section II.2.1). The statement is

Theorem 22. Let λ ∈ Λ(M,K)++. Let a = a(λ). Then there exists a constant
b = b(G,K) depending only on G and K, such that for any V ∈ M(G), ab is
stable on V K. Moreover, we may choose b ≤ c(G,K).

Proof. First, we prove the theorem for the special case of the representation
Π = iG,M (Π(D)) introduced in section 3.1. The key lemma is nothing more than
our algebraic lemma (number 33) together with (⋆) from the last section (3.2).

Lemma 34. Let V be an admissible (G,B)-module and suppose that rM,G(V ) is
an admissible (M,B)-module. Then V K is eventually stable with respect to a.
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Proof. Set KM = K ∩ M . By (⋆) from the last section (which does not
require admissibility), the localization (VK)a ∼= JU(V )KM , which our assumptions
insure is a finitly generated B-module. The result now follows from lemma 33.

Let D be a cuspidal component associated with some irreducible cuspidal (and
hence admissible) representation ρ of a standard Levi subgroup N . Recall from
section II.3.3 the module Π(D) = F ⊗ ρ where F is the algebra of functions
on the variety of unramified characters on N . Clearly, Π(D) is an admissible
(N,F )-module. So, by lemma 32, Π = iG,N (Π(D)) is an admissible (G,F )-module.
Moreover, as Π(D) is cuspidal, the basic geometric lemma implies that rM,G(Π) has
a filtration with quotients iM,Nw

◦ w(Π(D)). Therefore, rM,G(Π) is an admissible
(M,F )-module. We may now apply lemma 34 and conclude that Π is eventually
stable with respect to a.

We have proved that there exists a constant b so that Π is ab-stable. In other
words, Π = Π0

⊕
Π∗ so that abΠ0 = 0 and ab is invertible on Π∗. We would like

to show that b ≤ c. It suffices to show that acΠ0 = 0.
As Π is a (G,F )-module, it is convenient to think of it as a collection of rep-

resentations indexed by the points of Ψ(N); i.e. by the unramified characters of
N . For ψ ∈ Ψ, Πψ = Π ⊗F F/mψ

∼= iG,N (ψρ), where mψ ⊂ F is the maximal
ideal of functions vanishing at ψ. In the next chapter (section IV.1.2), we will use
analytic techniques to prove

Lemma 35. For almost all ψ ∈ Ψ, Πψ is irreducible.

As irreducible representations are admissible, dim ΠKψ ≤ c for almost all ψ ∈ Ψ.
In particular, almost all Πψ are ac-stable. Thus, for almost all ψ, the image of
Π0 under the natural projection Π0 ⊂ Π ։ Πψ is killed by ac. It follows that
acΠ0 = 0. Thus, b ≤ c.

Having established the theorem for Π, the next step is all induced representa-
tions. Let M ⊂ G be a Levi subgroup and D a cuspidal component associated to
M . Suppose that L is an M -module. Then we claim that iG,M (L) is ac stable.

Let Π(D) be the projective generator for M(D) discussed in chapter II (and
above). Then, for some index sets α and β, there is an exact sequence

∏

α

Π(D) →
∏

β

Π(D) → L→ 0.

As induction has a left adjoint, iG,M commutes with products (Theorem 5). Hence
there is an exact sequence

∏

α

Π →
∏

β

Π → iG,M (L) → 0
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where Π = iG,M (Π(D)). We have thus presented iG,M (L) as the cokernel of two
ac-stable modules; hence, iG,M (L) is also ac-stable.

Finally, we consider the general case. If V is any G-module, then V =
⊕

Ω V (Ω)
(section 2.2). Thus, we may assume that V ∈ M(Ω) where Ω is a fixed component
coming from a cuspidal component, say D, associated with a Levi subgroup, say
M . It is a feature of this situation (lemma 29) that we may embed V in a sum of
induced modules, say

V ′ =
⊕

N∼M

iG,N (LN).

Similarly, we may embed the cokernel of the map V → V ′ in a sum of induced
modules, say V ′′. Notice that the theorem holds for V ′ and V ′′. Therefore, the
exact sequence

0 → V → V ′ → V ′′

realizes V as the kernel of a map between two ac-stable modules. Hence, the
theorem holds for V .

Remark. Consider the sequence of left ideals In = HKa(λ
n). The stabilization

theorem implies that the sequence I0 ⊃ I1 ⊃ I2 ⊃ · · · is stable after n = c(G,K).
In other words,

In = Ic for n ≥ c (*)

Conversly, this statement implies the stabilization theorem: Let V be any smooth
representation of G. Then (*) immediately implies that in VK Ker a(λn) =
Ker a(λc) and Im a(λn) = Im a(λc) for n ≥ c, as claimed.

It is natural to ask whether we may use this equivalence to find a reasonable
bound for c. (Recall that so far our only bound on c relies on proposition 20 and
is very excessive.) As (*) is a purely geometrical statement, one might hope for
a purely geometrical proof which would also provide the estimate. Bernstein has
found this for GL(2), but not for other groups.

One may proceed more intrinsically (i.e. without choosing λ) as follows: given
a compact subgroup C ⊂ U , consider the ideal IC ⊂ HK given by IC = eKHeCeK .
It is easy to check that the stabilization theorem is equivalent to the statement
that IC is independent of C for C sufficintly large. The problem now becomes to
find a relatively small subgroup C which gives the minimal ideal IC .

4. The Category M(Ω)

4.1. The Projective Generator. Let Ω be a component of Ω(G). In section
III.2.1 we associated to Ω (not uniquely) a pair (M,D) where M is a Levi subgroup,
D is a cuspidal component of M , and Ω is the quotient of D by a finite group.
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Recall that Π(D) is a finitely generated projective generator of M(D). We have
defined

Π(Ω) = iG,M (Π(D)).

At this point, this seems like bad notation because (M,D) is not uniquely asso-
ciated to Ω. We will eventually show that this does not matter.

Having proved the stabilization theorem, we have now completed the proof
that rM,G is right adjoint to iG,M and hence that iG,M maps projective objects
to projective objects. We already knew that it maps finitely generated objects
to finitely generated objects. Consequently, Π(Ω) ∈ M(Ω) is a finitely generated
projective object. We would like to say that it also generates the category. In this
direction we have:

Proposition 34. Consider all pairs (N,D) which yield Ω. Then {iG,N (Π(D))}
is a set of generators for the category M(Ω).

Proof. Since these objects are projective, it is enough to show that any irre-
ducible representation, π ∈ M(Ω), is a quotient of one of the iG,N (Π(D)).

Choose a Levi subgroupN so that rN,G(π) is cuspidal. By the second adjunction,
associated to the identity map rN,G(π) → rN,G(π) there is an adjunction morphism

iG,NrN,G(π) → π.

This map is surjective. As π is irreducible, there is a ρ ∈ JH(rN,G(π)) so that

iG,N (ρ) ։ π.

Let D be the cuspidal component of N containing ρ. Then it is clear that (N,D)
yields Ω. Moreover, ρ ∈ M(D) so there is a surjection Π(D) ։ ρ. Using the
exactness of i, we get a surjection

iG,MΠ(D) ։ iG,Mρ.

Putting the last two maps together,

iG,N (Π(D)) ։ π.

In the next chapter we will prove:

Proposition 35. If (M,D) and (N,D′) are associated with the same com-
ponent Ω, then iG,M (Π(D)) and iG,N (Π(D′)) are (not cannonically) isomorphic.
Thus, Π(Ω) is a well defined elemetnt of M(Ω).

Putting these propositions together gives

Theorem 23. Π(Ω) is a finitely generated projective generator of M(Ω) and
thus, by our general lemma 22, M(Ω) ∼= rM(Λ) where Λ = Λ(Ω) = End(Π(Ω)).
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Remark. Using Frobenius reciprocity,

Λ = End(Π(Ω)) = Hom(iG,M (Π(D)), iG,M(Π(D)))

= Hom(rM,GiG,M (Π(D)),Π(D))

But using the basic geometric lemma, we see that this has a filtration with quo-
tients Hom(wΠ(D),Π(D)) where w ∈ W (M). Observe that when wD 6= D,
Hom(wΠ(D),Π(D)) = 0. Thus, Λ has a canonical filtration with quotients
Hom(wΠ(D),Π(D)) where w ∈ W (M,D). In section 5.1 we will give an in-
terpretation of this in terms of intertwining operators.

4.2. The Center.

Definition 26. Let A be an abelian category. The center of A is Center(A) =
End(IdA) where Id is the identity operator. More precisely, an element ϕ ∈
Center(A) is a set of maps ϕX : X → X for X ∈ Ob(A) so that for all α : X → Y ,
the following diagram commutes:

X
ϕX−−−→ X

yα
yα

Y
ϕY−−−→ Y

The next result explains the notation:

Claim. If A = M(H) for some algebraH with unit, then CenterA = CenterH.

Proof. As H is an algebra with unit, any morphism of left H modules is
multiplication on the right by an element of H. In particular, multiplication by
c ∈ Center(H) defines an endomorphism of IdA. Thus there is a map Center(H) →
Center(A).

Conversly, if ϕ ∈ Center(A), then, by what we said above, ϕ : H → H is
multiplication by some c ∈ H. Of course, c commutes with multiplication by
other elements of H so c ∈ Center(H). Moreover, it follows from the commutative
diagram that ϕX is also multiplication by c for any H module X.

It is clear that the same proof will work if we assume only that H is an idem-
potented algebra, so long as we restrict our attention to non-degenerate modules,
as we do in the definition of M(H). More precisely:

Claim. If H is an idempotented algebra, Center(M(H)) = {a : H → H which
commute with the left and right action of H}.

Our goal is to prove:
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Theorem 24. Let Ω be a connected component of the variety of cuspidal data
Ω(G). Then Center(M(G)) and Center(M(Ω)) may be described as the set of
regular functions on Ω(G) and on Ω, respectively.

Notation: O(Ω) = regular functions on Ω.
The point of this theorem is that it implies that there is a large supply of central

elements. To see why this is important, consider the situation in real groups. Here,
a main tool is to pass to the universal enveloping algebra which has a large center,
including, for example, the Laplacians. These elements are useful for decomposing
representations.

In our case, this theorem will provide a large center. Unfortunately, it is not
as explicit as in the real case where we have a description in terms of the group
itself (the universal enveloping algebra) rather than the representations. It would
be interesting to describe, to the extent possible, CenterM(G) directly in terms
of G. There are some remarks in this direction at the end of this section.

Preliminaries.

Let (M,D) be a Levi subgroup together with a cuspidal component. Recall
that Π(D) is a projective generator for M(D), and that that Λ(D) = End(Π(D))
may be described as follows: Suppose D = {ψρ|ψ ∈ Ψ(M)}. Let G be the finite
subgroup of Ψ(M) consisting of ψ so that ψρ ∼= ρ. For each ψ ∈ G, pick an
intertwining operator νψ : ψρ→ ρ. Then

Λ(D) ∼=
⊕

ψ∈G

Fνψ

where F = O(Ψ(M)). Moreover, if f ∈ F and ψ ∈ S, then fνψ = νψf̃ where f̃ is
f translated by ψ. In particular, the center of Λ(D) is FG.

Let Ω be the component of Ω(G) associated to (M,D). There are surjections

Ψ(M) ։ D ։ Ω = D/W (M,D)

(see end of section 2.1). Correspondingly, there are natural identifications

O(Ω) = O(D)W (M,D) and,

O(D) = O(Ψ)G = F G = Center(Λ(D)).

Proof of the Theorem.

By far the deepest fact used in this proof is that Π = iG,MΠ(D) is a projective
generator for rM(Ω). Thus, M(Ω) ∼= M(Λ) where Λ = Hom(Π,Π), and so it is
enough to show Center(Λ) = O(Ω).

As we have

Λ = Hom(Π,Π) = Hom(iG,M (Π(D)), iG,M(Π(D))),
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it is obvious that
Λ(D) →֒ Λ.

It is easy to see that Center(Λ) ⊂ Center(Λ(D)). Therefore, when computing
the center of Λ, we may work in the category of Λ(D) bi-modules and compute
instead CΛ(D)(Λ). Here our notation is that, if A is a bi-module over R, then
CR(A) = {β ∈ R | βa = aβ ∀a ∈ A} is the commutant.

By Frobenius reciprocity,

Λ = Hom(rM,GiG,M (Π(D)),Π(D)).

By the basic geometric lemma, there is a filtration of rM,GiG,M (Π(D)) with quo-
tients wΠ(D), where w ∈ W (M). As these modules are projective, this filtration
induces one on Hom. In other words, there is a filtration of Λ with quotients

Λw = Hom(wΠ(D),Π(D)).

Of course, here we only need to consider w ∈ W (M,D) (see end of section 4.1).
Observe that Λ and Λw are Λ(D) bi-modules in an obvious way, and the filtration
holds in this category. Moreover, it is obvious that Λw is isomorphic to Λ(D)
except that the right action is twisted by w. It follows that

⋂

w

CΛ(D)(Λw) = O(D)W (M,D) = O(Ω).

To deduce from this information about Λ, we use the following simple algebraic
lemma.

Lemma 36. Let R be a ring and consider the category, C, of R bi-modules.
Suppose that A ∈ Ob C has a filtration A = A0 ⊃ A1 ⊃ · · · ⊃ An ⊃ ∅ with
quotients C0, . . . , Cn−1, Cn = An. Suppose that i 6= j implies that Mor(Ci, Cj) = 0.
Then CR(A) =

⋂n
i=0 CR(Ci).

Proof. By induction on n, we may assume that CR(A1) =
⋂n
i=1 CR(Ci). There

is a short exact sequence

0 → A1 → A→ C0 → 0.

It is obvious that CR(A) ⊂ CR(A1) ∩ CR(C0). Conversly, if β ∈ CR(A1) ∩ CR(C0),
then there is a map a 7→ βa− aβ, from C0

∼= A/A1 → A1. This must be trivial as
our assumption implies that Mor(C0, A1) = 0. Hence, β ∈ CR(A).

To apply the lemma and hence prove the theorem, it only remains to observe
that w 6= w′ implies Mor(Λw,Λw′) = 0 in the category of Λ(D) bi-modules. This
is clear.
Remark. We may construct an explicit map from the center of the category
M(Ω) to O(Ω) as follows. If ϕ ∈ Center(M(Ω)), then for each X ∈ ObM(Ω)
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there is a map ϕX : X → X. In particular, let us consider the objects Πφ =
iG,M(φρ) where φ ∈ Ψ(M). These representations may all be realized on the same
space, say E. One can show that this determines a holomorphic map z(ϕ) : Ψ →
End(E); c.f. section 5.2. However, by lemma 35 almost all of the iG,M (φρ) are
irreducible. Hence, there is a dense open set of Ψ whose image in End(E) is
contained in the constants. As this is a closed condition, we have z(ϕ) : Ψ → C.
Furthermore, it is not difficult to show (see section 5.1) that this function descends
to a regular function z(ϕ) : Ω → C. Thus, we have a map z : Center(M(Ω)) →
O(Ω). It is quite easy to show that this map is injective. It is not so clear that
its image is large. However, it follows from theorem 24 that z is actually an
isomorphism.

The Infinitesimal Character.

Using theorem 24, we can give another interpretation of Ω(G). Set Z(G) =
Center(M(G)) = EndG×G(H(G)). We have shown that Z = O(Ω(G)). Turning
this around, we get

Ω(G) = SpecZ(G).

With this interpretation, it makes sense to call the map

IrrG→ Ω(G)

the infinitesimal character, in analogy with the real case.
Further Remarks.

As we discussed, in the representation theory of real groups, there are two
descriptions for the center: one in terms of the representations and, the other
directly in terms of the group as the center of the universal enveloping algebra. In
our case, however, we have only the description in terms of representations. Here
are some ideas for giving a more explicit description.

Let S∗(G)inv.
e.c. be the set of distributions E which are (1) invariant with respect

to conjugation, and (2) essentially compact. That is, for h ∈ H(G), h ∗ E = E ∗ h
has compact support.

Claim. S∗(G)inv.
e.c.

∼= EndG×G(H(G)) = Center(M(G)).

Proof. In one direction the morphism is E ∈ S∗(G)inv.
e.c. goes to the map H → H

given by h 7→ E ∗ h. Conversly, given α : H → H, we use H ∼= S(G) and set
E(f) = α(f)(e).

Problem: Explicitly describe some elements of S∗(G)inv.
e.c. .

Example. G = SL(n,F). Let ψ : F∗ → C∗ be a non-trivial additive character
of F. Consider E(g) = ψ(tr g). Then E(g) is clearly invariant. It can by shown
by a computation that it is also esssentially compact. [More generally, if ϕ is a
locally constant function on F∗ such that the average over C of ϕ is zero for some
open compact subgroup C ⊂ F∗, then ϕ(tr g) is essentially compact.]
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5. Applications

5.1. Intertwining Operators. [THIS SECTION NEEDS SOME WORK!]
Fix ω ∈ Ω. Let us consider the irreducible representations of G with in-

finitesimal character ω, say {πα}α∈S. Proposition 30 states that S is finite. Let
(M1, ρ1), (M2, ρ2), . . . , (Mr, ρr) be the cuspidal data which determine ω. By defi-

nition, for each α ∈ S, there is an i with πα →֒ iG,Mi
(ρi)

def
= τi. Furthermore, it

follows from proposition 35 (which will be proved in the next chapter) that for this
we may choose an M and cuspidal component D and consider only those cuspidal
data with Mi = M and ρi ∈ D. As usual, let W = W (M,D) be the subgroup of
the Weyl group of G which preserves M and D. The action of W permutes the ρi
transitively. It is natural to ask how the action of W is reflected on the πα, or at
least the τi. The goal of this section is to construct wherever possible intertwining
maps between the τi corresponding to the w ∈ W . We will present two approaches
to this construction, and then show that they are equivalent.
Remark. Let Π = Π(Ω). As follows from the results of sections 3.3 and 4.1,
the representations iG,M (ρi) have the form Πψi

for some ψi. In particular, they are
generically irreducible (lemma 35). In other words, for almost every ω, the maps
πα → τi are all isomorphisms.

In the first approach, we exploit the realization of M(Ω) as the category of
(right) modules of Λ = Hom(Π,Π). Roughly speaking, we will find that associated
to each w ∈ W , there is a canonical element Aw in a certain localization of Λ.
Multiplication by Aw gives the intertwining operator between various quotients of
Π. The fact that these are not always well defined is a reflection of the fact that
Aw is not in Λ; it has a denominator.

As we saw in section 4.2, Frobenius reciprocity and the basic geometric lemma
imply that

Λ = Hom(iG,MΠ(D), iG,MΠ(D))

has a canonical filtration with quotients

Λw = Hom(wΠ(D),Π(D)).

Here w ∈ W . The filtration holds in the category of Λ(D) bi-modules. Moreover,
as a bi-module Λw is isomorphic to Λ(D) with the right action twisted by w. It
is necessary to be somewhat more precise here. Recall that Π(D) = F ⊗ ρ. The
choice of ρ is somewhat arbitrary. According to our philosophy (section II.3.3), we
should view of Π(D) as a collection of representations of M parametrized by the
points of Ψ(M). Thus, we should think of the choice of ρ as a choice of base point.
From this point of view, passing from Π(D) to wΠ(D) has two effects. First, w
acts on Ψ in the obvious way. Second, the basepoint changes from ρ to wρ.
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Let Aw ∈ Λw be the canonical map wΠ(D) → Π(D). Unless w = 1, Aw 6∈ Λ.
On the other hand, let K be the field of fractions of F ⊂ Λ(D) (see section II.3.3),
and set ΛK = Λ ⊗F K and Λw,K = Λw ⊗F K.

Claim. As Λ(D) bi-modules

ΛK =
⊕

Λw,K.

Proof. For the moment, let us work in the catogory of F bi-modules. ΛK is
a vector space over K on the right; denote this action by r(k)(λ) for k ∈ K and
λ ∈ ΛK. Denote the left action of F by l(f)(λ). Let G be defined as in section
II.3.3. Denote the action of G on F by g : f 7→ fg for g ∈ G and f ∈ F . Similarly,
we write f 7→ fw for w ∈ W .

For each w ∈ W and g ∈ G, let ι(g, w) : F → K denote the injection f 7→ (fg)w.
It is important that these are all distinct. We have an action of F on a K vector
space and it is a general fact that eigenspaces corresponding to distinct characters

split off as direct summands. More precisely, set Λ
(g,w)
K = {λ ∈ ΛK|l(f)(λ) =

r(ι(g, w−1)(f))(λ) ∀f ∈ F}. Then
⊕

(g,w) Λ
(g,w)
K ⊂ ΛK. Moreover, it is clear from

our explicit description of Λ(D) as an F module and the filtration on Λ that this
is an equalty. Finally, we return to the setting of Λ(D) bi-modules. It is clear that

the action of Λ(D) merely permutes the Λ
(g,w)
K with w fixed and that

⊕
g Λ

(g,w)
K is

isomorphic (as a Λ(D) bi-module) to Λw,K. Thus ΛK =
⊕

Λw,K as needed.

As follows from the claim, we may regard the Aw as canonical elements of ΛK.
To see how this leads to an intertwining operator, think of an element λ ∈ Λ as
a family of morphisms λψ : Π → Πψ in the obvious way: first apply λ to Π and
then quotient by mψΠ. Here the notation is as in section II.3.3: mψ ⊂ F is the
maximal ideal vanishing at ψ ∈ Ψ. Notice that Π/mψΠ ∼= iG,M (ψρ) where ρ is the
“base point”, as discussed above.

Obvoisly, there is a polynomial P in F so that PAw ∈ Λ. We have,

Proposition 36. The kernel of (PAw)ψ containsmw−1(ψ)Π. Furthermore, PAw

changes the base point from ρ to wρ,

Proof. Clearly, an element α ∈ Λ is in the kernel if (PAw−1)α ∈ mψΠ. Thus,

the statement follows from the fact that Aw ∈ Λw,K
∼=
⊕
g Λ

(g,w)
K . But by definition,

elements λ ∈ Λ
(g,w)
K satisfy λf = (fg

−1
)wλ for f ∈ F . Using the definition of G,

this implies that they map mw−1(ψ) to mψ. The first statement of the proposition
follows at once. The second statement is clear.

It is now clear that whenever P does not vanish at w(ψ), Aw determines a non-
zero intertwining operator from iG,M (ψ) to iG,M (wψ). It is useful to change the
point of view slightly. It is easy to see that we may realize each of the iG,M (ψρ)
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on the same space E (see section 5.2). Then Aw defines a rational map from Ψ
to End(E); denote it by Aw(ψρ). As long as we stay away from the poles of Aw,
then Aw(ψρ) is a canonical intertwining map from iG,M (ψρ) to iG,M (w(ψρ)).
Remark. By Frobenius reciprocity, a map from iG,M (ψρ) to iG,M (w(ψρ)) is the
same as an element of Hom(rM,GiG,M (ψρ), w(ψρ)). Of course, by the basic geo-
metric lemma, rM,GiG,M (ψρ) has a filtration with quotients y(ψρ) for y ∈ W (M).
It is not hard to see that for generic ψ, the central characters of these quotients are
all distinct (we will refer to this as the regular case). Thus, the filtration reduces
to a direct sum. (Very similar arguments are given in section IV.1.2.) In this case,
there is a canonical projection operator in Hom(rM,GiG,M (ψρ), w(ψρ)), and this
operator corresponds to Aw(ψρ) under Frobenius reciprocity.

It is natural to consider the composition ofAw and Aw−1. Let cw(ψ) = Aw−1(w(ψρ))◦
Aw(ψρ). A priori, cw(ψ) is a rational map from Ψ to End(E). However, since for
almost every ψ iG,M (ψρ) is irreducible, then for almost every (and hence for every)
ψ, cw(ψ) is constant. In other words, cw(ψ) is a rational function on Ψ.

We know that that none of the operators Aw(ψρ) is ever identically zero. As
a conseqence, if for some w cw(ψ) = 0, then either iG,M (ψρ) or iG,M (w(ψρ) is
reducible. [NOW PROVE THAT THESE ARE THE SAME.] Conversly, suppose
that iG,M(ψρ) is reducible, say iG,M (ψρ) ։ σ, with σ irreducible. But there
must be some irreducible cuspidal representation of M , ρ′, so that σ →֒ iG,M (ρ′).
Consequently, there is a map

α : iG,M (ψρ) → iG,M (ρ′)

which is neither trivial nor an isomorphism. By Frobenius reciprocity, α corre-
sponds to some non-zero map in Hom(rM,GiG,M(ψρ), ρ′). By the basic geometric
lemma, ρ′ = w(ψρ) for some w ∈ W . Furthermore, at least in the regular case,
this implies that α is a non-zero multiple of Aw(ψρ). Thus, Aw(ψρ) is not an
isomorphism and in particular, cw(ψ) = 0. We have established

Proposition 37. In the regular case, iG,M (ψρ) is irreducible if and only if all
Aw(ψρ) are isomorphisms, or equivalently, if and only if all cw(ψ) 6= 0.

The second (and more standard) approach to defining intertwining operators
corresponding to the w ∈ W , uses a fixed realization of the iG,M (ρ, V ) as the
smooth vectors in the space {h : G→ V |h(mug) = ρ(m)∆(m)1/2h(g)} (see end of
section 1.1 and section I.3.2). We are trying to define a map from iG,M (ρ, V ) to
iG,M(wρ, V ). Naively, we may proceed as follows: pick a representative of w in

G, which we also denote by w. Consider the map h 7→ wĥ where wĥ(g) = h(wg).

This nearly transforms correctly under M : wĥ(mg) = wρ(m)∆(wmw−1)1/2wĥ(g).

However, unless w happens to preserve U , wĥ does not transform correctly under
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left translation by u ∈ U . Once again we proceed in the naive way, namely, average
wĥ over U/U ∩ w−1Uw so that it becomes invariant. More precisely, set

wh(g) =
∫

U/U∩w−1Uw
h(wug)du.

Putting aside questions of convergence, it is simple to check that wh(mug) =
wρ(m)∆(m)1/2wh(g). Thus, assuming that the integral makes sense, h 7→ wh
defines an intertwining operator iG,M(ρ) → iG,M(wρ).

The trouble is that usually the integral does not converge. One can check that
it does converge if we twist ρ by a character φ sufficiently far into the positive
Weyl chamber (see section IV.2.1). Thus, there is some region where we have a
well-defined intertwining operator. Then, using a (fairly long) calculation, it can
be proved that the operator is a rational function in φ, and hence may be extended
almost everywhere. This is the usual definition of the intertwining operator; we
will write Ãw.

We would like to check that the Aw and Ãw coincide. As they are both rational
functions, it is enough to show that they coincide in the region where the integral
converges. Here, the map rM,GiG,M(ψρ) → w(ψρ) corresponding to Ãw under
Frobenius reciprocity may be written as

h 7→
∫

U/U∩w−1Uw
h(wu)du.

But working through the proof of the basic geometric lemma, one checks that this
is just the same canonical projection which corresponds to Aw, as in the remark
above. As they correspond to the same thing under Frobenius reciprocity, Aw and
Ãw must coincide.

5.2. Paley-Wiener Theorem. Let h ∈ H(G). Then, for any representation
(π, V ), we have π(h) ∈ EndV . It is natural to ask for a characterization of
these endomorphisms. More precisely, suppose that ρ is an irreducible, cuspidal
representation of a Levi subgroup M . Obviously, all ψρ may be realized on the
same space, say L. Thus, a fixed element m ∈M determines a map Ψ → End(L).
This map is clearly regular. Of course, all πψ = iG,M (ψρ) may also be realized on
the same space, say E. Furthermore, since ψ is trivial on all compact subgroups
of M , it is not hard to see that we may arrange for K0 to act on E in the same
way for each πψ. It follows from the definition of induction and what we just said
that for fixed g ∈ G, the associated map Ψ → End(E) is regular. Similarly, a
fixed element h ∈ H(G) determines a regular map Ψ → End(E). We are seeking
a characterization of this map.
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Theorem 25. Suppose that, for almost any pair M, ρ, there is a family of op-
erators

γM,ρ : (π,E) → (π,E)

where (π,E) = iG,M (ρ), satisfying the following:

(1) Fix M and consider representations ψρ. Then γM,ψρ : E → E, defined for
almost all ψ, extends to a holomorphic function in ψ, Ψ → EndE.

(2) There is an open compact subgroup K ⊂ G such that eKγψ = γψ = γψeK .
(3) Given M, ρ, M ′, ρ′ and an isomorphism

α : iG,M(ρ)
≈
→ iG,M ′(ρ′),

then γα = αγ.

Then there is an h ∈ H(G) such that γM,ρ = π(h).

As usual, the key fact is that M(Ω) = M(Λ) where Λ = End(Π(Ω))◦. We will
need the following lemma from category theory.

Lemma 37. Let B be an algebra with unit, Π a finitely generated projective
generator for M(B), and Λ = (End Π)◦. Then Π is an B-Λ bimodule with

EndΛ Π = B.

Proof. As Π is a projective generator, there are equivalence of categories

F : M(B) → M(Λ)

G : M(Λ) → M(B)

given by

F (M) = Hom(Π,M)

G(N) = Π ⊗Λ N = HomΛ(Π∗, N),

where Π∗ = Hom(Π, B) = F (B). Thus,

B = G(Π∗) = HomΛ(Π∗,Π∗) = Hom(Π,Π)◦.

Now we prove the theorem.

Proof. As usual, we will work with Ω rather than Ω(G). Write M(G) =∏
M(Ω) and H(G) =

⊕
H(Ω). Fix Ω.

If K is an open compact subgroup, then HK =
⊕

HK(Ω). We may choose K so
small that Ω is generated by K-invariant vectors. Then, B = HK(Ω) is an algebra
with unit and M(Ω) = M(B). Since Π = Π(Ω)K ∈ M(B), the lemma implies
that B = EndΛ(Π) where Λ = End Π.
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Now, an algebraic family of maps aψ ∈ End(πψ)K determines an element of
EndΛ(D) Π. However, we are also assuming that these maps commute with inter-
twining operators, in particular, with the Aw discussed in the last section. But
the Aw generate Λ over Λ(D). Therefore, a ∈ EndΛ Π = B = HK(Ω). In other
words, aψ = πψ(a).
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CHAPTER IV

Additional Topics

The goal of this chapter is to introduce some analytic and cohomological topics and
at the same time supply proofs for two results that were used in chapter 3. The
proofs were defered because they require unitary techniques which is our first topic.
Next we introduce tempered representations and state Langlands classification.
The first cohomological result is that M(Ω) has finite cohomological dimension.
Using this, we establish a cohomological duality.

The first result defered from chapter 3 is that if ρ ∈ Irrc(M), then for almost
all ψ ∈ Ψ(M), iG,M (ψρ) is irreducible. This result was needed for the proof of the
stabilization theorem (section III.3.3). The proof is in section 1.2.

The other result that we need is

Theorem 26. Let Ω be a connected component of Ω(G), the variety of cuspidal
data up to associate. Let D be a cuspidal component for some Levi subgroup M
so that Ω is a quotient of D by a finite group. Then Π(Ω) = iG,M (Π(D)) does not
depend on D, only Ω.

This result was used in section III.4.1 to establish that Π(Ω) is a generator for
the category M(Ω). We will call it the uniqueness theorem. The proof is in section
3.

1. Unitary Structure

1.1. Unitary Representations.

Definition 27. A G-module (π, V ) is unitary if it is equiped with a positive
definite, G-invariant scaler product 〈·, ·〉 : V ⊗ V → C.

Remarks. 1. We do not assume that V is complete with respect to this
structure. 2. It is clear that if (π, V ) is irreducible unitary, then its complex
conjugate, (cπ, V ), is naturally isomorphic to its contragredient, (π̃, Ṽ ).

83
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Proposition 38. Let P be a parabolic subgroup of G, M the associated Levi
subgroup. Suppose (ρ,W ) is a unitary representation of M . Then π = iG,M(ρ) is
also unitary.

Remark. For this proposition, we must use normalized induction as in sec-
tion III.1.1. For this reason, iG,M with this normalization is often called unitary
induction.

Proof. Recall that vectors in π are sections of a sheaf on G/P whose fibers
are isomorphic to δ⊗W , where δ is a square root of the G-invariant distributions,
∆. We define

〈ξ, ν〉 =
∫

G/P
〈ξx, νx〉dµ ∈ (δx)

2 = ∆x.

This proposition is usefull only if we have some unitary representations to start
with. Our source will be the following

Proposition 39. Suppose G has compact center. Let (π, V ) be an irreducible
representation with square-integrable matrix coeffiecients. Then V has an (essen-
tailly unique) unitary structure.

Remark. We will call a representation with square integrable matrix coeffi-
cients a square integrable representation.

Proof. Recall the definition of matrix coefficients: given ξ ∈ V and ξ̃ ∈ Ṽ , set
mξ̃,ξ(g) = 〈ξ̃, π(g−1)ξ〉. For a fixed ξ̃ we get a G-equivariant map τ : V → C∞(G).

In our case, τ : V → L2(G) and, as V is irreducible, this is an embedding. Thus
we get a unitary structure on V .

That this scaler product does not depend on the choice of ξ̃ follows from the
following version of Schur’s lemma.

Lemma 38. If G is reductinve and V is an irreducible G-module, then up to a
constant there exists no more than one G-invariant scaler product on V .

Proof. Let V + be the anti-linear dual of V , that is the space of anti-linear
functionals. An Hermitian scaler product on V is equivalent to a representation
V → V +. As V is smooth, we may replace V + by its smooth part. Moreover, it
is easy to see V admissible irreducible implies V+ admissible irreducible. Thus,
Schur’s lemma implies that Hom(V, V +) = C.

In the proof of the proposition we did not use the assumption that G is has
compact center. However,
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Lemma 39. If G has non-compact center then it has no square-integrable rep-
resentations.

Proof. Suppose V is an irreducible representation of G. If V had square
integrable matrix coefficients then, by proposition 39, it is unitary. Thus, its
central character, χ(x), is unitary. That is, |χ(z)| = 1 for z ∈ Z(G). But
mξ̃,ξ(zg) = χ−1(z)mξ̃,ξ(g). Thus, Z(G) not compact implies that the matrix coef-
ficients are not square integrable.

The technical difficulty that this lemma identifies is very much like one we
encountered with compact representations, and just as we introduced compact
modulo center representations, here we introduce representations that are square
integrable modulo center. To be precise,

Definition 28. Suppose that (π, V ) is a representation of G with unitary cen-
tral character χ(z). We say that (π, V ) is square integrable modulo center if

∫

G/Z
| mξ̃,ξ(g)|

2dµ <∞

for all ξ ∈ V and ξ̃ ∈ Ṽ .

Proposition 40. Unitary representations have unitary central characters. Con-
versly, a representation with a unitary central character and which is square inte-
grable modulo center is unitary.

Proof. The only thing to be done is to define an inner product for square
integrable modulo center representations. Fix ξ̃; then

〈ξ, ν〉 =
∫

G/Z
mξ̃,ξmξ̃,νdµ.

Remark. Experience suggests that it is somehow more difficult to classify
unitary reresentations than general ones. In particular, there are not many ways
of constructing unitary representations. The only general procedure is to find
a space X with a G-action. Then G acts on functions on X and we can find
V ⊂ L2(X). However, it is not clear how to find such X. The two natural
choices are X = point, which gives the trivial representation, and X = G, which
is essentially what we have considered in this section.
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1.2. Applications.

Proposition 41. Let V be an admissible unitary representation of G. Then V
is completely reducible. That is, V =

⊕
Vi where the Vi are irreducible unitary.

Remark. This is false for non-admissible representations.

Proof. Suppose W ⊂ V is a submodule. Then the orthogonal complement,
W⊥ ⊂ V is also a submodule and W ∩ W⊥ = 0. It remains to check that
W + W⊥ = V . For this it is enough to check that WK + (W⊥)K = V K for all
compact open subgroups K ⊂ G. But using admissibility, this follows by counting
dimensions.

This proposition gives a method for establishing that some representations are
irreducible. For this reason, unitary representations can be useful for proving state-
ments about general representations. An important example is the next theorem
which was used in the proof of the stabilization theorem.

Theorem 27. Let ρ be a cuspidal representation of a Levi subgroup M ⊂ G.
Then πψ = iG,M (ψρ) is irreducible for generic ψ ∈ Ψ(M).

Proof. Step 0: It is enough to check that πψ is irreducible for some ψ.
This is because irreducibility is an open condition. More precisely, we may

realize all of the representations πψ on the same space E and with the same action
of open compact subgroups (see section III.5.2). Then, for K ⊂ G open compact,
we have a biregular map

HK(G) × Ψ(M) → End(EK)

(h, ψ) 7→ πψ(h).

If for a fixed ψ this is onto, then it is onto for a zariski dense set in Ψ(M). Now
let K shrink.

Step 1: We may assume that ρ has unitary central character. That is, there is
ψ ∈ Ψ(M) such that ψ−1ρ has unitary central character.

Let Z(M) be the center of M and and let χ be the central character of ρ.
Now, χ is a map Z(M) → C∗. Thus, |χ|2 : Z(M) → R+∗. Moreover, as R+∗ has

no compact subgroups, |χ|2 restricted to Z(M)◦ is identically 1. Thus,

|χ|2 : Z(M)/Z(M)◦ → R+∗.

We know (section II.2.1) that Λ(Z(M)) = Z(M)/Z(M)◦ →֒ Λ(M) = M/M◦ has
finite index. Thus, the set of morphisms, Mor(Λ(M) → R+∗) = Mor(Λ(Z(M)) →
R+∗). In particular, there exists a map |ψ|2 : Λ(M) → R+∗ so that |ψ|2 = |χ|2 on
Λ(Z(M)).
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Let ψ be the positive square root of |ψ|2. Then |ψ−1χ|2 = 1 on Z(M). Thus,
ψ−1χ is unitary and ψ is as claimed.

Step 2. If ρ has unitary central character, then ρ is unitary. This follows from
proposition 40 because, as ρ is cuspidal, it is compact modulo center (theorem 14)
and so a fortiori, ρ is square integrable modulo center.

Step 3. For unitary ψ, πψ = iG,M(ψρ) is unitary and hence completely re-
ducible. This follows from steps 1 and 2 as well as propositions 38 and 41.

Recall that rM,G(πψ) has a filtration with quotients w(ψρ) for w ∈ W (M).
Step 4. For generic ψ, w(ψρ) and ψρ have different central characters.
As above, set χ = central character of ρ. The central character of ψρ = χψ|Z(M).

Moreover, the central character of w(ψρ) = w(χψ|Z(M)). Since we are only inter-
ested in generic ψ and Λ(Z(M)) has finite index in Λ(M), it is enough to show
that for a generic character α of Λ(Z(M)), χα 6= w(χα). But this follows from
the fact that W (M) is finite and each w ∈ W (M) acts non-trivially on Λ(Z(M)).

Step 5. For generic ψ, Hom(πψ, πψ) = C.
We need the following lemma:

Lemma 40. Filtrations of G-modules whose quotients have distinct central char-
acters reduce to direct sums.

Proof. We obviously get a direct summand as a Z(G)-module. But G com-
mutes with Z(G) (of course) and so preserves the summands corresponding to
distinct characters of Z(G).

Applying step 4 and the lemma, we get rM,G(πψ) =
⊕
w(ψρ). Using Frobenius

reciprocity,

Hom(πψ, πψ) = Hom(rM,G(πψ), ψρ)

= Hom(
⊕

w(ψρ), ψρ)

which is clearly one dimensionsal.
Step 6. For ψ unitary and generic, πψ is irreducible. As πψ is completely

reducible, this follows from step 5.
The theorem follows from step 0 and step 6.

Remark. We summarize the procedure used to show that a representation is
irreducible: describe its endomorphisms using the basic geometric lemma; if this
is one dimensional and if the representation is unitary then it is irreducible.

We conclude this section with two exercises which extend the result of this
theorem. The first is easy; the second was worked out by Bernstein using the
Langlands classification (section 2.3) and even then was difficult.

(1) Let ρ be an irreducible unitary representation of M , then iG,M (ψρ) is irre-
ducible for generic ψ.
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(2) Let ρ be any irreducible representation of M . Then iG,M (ψρ) is irreducible
for generic ψ.

2. Central Exponents

[SEVERAL PLACES NEED WORK]

2.1. The Root System. Recall that, for any group G, Λ(G) = G/G◦ is a
lattice with Λ(Z(G)) as a sublattice of finite index. Set

a(G) = Λ(G) ⊗ZR = Λ(Z(G)) ⊗ZR.

A simple but important observation is that the dual space, a(G)∗, satisfies

a(G)∗ = Hom(G,R+∗).

Thus, for any character ψ, |ψ| ∈ a(G)∗.
Remark. In this situation, it is usual to take logarithms. Thus, a(G)∗ ∼=
Hom(G,R) and log |ψ| ∈ a(G)∗).

Definition 29. If π is an ireducible representation of G with central character
χπ, the central exponent of π is e(π) = log |χπ| ∈ a(G)∗. More generally, the set of
central exponents of π is {e(σ) | σ ∈ JH(π)}.

In this section we study representations π with certain conditions on their cen-
tral exponents, and on the central exponents of the rM,G(π). The conditions are
negative (giving tempered representations, section 2.3) and strictly negative (lead-
ing to square integrable representations, section 2.2). We now explain what these
mean. For simplicity, we assume that G has compact center.

Let P0 = M0U0 be a minimal parabolic subgroup. Let P be a standard parabolic;
P = MU , P ⊃ P0, M ⊃ M0. Corresponding to the injections M0 →֒ M and
Z(M) →֒ Z(M0), there are obvious maps a(M)∗ → a(M0)

∗ and a(M0)
∗ → a(M)∗.

Furthermore, it is easy to see that the composition a(M)∗ → a(M0)
∗ → a(M)∗ is

the identity. In particular, we have an injection

a(M)∗ →֒ a(M0)
∗.

By this observation, we may view the central exponents of a representation of any
standard Levi subgroup as living in a(M0)

∗. Henceforth we will write a (respec-
tively a∗) for a(M0) = Λ(M0) ⊗ R (respectively a(M)∗ = Hom(G,R)).

Suppose U is a unipotent subgroup normalized by M0, and α is a character ofM0

which appears in the adjoint action of M0 on U . Then log |α| ∈ a∗ is called a root.
The collection of the roots, Σ, is the root system. The choice of P0 corresponds
to a choice of positive roots Σ′ ⊂ Σ. Suppose that Σ is generated by the simple
roots α1, . . . , αl ∈ Σ′. The standard unipotent subgroups correspond to subsets
of the αi. If P = MU is a standard parabolic with α1, . . . , αr the simple roots
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appearing in the adjoint action on U , then a(M)∗ ⊂ a∗ is the subspace generated
by α1, . . . , αr.

Define a+ = {λ ∈ a | α(λ) ≤ 0 ∀α ∈ Σ′} or equivalently, a+ = {λ ∈ a | αi(λ) ≤
0 ∀i}. Clearly, a+, is a cone in a. The dual cone, a∗+ ⊂ a∗, consists of elements that
are positive on a+. We may describe a∗+ as the set of linear combinations

∑
ciαi

with ci ≤ 0. (Thus a∗+ is the opposite of the usual Weyl chamber.) Obviously,
each face of the cone a∗+ is itself a cone in one of the subspaces a(M)∗ ⊂ a∗.

Definition 30. A central exponent e ∈ a(M)∗ is (strictly) negative if it lies in
(the interior of) −a(M)∗+.

It will be important to clarify the relationship bewteen the various Λ(M) for
the standard Levi subgroups M . Suppose M ⊂ N are Levi subgroups, then we
have the following inclusions:

a(N) ⊂ a(M) vector spaces
∪ ∪

Λ(N) Λ(M) lattices
∪ ∪

Λ(Z(N)) ⊂ Λ(Z(M)) lattices

The only thing that we have not proved is the inclusion on the last line. But this
follows from the fact that for an abelian group Z, Z◦ is the same as the maximal
compact subgroup of Z. Thus, an inclusion of abelian groups Z1 →֒ Z2 leads to
an inclusion Λ(Z1) →֒ Λ(Z2). As a particular case of this diagram, we see that
Λ(Z(M)) ⊂ Λ for any standard Levi subgroup M . Thus,

Λ(Z(M)) ⊂ Λ ∩ Λ(M) ⊂ Λ(M)

where these inclusions are of subgroups of finite order.
As in previous chapters, set Λ = Λ(M0) = M0/M

◦
0 ⊂ a. We have defined Λ+ =

{λ ∈ Λ | Adλ is a contraction on U0}. We could also simply define Λ+ = Λ∩ a+.
Notice that a representation of M has a (strictly) negative central exponent if its
central character is (strictly) negative on Λ+. [?????????????????????????]
Remark. When the center of G is not compact, there is a nuance because then
Λ+ is not a lattice intersect a cone. Of course, we could always just consider the
subgroup of finite index G◦ × ΛZ where ΛZ ⊂ Z(G) and G◦ has compact center.
(See section II.2.1.)

2.2. Condition for Square Integrability.

Proposition 42. Let G have compact center, and let π be a representation of
G of finite length. Then π is square integrable if and only if, for any standard Levi
subgroup M ⊂ G, all central exponents of rM,G(π) are strictly negative elements
of a(M)∗.
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Remark. The proposition suggests that to find out if a representation is square
integrable, we must know all Jacquet functors. In fact, it is equivalent to check the
condition only for those associated to cuspidal components: if τ ∈ JH(rM,G(π)) is
not cuspidal, find L ⊂M a Levi subgroup such that rL,M (τ) is cuspidal. Let e(ρ)
be an associated cuspidal central exponent. Then a(M)∗ ⊂ a(L)∗ and it is not
hard to see that e(τ) is the projection of e(ρ) onto a(M)∗. As a(M)∗+ is a face of
a(L)∗+, it is clearly sufficient to check the condition on L.

Proof. Fix a small open compact subgroup K as in Bruhat’s theorem (section
II.2.1). In particular, for any standard parabolic subgroup P , K and P are in good
position. Let e = x1, . . . , xs be a list of elements of G which include representatives
of Λ(M)/Λ(Z(M)) for each standard Levi subgroupM . We shall work with matrix

coefficents of the form mξ̃,ξ(g) = 〈ξ̃, π(g−1)ξ〉 where xiξ and xiξ̃ are K invariant
for each i. As K may be taken arbitrarily small, this is no real restriction.

By the Cartan decomposition, G = K0Λ
+K0, we have

∫

G
|mξ̃,ξ(g)|

2dµ =
∑

λ∈Λ+

∫

K0λK0

|mξ̃,ξ(g)|
2dµ

Let ki be representatives for K0/K and let wi be the action π(ki). Then

=
∑

i,j

∑

λ∈Λ+

|mwi(ξ̃),wj(ξ)
(λ)|2µ(KλK).

We are interested in when this sum converges. Hence, it is enough to look only at
∑

λ∈Λ+

|〈ξ̃, π(λ)ξ〉|2µ(KλK).

Now, each element of Λ+ is in Λ(M)++ for some standard Levi subgroup M . Thus,
we may split the above sum into sums over Λ(M)++ ∩ Λ+ for the various M ’s.
In other words, our goal is now to show that all central exponents are strictly
negative if and only if all sums of the form

∑

λ∈Λ(M)++∩Λ+

|〈ξ̃, π(λ)ξ〉|2µ(KλK)

converge.
We know that

Λ(Z(M))++ ⊂ Λ(M)++ ∩ Λ+ ⊂ Λ(M)++.

We would like to argue that we may reduce further to considering sums over only
the Λ(Z(M))++. This will follow from the following lemma.
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Lemma 41. For η ∈ Λ(M)+ ∩ Λ+,

µ(KηK) = µ(K)∆−1
M (η).

Proof. Using the notation (and results) from Bruhat’s theorem,

KηK = KUKMKUηK = KUηK.

It follows that µ(KηK)/µ(K) equals the index [η−1KUη : KU ]. But, [η−1KUη : KU ] =
[KU : ηKUη

−1]. Finally, by the remark at the end of section III.1.1, this equals
∆−1
M (η).

Using this lemma and our assumptions about ξ and ξ̃, it is easy to see that it is
enough to prove that all central exponents are strictly negative if and only if all
sums of the form ∑

Λ(Z(M))++

|〈ξ̃, π(λ)ξ〉|2∆−1
M (λ)

converge.
The key observation at this stage is that Λ(Z(M))++ ⊂ Λ(M,K)++ (i.e. λ

strictly dominant with respect to (P,K), see section II.2.1). But, the results of
section III.3.2 imply that, for λ ∈ Λ(M,K)++

〈ξ̃, π(λ)ξ〉 = 〈rM,G(ξ̃), J(π)(λ)rM,G(ξ)〉.

Furthermore, ∆−1
M (λ) provides exactly the usual normalization for the Jacquet

restriction functor.
Thus, for λ ∈ Λ(Z(M))++ ⊂ Λ(M,K)++,

|〈ξ̃, π(λ)ξ〉|2∆−1
M (λ) = |〈ξ̃, τ(λ)ξ〉|2

where τ = rM,G(π) and the ξ and ξ̃ on the right hand side are to be interpreted
as elements of rM,G(π) and rM,G(π).

We are reduced to showing that all central exponent are strictly negative if and
only if each sum of the form

∑

Λ(Z(M))++

|〈ξ̃, τ(λ)ξ〉|2

converges. But restricted to Z(M), τ is just the sum of the central characters
of the various Jordan-Holder components of τ . Consequently, the previous sum
converges if and only if ∑

Λ(Z(M))++

|χ(λ)|2

converges for all central characters χ. [EASY FROM HERE – JUST HAVE TO
ARGUE THAT SUM OVER CONE (POINT NOT AT ORIGIN) OF CHARAC-
TER CONVERGES IFF STRICTLY NEGATIVE CENTRAL EXPONENTS.]
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For this to happen, it is obviously necessary that all |χ(λ)| < 1. It is now easy
to see that all central exponents must be strictly negative. On the other hand, it
is well known that the sum of a positive

Dropping the assumption that G has compact center, observe that a(G) = a(Z)
and a = a(G)

⊕
a(G)⊥. Also, a+ = a(G)⊕ (a(G)⊥)+. We will say that an element

of a∗ is striclty negative modulo center if it is strictly negative on Λ∩ (a(G)⊥)+. It
is not hard to show

Proposition 43. Let π be a representation of G of finite length with unitary
central character. Then, π is square integrable modulo center if and only if for
any standard Levi subgroup M ⊂ G, all central exponents of rM,G(π) are strictly
negative modulo center.

2.3. Tempered Representations. In this section, we introduce tempered
representations and state the Langlands classification. Although we will not need
it in these notes, this topic does play an important role in the representation theory
of p-adic groups.

Suppose that G has compact center.

Definition 31. A representation π is tempered if all central exponents of π are
(not strictly) negative.

Proposition 44. Irreducible tempered representations are unitary.

Remarks. 1. Square integrable representations may be embedded into L2(G)
and so are obviously unitary. However, tempered is slightly weaker than square
integrable so this is not so clear. In particular, the proposition is false without the
irreducibility hypothesis.

Proof. Let π be an irreducible tempered representation of G. If π is square
integrable then it is unitary. Otherwise, the idea of the proof is to find a Levi
subgroup M and an irreducible unitary representation, σ, of M so that rM,G(π) →
σ. Then, by adjunction, π →֒ iG,M (σ) and so π is a subrepresenation of a unitary
module and so is unitary.

To find such a σ we must get a representation which has a unitary central
character and is square integrable modulo center. By proposition 43, this second
condition is equivalent to having all central exponents strictly negative modulo
a(M).

Let N be a Levi subgroup and ρ an irreducible cuspidal representation so that
rN,G(π) → ρ. As cuspidal representations are compactly supported modulo center,
if ρ has unitary central character we are done. If this is not the case, then, since π
is not square integrable, we may assume that e(ρ) is on the boundary of −a(N)+∗.
Therefore, there exists M ⊃ N and σ ∈ JH(rM,G(π)) so that e(σ) = 0. That
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is, σ has unitary central character. Moreover, if we choose M maximal with this
property, then, forM ′ ⊂ M , the central exponents of rM ′,M(σ) are strictly negative
modulo a(M).

The next result we state without proof.

Langlands Classification. Let G ⊃ M ⊃ N be a tower of Levi subgroups.
Suppose that σ is a representation of N which is square integrable modulo center,
and let ψ be an unramified character of M which takes positive real values and is
strictly positive (in the Weyl chamber).

(1) τ = iM,N (σ) can be decomposed as a direct sum of tempered representations,⊕
τi.

(2) iG,M(ψτi) has a unique irreducible submodule. Moreover, there is a partial
order on the quotients so that the irreducible submodule is strictly maximal.

(3) any irreducible representation of G may be realized as in (2).

Let R(G) be the Grothendieck group of representations of G of finite length.
R(G) is a free group generated be IrrG.

Corollary. The set of iG,M (ψτ) with ψ a positive real character and τ a
tempered representation form a basis in R(G).

Remark. Usually the corollary is the form of this result that is used.

3. Uniqueness of Π(Ω)

3.1. Preliminaries on Corank 1. Before proving the uniqueness theorem,
we need some preliminaries on corank 1 Levi subgroups. We will say M ⊂ G is
of corank 1 if the associated parabolic subgroup P is a maximal proper parabolic
subgroup in G. For example, if G = GL(n), then the corank 1 Levi subgroups are
those which consist of two blocks. That is, M = GL(n1) × GL(n2).

Recall that W (M) = {w ∈ G | wMw−1 is a standard Levi subgroup in G}
modulo M . When M is corank 1, W (M) = {1, σ}. When G = GL(n), σ switches
n1 and n2. In general, suppose that σ : M

∼
→ N and P = MU , Q = NV . Then

one could also take the point of view that σ is the map that switches P and Q.
Our goal is the following theorem.

Theorem 28. Suppose that G has compact center and M ⊂ G is a corank 1
Levi subgroup with W (M) = {1, σ}, σ : M

∼
→ N . Let ρ be a cuspidal irreducible

representation of M and set σ(ρ) = ρ′. Suppose that π = iG,M (ρ) is reducible.
Then N = M and ρ′ = φρ, where φ is a positive real-valued character.
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Proof. Define r(π) = {rL,G(π)}. The basic geometric lemma implies that

r(π) =




{(M, ρ), (N, ρ′)} if N 6= M

{(M, ρ⊕ ρ′)} if N = M .

In either case, the fact that Jacquet restriction is exact proves that | JH(π)| ≤ 2,
and similarly for π′ = iG,M(ρ′). Moreover, it follows that

Hom(π, π′) = Hom(rN,GiG,M (ρ), ρ′)

is one dimensional, and similarly for Hom(π′, π). Of course, if π is irreducible,
π ∼= π′. But here π is reducible. Hence,

0 → π1 → π → π2 → 0

with π1 and π2 irreducible. It is easy to see that r(π1) = (M, ρ), and r(π2) =
(N, ρ′). It follows that

0 → π2 → π′ → π1 → 0.

We know that a(M) is one dimensional; this is equivalent to corank 1. Thus,
there are exactly three cases for the central exponent, e = e(ρ): e = 0, e > 0,
and e < 0. In the first case, ρ is unitary. Therefore, π is also unitary and so
completely reducible: π = π1 ⊕π2. But this leads to a map π2 →֒ π and so implies
that rM,G(π2) = ρ which is false. The second case is easily reduced to the third by
taking contragredients, and so e < 0 is the situation that we consider.

If e < 0, then the only central exponent of π1 is strictly negative. Thus, by
proposition 42, π1 is square integrable and hence unitary. Therefore, its contra-
gredient, π̃1, is the same as its complex conjugate, c(π1). So,

c(rM,G(π1)) = rM,G(c(π1))

= rM,G(π̃1)

using theorem 21,

= ˜rM,G(π1)

= ρ̃.

If N 6= M , rN,G(π1) = 0. But, it is easy to see that σ switches the functors rM,G

and rN,G. Thus, rM,G(π1) is zero also, and so by what we have just seen, ρ = 0.
This contradiction implies that N = M .

When N = M , σ(rM,G(π1)) = rM,G(π1) = ρ. Hence,

ρ′ = rM,G(π1) = c(ρ̃).
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By step 1 in the proof of theorem 27, there is a real character, ψ, and a represen-
tation ρ0 with unitary central character, so that

ρ = ψρ0.

As ρ0 is cuspidal, it is actually unitary. Hence,

ρ′ = c(ρ̃) = c(ψ−1ρ̃0) = ψ−1 c(ρ̃0)) = ψ−1ρ0.

Thus,

ρ = ψ2ρ′

Corollary. If iG,M(ρ) is reducible, then (M,D) is invariant with respect to σ.

The first non-trivial case of this result is M = GL1 ×GL2 ⊂ GL3. Here we
conclude that induced representations of cuspidal representations are always irre-
ducible. Although there are other ways to prove it for GLn, this is a hard result.
The only general proof is the one that we gave which used results on unitary
representations.

The next corollary is the key result of this section.

Corollary. Let M ⊂ G be of corank 1, (M,D) a cuspidal component, and Ω
the associated component of Ω(G). Suppose that σ(M,D) 6= (M,D). Then

(1) iG,M maps irreducible representations in M(D) into irreducible representa-
tions in M(Ω).

(2) Set rD,G(π) = rM,G(π)D ∈ M(D). Then rD,M is a faithful functor (i.e.
maps nonzero modules to nonzero modules).

(3) For π ∈ M(Ω), the natural morphism π → iG,MrD,G(π) is an isomorphism.
Therefore,

rD,G : M(Ω) → M(D)

is an equivalence of categories.

Proof. (1) is clear. (2) Let σ(D) = D′. Then by definition of Ω, at least one
of rD,G(π) and rD′,G(π) is non-zero. But σ maps one to the other. Hence they are
both non-zero. (3) follows easily.
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3.2. Proof of Uniqueness. The first step is to prove the uniqueness of Π(Ω)
in the special case M of corank 1.

Proposition 45. If M ⊂ G is of corank 1 with D a cuspidal component, and
σ(M,D) = (N,D′), then

iG,M (Π(D)) ∼= iG,N (Π(D′)).

Remark. This isomorphism is NOT canonical.

Proof. If (N,D′) = (M,D) then this is trivial. Otherwise, by the equivalence
of categories in the second corollary to theorem 28, it is enough to show

rD,GiG,N (Π(D′)) = Π(D).

But this is true by the basic geometric lemma.

Finally, we can prove the theorem:

Uniqueness Theorem. Let M ⊂ G be any Levi subgroup, D a cuspidal com-
ponent of M . If there is w ∈ W (M) so that w(M,D) = (N,D′), then

iG,M (Π(D)) ∼= iG,N (Π(D′)).

Proof. First, consider the case of w = σ, an elementary transformation; i.e.
there is a Levi subgroup L, M ⊂ L ⊂ G, so that M is corank 1 in L and σ ∈ L.
By the provious proposition,

iL,M (Π(D)) ∼= iL,N (Π(D′)).

Hence,

iG,M(Π(D)) = iG,L(iL,M (Π(D))) ∼= iG,L(iL,N (Π(D′))) = iG,N (Π(D′)).

The general case now follows from the following geometric lemma

Lemma 42. Any transformation w : M → N may be written as a composition
of elementary reflections.

Proof. Omitted. But here is an example: G = GL(n), M = GL(n1) × . . . ×
GL(nk). A transformation is just a permutation of the blocks. The statement is
that such a permutation is just a product of transpositions.



4. COHOMOLOGICAL DIMENSION 97

Combined with the results of section III.4.1, we have shown that, if Ω is a com-
ponent of Ω(G), and (M,D) is any pair which yields Ω, then Π(Ω) = iG,M (Π(D))
is a projective generator for M(Ω). Observe that, already in section III.4.1, we
could have taken ⊕

M,D

iG,M (Π(D))

as a projective generator and so avoided needing the result above. However, the
sum is more complicated and so less usefull for illuminating the structure of M(Ω).

4. Cohomological Dimension

We know that M(G) has enough projectives (section I.2.2). Thus for M ∈
Ob(M(G)), there is a projective resolution

· · · → P1 → P0 →M → 0.

Note that if M is Noetherean, this resolution may be chosen to be by Noetherean
projectives.

In this section we prove

Theorem 29. M(G) has bounded cohomological dimension. More precisely,

cohom. dimM(G) ≤ rank(G).

One would hope to be able to establish this directly. However, it seems as
though an entirely new ingredient is needed: the Tits Building.

4.1. Tits Building.

Theorem 30. There is a simplicial complex X with a G-action, satisfying

(1) dimX = rankG.
(2) X is contractible.
(3) G preserves the simplicial structure and acts linearly on every simplex.
(4) X has a finite number of simplices modulo G.
(5) The stabilizer of any simplex σ ⊂ X, Stab(σ), is a compact open subgroup

of G.

For example, G = PGL(2, F ) acts on the plane F 2. The vertices of X are the
open compact O submodules (i.e. lattices) Λ ⊂ F2, up to scaler. Two vertices Λ
and Λ′ are joined by an interval if Λ ∩ Λ′ has index q in Λ and Λ′. (Here q is the
residue characteristic of F .) Thus, X is a tree with q+1 branches at every vertex.
Putting the standard unit metric on each interval gives a metric of hyperbolic
type; X is an analog of a symmetric space.
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Proof. Omitted. But here are some remarks: first consider the case G split.
In this case, one can give an explicit construction of X. In general, consider a
Galois field extension E ⊃ F so that G splits. The Galois group Γ acts on the
building XE and we define X to be (XE)Γ. Then deduce properties of X from
those of XE. The hardest part is showing that X is contractible.

4.2. Finiteness. Using the building, we may prove that M(G) has cohomo-
logical dimension ≤ rankG. We will use the properties of X repeatedly. Let
l = rankG and let C be the chain complex of X. That is,

C : 0 → Cl
∂
→ Cl−1

∂
→ · · ·

∂
→ C2

∂
→ C1

∂
→ C0

where Ci is the free abelean group on the i simplices. As X is contractible, this
is an acyclic complex; i.e. Hi(C) = 0 for i 6= 0, and H0(C) = C. On the other
hand, each Ci is a representation of G. Hence, C may be viewed as a G-module
resolution of the trivial G-module C.

Proposition 46. The trivial module C has a projective resolution of length
rankG:

Pl → Pl−1 → · · · → P0 → C.
Moreover, the Pi are finitley generated.

Proof. Just take Pi = Ci. It only remains to check that the Ci are projective,
finitely generated G-modules. Let σ1, . . . , σr be representatives for the set of i sim-
plices of X, modulo the action of G. Elements of Stab(σj) may preserve or reverse
the orientation of σj . We will denote by εj the corresponding one dimensional
representation of Stab(σj). Then, the G module Ci is equivalent to

⊕

j

IndGStab(σj )(εj)

which is finitely generated and projective.

Let V be a G module. We try to construct a projective resolution of V by

V ⊗ Pl → V ⊗ Pl−1 → · · · → V ⊗ P0 → V ⊗ C = V

where we give V ⊗ Pi the diagonal action of G. Note that even if V is finitely
generated, V ⊗ Pi need not be. However,

Claim. V ⊗ Pi is projective.

Proof. Recall that, in the notation of the last proof,

Pi =
⊕

j

IndGStab(σj)
(εj).
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Thus, it is enough to show that Vj = V ⊗ IndGStab(σj)
(εj) is projective. Here we

have the diagonal action of G. We may view Vj as a set of functions f : G → V
satisfying some properties.

We also define Wj = V ⊗ IndGStab(σj)
(εj) but with the action of G only on the

second component. Wj is obviously projective. Once again, we view Wj as a set
of functions on G. It is easy to see that the map

f(g) 7→ g−1f(g)

defines a G-module isomorphism from Vj to Wj . Thus, Vj is projective.

For any object in M(G), we have given an explicit construction of a projective
resolution no longer than the rank of G. This proves theorem 29.
Remark. The resolution that we have explicitly constructed is by infinitely
generated modules. When V is finitely generated, there is a resolution by finitely
generated projective modules. (Note that M(G) is a Noetherean category; that
is, any finitely generated object is Noetherean. See section III.2.2.) However, we
have no explicit construction of a finite resolution using only finitely generated
modules.

5. Duality.

5.1. Cohomological Duality.

Definition 32. For a finitely generated, projective (left) G-module P , set

P ∗ = HomG(P,H(G)).

Since H(G) is both a right and a left G-module, P ∗ is a right G module. P finitely
generated projective implies P∗ smooth finitely generated projective.

For example, take K ⊂ G open compact and PK = H(G)eK . PK is projective
and generated by eK . Then, P ∗

K = HomG(PK ,H(G)) = eKH(G). Thus we have a
duality between left and right G modules.

Consider any (not necessarily exact) complex of finitely generated projective
objects

0 → Ak → · · · → A0 → 0.

Then we may form

0 → A∗
0 → · · · → A∗

k → 0.

In this way, we define a duality in the associated derived category. Of course,
given any finitely generated G-module π, there is a resolution by finitely generated
projectives,

0 → Pl → · · · → P0 → π → 0,
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and so may we view π as an element of the derived category. It is natural to hope
that the dual object,

0 → P ∗
0 → · · · → P ∗

l → 0,

has homology in only one dimension. This would lead to a duality on finitely
generated H-modules. Ideally, this would take irreducible modules to irreducible
modules, or more generally, modules of finite length to modules of finite length,
and have other nice properties. In this section, we show that this is, in fact, the
case.

For π and Pi as above, set

Ei(π) = Exti(π,H(G)) = H i(P ∗
0 → · · · → P ∗

l ).

Let Mf(Ω) be the subcategory of M(Ω) consisting of representations of finite
length.

Theorem 31. Fix a component Ω ⊂ Ω(G) and let d = dim Ω. Suppose that

π ∈ Mf(Ω). Then Ei(π) = 0 unless i = d, and D(π)
def
= Ed(π) is a representation

of finite length. Converting D(π) from a right module to a left module in the
standard way gives a map

D : Mf(Ω) → Mf(Ω).

The map D is called cohomological duality. It has the following properties:

(1) D is exact.
(2) D2 is the identity.
(3) If ρ is irreducible cuspidal, then D(ρ) ∼= ρ̃.
(4) D ◦ iG,M = iG,M ◦D, where iG,M is taken with the oposite parabolic.
(5) D ◦ rM,G = rM,G ◦D.

Remark. It follows that π irreducible imples D(π) irreducible.
For example, take G = GL(2). Let 1 and S be the trivial and Steinberg repre-

sentations, respectively. Set M = GL(1) × GL(1). Then there are characters ρ1
and ρ2 of GL(1) so that R = iG,M(ρ1, ρ2) satisfies

0 → 1 → R → S → 0.

Using the properties of duality and our knowledge of corank 1 Levi subgroups, we
get

0 → D(S) → D(R) → D(1) → 0

and can conclude that

D(1) = S

D(S) = 1.
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In terms of Ext groups, this means Ext1(1,H(G)) = S, etc.
For the proof of the theorem, we will need a result from commutative algebra

which we state without proof. Let A be a regular, finitely generated algebra over
a field. Let M be a finitely generated A-module. We should think of A as the
algebra of functions on a non-singular algebraic variety Y ; M corresponds to a
sheaf on Y . SuppM ⊂ Y is a closed subset. Then

Theorem 32 (Serre). (1) The category of modules over A, M(A), has co-
homological dimension equal dimA (= dimY ).

(2) ExtiM(A)(M,A) = 0 for i < codimension of SuppM .

(3) The codimension of Supp ExtiM(A)(M,A) is ≥ i.

Remark. Part (1) is trivial. We will not need part (3).
The proof of theorem 31 will occupy the rest of this section. The proof has two

parts. First we show that Ei(π) = 0 for i 6= d. Then we prove properties (1) to
(5). (The fact that Ed(π) has finite length follows from the properties.)

We want to study Exti(π,H(G)). Write H(G) =
⊕
j H(Ωj). For us, the only

term that matters is H(Ω). Furthermore, H(Ω) is a quotient of
⊕

Π(Ω). As
H(Ω) is projective, it is a direct summand. Thus, to show that Exti(π,H(G)) =
Exti(π,H(Ω)) = 0, it is enough to show that Exti(π,

⊕
Π(Ω)) = 0. This, in turn,

would follow from
Exti(π,Π(Ω)) = 0.

As Π(Ω) = iG,M (Π(D)) for some cuspidal component D of the Levi subgroup
M , we would like to apply Frobenius reciprocity to conclude

Exti(π,Π(Ω)) = Exti(rM,G(π),Π(D)).

To see that this is correct, write everything out in terms of resolutions and use
the fact that iG,M and rM,G are exact and map projective objects to projective
objects. (In fact, it is sufficient to know this only for rM,G.)

Recall from section II.3.3 that the category M(D) is equivalent to the category
rM(Λ(D)) of right modules over Λ(D) = End(Π(D)). Under this equivalence
Π(D) maps to Λ(D) and rM,G(π) maps to some finitely generated Λ(D) module,
say σ. We will be done if we show that

ExtiM(Λ(D))(σ,Λ(D)) = 0.

Suppose that D is the cuspidal component consisting of ψρ where ψ ∈ Ψ(M) and
ρ is a fixed cuspidal representation of M . The first case to consider is when ψρ 6= ρ
unless ψ = 1. In this situation, Λ(D) = F , the ring of regular functions on Ψ. Now
apply part theorem 32 with A = F , Y = Ψ andM = σ. By (1), ExtiM(F )(σ, F ) = 0
for i > d. Moreover, as rM,G(π) has finite length, dim(Supp σ) = 0, (2) implies
ExtiM(F )(σ, F ) = 0 for i < d.



102 IV. ADDITIONAL TOPICS

Now consider the general case. Λ(D) ⊃ F so we have the change of rings functor
u : M(Λ(D)) → M(F ). The functor u has a right adjoint v : M(F ) → M(Λ(D))
given by v : M 7→ HomF (Λ(D),M). More precisely, for M ∈ M(F ) and N ∈
M(Λ(D)), there is a functorial isomorphism

α : HomM(F )(u(N),M)
∼
→ HomM(Λ(D))(N, v(M)).

As Λ(D) is finitely generated and free over F (and hence projective), v is exact.
Thus by proposition 8, u maps projectives to projectives. Furthermore, it is obvi-
ous that that u is exact. It is easy to check that this is sufficient for α to extend
to a functorial isomorphism

α : ExtiM(F )(u(N),M)
∼
→ ExtiM(Λ(D))(N, v(M)).

Observe that v(F ) = Λ(D). Hence,

ExtiM(Λ(D))(σ,Λ(D)) = ExtiM(Λ(D))(σ, v(F ))

= ExtiM(F )(u(σ), F )

= 0 for i < d

by the previous case.
Remark. Under the equivalence of categories M(D) ∼ rM(Λ(D)), we may
consider v : M(F ) → M(D). It is not hard to see that v may be given by v(M) 7→
M ⊗ ρ. In particular, v(F ) = F ⊗ ρ = Π(D).

We now turn to the proof of the properties (1) to (5).
To prove (1), suppose

0 → π′ → π → π′′ → 0

is exact. Then by the properties of Ext, there is a long exact sequence

· · · → Ed−1(π′) → Ed(π′′) → Ed(π) → Ed(π′) → Ed+1(π′′) → · · · .

But Ei = 0 unless i = d, so this gives

0 → D(π′′) → D(π) → D(π′) → 0

as needed.
(2) We know that there is a finite projective resolution of π,

0 → Pdl → Pd−1 → · · · → P1 → P0 → π → 0.

Since Ei(π) vanishes for i 6= d,

0 → P ∗
0 → P ∗

1 → · · · → P ∗
d−1 → P ∗

d → P ∗
d+1 → · · · → p∗l → 0
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is a projective complex which is exact except at Pd. Next, “retract” the right
tail of this sequence as follows: let Q∗

l−1 be the kernel of P ∗
l−1 → P ∗

l → 0; then
P ∗
l−1 = Q∗

l−1 ⊕ P ∗
l , and Q∗

l−1 is projective. Consequently,

0 → P ∗
0 → P ∗

1 → · · · → P ∗
d−1 → P ∗

d → P ∗
d+1 → · · · → p∗l−2 → Q∗

l−2 → 0

is still a projective complex which is exact except at Pd. Continuing in this way
gives

0 → P ∗
0 → P ∗

1 → · · · → P ∗
d−1 → Q∗

d → 0.

Clearly,

0 → P ∗
0 → P ∗

1 → · · · → P ∗
d−1 → Q∗

d → D(π) → 0

is a projective resolution of D(π). It is now obvious that D2(π) = π.
Remarks. 1. It is at this stage in the proof that the finite cohomological dimen-
sion of M(Ω) is really essential. With an infinite complex, we would be faced with
an element of the derived category with homology in only one dimension, but no
way of relating it to a resolution for D(π). 2. Among other things, this argument
implies that M(Ω) has cohomological dimension exactly d. More generally, our
arguments so far may be modified to show the following: let R and S be rings and
α : R→ S a homomorphism which makes S into a projective R-module. Suppose
that M(S) has finite cohomological dimension and cohom. dimM(R) = d. Then
cohom. dimM(S) = d.

(3) Let G∗ = G◦×Λ(Z(G)). Suppose that we could show D(ρ)|G∗
∼= ρ̃|G∗ . Then,

since G∗ has finite index in G, it would follow that D(ρ) ∼= ρ̃. As G∗ = G◦ × Zn,
the result follows from:

Claim. (1) If π is a compact representation of G = G◦, then D(π) = π̃.
(2) If π is any representation of G = Z, then D(π) = π̃.

Proof. For π a compact (and hence cuspidal) representation of G◦, then d = 0.
Thus we are reduced to studying Hom(π,H(G)). As compact representations are
splitting, it is enough to consider π irreducible. We showed in setion I.4.2 that
HomG×G(π ⊗ π̃,H(G)) = C. It follows that D(π) = π̃.

When G = Z, d = 1. It is clearly enough to consider π = ψ a character. In
this case, H(G) ∼= C[t, t−1], the ring of functions on Ψ(G) = C∗. Thus, it is a
standard exercise to show Ext1(ψ,H(G)) = ψ. Passing from right to left modules

gives D(π) = ψ−1 = ψ̃.

(4) and (5). It is clear that these statements reduce to the analogous state-
ments for Hom(·,H). More precisely, we must prove that there are functorial
isomorphisms

HomG(iG,MP,H(G)) ∼= iG,M (HomM(P,H(M)))
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and
HomG(rM,GQ,H(M)) ∼= rM,G(HomG(Q,H(G)))

for projective objects P ∈ M(M) and Q ∈ M(G). By the second adjunction and
Frobenius reciprocity, this is equivalent to

HomM(P, rM,GH(G)) ∼= iG,M(HomM(P,H(M)))

and
HomG(Q, iG,MH(M)) ∼= rM,G(HomG(Q,H(G))).

These follow immediately from:

Claim. Let G be a group, P ⊂ G a parabolic subgroup with P = MU . Think of
H(G) and H(M) as G × G and M ×M modules, respectively. Then there is an
isomorphism of G×M modules

(iG,M × 1)H(M) ∼= (1 × rM,G)H(G).

Here 1 is the trivial functor.

Proof. It is simplest to identify H(G) with locally constant compactly sup-
ported functions on G. Then (1 × rM,G)H(G) is functions on G/U and (iG,M ×
1)H(M) is functions on G×P M ∼= G/U .

This completes the proof of theorem 31.

5.2. Cohen-Macualey Duality. [NOT FINISHED]
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List of Notations

F local non-archimedean field 7
V sm smooth vectors 7
C∞(X) locally constant functions 8
S(X) locally constant compactly supported functions 8
S∗(X) functionals; distributions 8
Supp E support of the distribution E 8
eL characteristic function of L 9
M(H) category of non-degenerate H-modules 9
Sh(X) Category of Sheaves 9
S(F) compactly supported global sections of the sheaf F 9
S(U,F) compactly supported sections on U 9
π!(F) ?????? sheaf 9
M(G) category of smooth representations 11
S∗(G)c compactly supported distributions 11
E ∗ E ′ convolution 11
H(G) Hecke algebra 11
eΓ Haar measure on Γ 11
Eg delta distribution at g 11
HK eKH(G)eK 12
Ob(M) objects in the categroy M 13
(π̃, Ṽ ) contragredient representation 14
V K vectors fixed by K 14
ResGH restriction functor from G to H 16
IndGH induction functor from H to G 16
ind induction functor using compact supports 16
CG trivial representation 17
V G space of invariants 17
VG space of coinvariants 17
V (G) space spanned by π(g)v − v 17
JG(U) Jacquet functor 17
O ring of integers in F 17
IrrM equivalence classes of irredicible objects of M 18
M = M1 ×M2decomposition of category 18
JH(M) Jordan Holder content 18
IrrG equivalence classes of irreducible representations 18
M(S) full subcategory of objects whose Jordan-Holder components are in
S 18
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Dξ,K : g 7→ π(eK)π(g−1)ξ 22

mξ̃,ξ(g) < ξ̃, π(g−1)ξ > matrix coefficient 22
d(ρ) formal dimension 24
K0 maximal compact subgroup 28
Mn(O) n× n matrices with entries in O 28
Ki congruence subgroups 28
M0 diagonal subgroup (for G = GL(n)) 28
M◦

0 M0 ∩K0 28
Λ M0/M

◦
0 28

a(g) eK ∗ Eg ∗ eK ∈ HK(G) 28
Λ+ Weyl chamber 29
H0 algebra spanned by the a(xj) = eK ∗ Exj

∗ eK 29
C span of {a(λ) | λ ∈ Λ+} 29
K+ K ∩ U 30
K− K ∩ U 30
KM K ∩M 30
Pg {x ∈ G|{Ad(gn)x;n ≥ 0} is relatively compact in G} 32
Ug {x ∈ G|Ad(gn)x→ 1 as n→ ∞} 32
KP

+ K ∩ Uλ 32
KP

− K ∩ Uλ−1 32
KP
M K ∩Mλ 32

rM,G = JU where P = MU is a standard parabolic 33
iG,M parabolic induction 33
G◦ {g ∈ G| det g ∈ O∗} 35
Λ(G) G/G◦ 36
Z(G) center of G 36
Λ+◦ Λ+ ∩G◦ 36
Z+ non-negative integers 36
c(G,K) uniform bound on dimV K for V irreducible 38
Ω(G,K) compact subset of G◦ containing supports of all matrix coefficients
of all irreducible representations of HK 38
G◦ subgroup of G generated by all compact subgroups 39
Λ(G) G/G◦ 39
Pg {x ∈ G|{Ad gn(x)} is relatively compact}. 40
P0 minimal parabolic 40
U0 maximal unipotent subgroup 40
M0 maximal torus??? 40
M◦

0 40
Λ Λ(M0) 40
ΛZ image of Z(M0) in Λ 40
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Λ+ {λ ∈ Λ | Ad(λ)|U0 is (not strictly) contracting} 40
KU K ∩ U , 41
KM K ∩M 41
KU K ∩ U 41
Λ(M) 41
Λ(M)++ those λ ∈ Λ with P = Pλ 41
Λ(M,K)++ those λ strictly dominant with respect to (P,K) 41
a(λ) eKEλeK 42
C Span{a(λ)|λ ∈ Λ+

Z} 42
D Span{a(µi)}, 42
H0 Span{a(xi)} 42
c = c(G,K) 43
Ω a = Ω(G,K) 43
Ψ(G) variety of unramified characters 43
Irrc equivalence classes of cuspidal representations 44
D cuspidal component – orbit of Ψ(G) in Irrc 44
Vc cuspidal part of V 45
Vi induced part of V 45
Mcusp category of cuspidal representations 46
Mind category of induced representations 46
M(D) the category of representations whose Jordan-Holder components are
contained in a cuspidal component 46
F algebra of regular functions on Ψ(G) 46
Π(D) projective generator for M(D) 46
Λ EndM Π 47
rM(Λ) category of right Λ-modules 47
Λ(D) End(Π(D)) 48
mx maximal ideal at x 48
Vx specialization of V at x 48
Πψ the specialization of Π at ψ; isomorphic to ψρ 48
G ⊂ Ψ(G) the subgroup of ψ so that ψρ ∼= ρ 49
νψ intertwining operators from ρ→ ψρ 49
cψφ constants so that νψνφ = cψφνψφ 49
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intertwining operator, 73
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l-space, 7
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decomposition, 32
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Levi decomposition, 40
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corank 1, 93
local field, 7
localization, 64
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regular sections, 10
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main theorem, 23, 25

compact modulo center, 34, 36, 42
complex conjugate, 83
contragredient, 14
cuspidal, 27, 36, 42, 43, 45, 55

irreducible, 36, 39
finite, 22
finitely generated, 60
induced, 27, 46
irreducible, 17, 37, 38, 88
quasi-cusidal, 42
quasi-cuspidal, 34, 36, 62
smooth, 7
square inregrable modulo center, 85
square integrable, 84, 85, 89
square integrable modulo center, 92, 93
tempered, 92, 93
unitary, 85

admissible, 86
irreducible, 87

unitary(, 83
unitrizible, 25

restriction functor, 51–53
normalized, 51–53
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root, 88
root system, 88

Schur’s lemma, 19
Separation lemma, 20
sheaf, 9

equivariant, 10
l-, 10
on l-space, 9

sheaf of locally constant distributions, 52
smooth

representation, 7
vector, 7

space of invariants, 17
specialization, 48
split, 58
splitting, 23
splitting set, 19
square integrable modulo center representa-

tion, 85, 92, 93
square integrable representation, 84, 85, 89
stabilization theorem, 64, 65, 67, 68, 70, 86
stable, 65, 67
standard parabolic subgroup, 40
strictly dominant, 41

with respect to a pair (P, K), 41, 68
subgroup

congruence, 28
maximal compact, 28

support of a distribution, 8, 11

tempered representation, 92, 93
test functions, 8
Tits building, 97
totally disconnected, 7

uniform admissibility theorem, 27, 37, 43, 62
unipotent subgroup, 27, 40

standard, 32, 41
uniqueness theorem, 83, 96
unital module, 9
unitary representation

irreducible, 87
admissible, 86

unitary representation(, 83
unitary representation), 85
unitrizible representation, 25

universal enveloping algebra, 73
unramified character, 43, 46

Weyl chamber, 29, 89


