Problem assignment 1

Advanced Algebra II - Class Field Theory

Joseph Bernstein

February 24, 2005.

Separability

Let us fix a field K and some imbedding of K into an algebraically closed field Ω (for example we can take $\Omega = \overline{K}$).

For every finite field extension L/K we consider the set $M(L) = Mor_{K-alg}(L, \Omega)$ and define the separable degree $[L:K]_s := |M(L)|$.

We have shown in class that $[L:K]_s \leq [L:K]$. The field extension L/K is called *separable* if this is an equality.

1. Let $K \subset L \subset M$ be a tower of finite field extensions. Show that M/K is separable iff M/L and L/K are separable.

An element $\lambda \in \Omega$ is called *separable* over K if the field $K < \lambda >$ is a finite separable extension of K.

2. Let $P = \sum a_n x^n \in K[x]$ be a monic polynomial. Show that P does not have multiple roots in Ω iff gcd(P, DP) = 1, where DP is the usual derivative of P, $DP = \sum na_n x^{n-1}$.

Show that if P is irreducible then this is equivalent to $DP \neq 0$.

3. Show that an element $\lambda \in \Omega$ is separable over K iff it is algebraic and its minimal polynomial $P \in K[x]$ does not have multiple roots in Ω (i.e. $DP \neq 0$).

Show that if λ is separable over K then it is separable over any subfield $L \subset \Omega$ containing K.

4. Let L/K be a finite field extension. Show that L/K is separable iff all elements of L are separable over K iff L is generated over K by elements separable over K.

5. A field K is called *perfect* if any its finite extension is separable.

Show that any field of characteristic 0 is perfect

Show that a field K of characteristic p is perfect iff the Frobenius morphism $Fr: K \to K, x \mapsto x^p$, is bijective.

Show that all finite fields are perfect.

Let A be a commutative K-algebra (always with 1) of finite dimension n. Define the set $M(A) := \operatorname{Mor}_{K-alg}(A, \Omega)$ and the number $[A:K]_s = |M(A)|$.

6. Show that elements of the set M(A) are linearly independent in the Ω -linear space $H(A) = \operatorname{Hom}_{K}(A, \Omega)$. Deduce from this that $[A : K]_{s} \leq n = \dim_{K}(A)$.

Show that the algebra A is separable over K iff $[A : K]_s = n$ iff A is isomorphic to a direct sum of separable field extensions of K.

7. Let L/K be a finite field extension. Consider an L- algebra $A = L_L$ obtained from L by extension of scalars from K to L.

Show that L is separable over K iff the algebra A is semisimple (e.i. does not have nilpotent elements).

Suppose that L/K is a Galois extension. Show that then the L-algebra A splits.