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One of the most central ideas of Analysis and of Differential Geometry is the idea of linearization.
Namely the idea is that we start with ”analytical” problem, which in some sense is ”difficult”, and
try to approximate it with a ”linear” problem. Then we solve this linear problem, and this gives
us an important information about the original problem.
The attitude here is that any linear problem should be somehow ”elementary” (trivial).
In order to employ this general idea one should really feel that linear problems are elementary,
which means that one should be well familiar with linear algebra.
So I start with a brief exposition of basic notions of linear algebra. You probably have seen most
of these things before, but since I will use them all the time in a very significant way I prefer to
repeat them.
Also for me it is important that I will be working in invariant - i.e. coordinate free - way. This
means that I will try to give definitions and prove results without introducing coordinates but then
will try to illustrate how all this looks if we write everything in terms of coordinates.
Later we will see that the same scheme works in the study of manifolds.

I. Basic notions of Linear Algebra.

1. Definition of a vector space (over R).
By definition a vector space is a set V equipped with two operations:
Addition V × V → V , notation (x, y) 7→ x + y
Multiplication R× V → V , notation (a, x) 7→ ax

satisfying some axioms of vector space.
If V is a vector space, then a subspace of V is a subset W ⊂ V which contains 0 and is closed with
with respect to addition and multiplication.

Basic examples.
(i) Space Rn.
(ii) Let I be the segment I = [0, 1]. Consider the space V = F(I) of all functions on I. It has
subspaces C(X) - continuous functions, C∞(I) -smooth functions, Pol(I) - polynomial functions,
Pol(I)≤k - polynomial functions of degree ≤ k and so on.

2. Definition of a morphism (linear operator) A : V → L.
If A : V → L is a linear operator , we define its kernel K = kerA as K = {x ∈ V |Ax = 0} ⊂ V
and its image I = A(V ) ⊂ L. These are subspaces of V and L.

3. Let v1, ...vn be a collection of vectors in V . We denote by < v1, ..., vn > the span of these
vectors, i.e. the minimal subspace containing these vectors. It is easy to see that this subspace
consists of all linear combinations of vectors vi, i.e. of vectors v of the form

∑
aivi with ai ∈ R.

We say that vectors v1, ..., vn are linearly independent if any non-trivial linear combination of
them is not 0. This means that linear combinations with different coefficients describe different
vectors in V .
We say that vectors v1, ..., vn form a basis of the space V if they are linearly independent and
span the whole space V .
This means that any vector v ∈ V can be written as a linear combination v =

∑
aivi in a unique

way. Hence the coefficients of this linear combination can be considered as functions of v. The
function v 7→ ai = ai(v) is called the i-th coordinate with respect to the basis (vi).

4. Definition. A space V is called finite-dimensional if there exists a finite collection of vectors
v1, ..., vn ∈ V which span V .
The first basic result of linear algebra is the following
Theorem. Let f1, ..., fm and e1, ..., en be two collections of vectors in V . Suppose we know that
the vectors (fi) are linearly independent and vectors (ej) span V .



Then m ≤ n.
Corollary. Let V be a finite dimensional vector space. Then it has a basis. The number of
elements in this basis does not depend on the choice of this basis.
The number of elements in any basis of V is called the dimension of V , notation dim V .

5. Important remark. Let V be an n-dimensional space. Then we can choose a basis e1, ..., en

of V and using the corresponding coordinates ai we construct an isomorphism a : V → Rn, v 7→
(ai(v)).
Thus we can realize V as the space Rn.
But this realization depends on the choice of the basis. Usually there is no special
basis which is better, or more canonical, than other basses. Thus this realization is
not canonical and as a result many properties valid in one realization will not be valid
in others.
The general idea is that we would like to study some facts (properties) which do not depend on
realization (choice of a coordinate system). After we found such property we can write how it
looks in a particular coordinate system

6.. Constructions of new vector spaces from old ones.

(i) Dual space. Let V be a vector space. We denote by V ∗ the set of all linear functionals
f : V → R. This set has a natural structure of a vector space which is called vector space dual
to V.
If e1, ..., en is a basis of V then the corresponding coordinate functions f i form a basis of the dual
space V ∗; it is called the dual basis.

It is easy to see that in this case the double dual space (V ∗)∗ is canonically isomorphic to V .

(ii) More generally, given vector spaces V,L we can consider the vector space M = Mor(V,L) of
linear operators from V to L.
If e1, ..., en is a basis of V , f1, ..., fm basis of L then every operator A : V → L can be described
by coefficients Aj

i such that A(ei) =
∑

Aj
ifj .

The functions A 7→ Aj
i form a coordinate system on the vector space M . In other words, the choice

of coordinates on V and L allows us to realize the vector space M , which was constructed without
any coordinates, as the space of m× n-matrices.
Excercise.Show that the product of operators corresponds to the standard product of matrices.

(iii) Quotient space. Let W ⊂ V be a subspace. Then there exists a vector space Q and a linear
operator (projection) p : V → Q such that p is epimorphic and ker p = W .
The pair (Q, p) is defined absolutely canonically, i.e. any two such pairs are canonically isomorphic.
The space Q is usually denoted by V/W and is called the quotient space.


