Problem assignment 2.

Representations of Finite Groups.

Joseph Bernstein

March 8, 2007.

[P] 1. Prove the following

Theorem(Maschke). Let G be a finite group of order n and k a field of characteristic prime to n (i.e. k contains an element 1/n).

Show that any representation of the group G over the field k is completely reducible.

[P] 2. Let G be an infinite group and $H \subset G$ a subgroup of finite index.

Let (π, G, V) be a complex representation of G and $L \subset V$ a G-invariant subspace.

Suppose we know that the subspace L has an H-invariant complement. Show that then it has a G-invariant complement.

If X is a finite G-set we denote by π_X the natural representation of the group G on the space $\mathcal{F}(X)$ of functions on X (check that you know how to write explicit formulas).

3. Show that if X, Y are finite G-sets then the intertwining number

 $\langle \pi_X, \pi_Y \rangle$ equals to the number of *G*-orbits in the set $X \times Y$ (with respect to the diagonal action g(x, y) = (gx, gy)).

[P] 4. Let $G = S_n$ denote the group of all permutations of a set I with n elements (symmetric group in n symbols). Consider the natural action of G on the set X of all subsets of I. It has orbits $X_0, X_1, ..., X_n$, where X_i consists of all subsets of size i (note that X_0 has one element).

Consider the corresponding representations $\pi_i := (\pi_{X_i}, G, \mathcal{F}(X_i))$ of the group G and decompose them into irreducible components.

Describe these components for representations π_0, π_1, π_2 and compute their dimensions. Try to do this for the representation π_3 .

Here we assume that n is large, say n > 6.

Algebras and modules.

In future assignments we will fix a field k. By k-algebra A we mean an associative k-algebra A with 1. We denote by $\mathcal{M} = \mathcal{M}(A)$ the category of (left) A-modules.

An A-module M is called **simple** if it is non-zero and has no submodules different from 0 and M.

5. Let M be an A-module. Consider the space of endomorphisms $\mathcal{E}(M) = \operatorname{End}_{\mathcal{M}}(M)$.

Show that $\mathcal{E}(M)$ has a structure of k-algebra.

Show that if M is simple then $\mathcal{E}(M)$ is a division algebra.

Show that if M = A is a free module with one generator then $\mathcal{E}(M)$ is isomorphic to the opposite algebra A^o .

6. Let G be a group. Consider the group algebra $\mathcal{H}(G) = \mathcal{H}(G;k)$. By definition this is a k-vector space with the basis $\{\delta_g | g \in G\}$ with multiplication given by the formula $\delta_g \delta_h = \delta_{gh}$.

Convince yourself that the category $\mathcal{M}(\mathcal{H}(G))$ is canonically the same as the category of representations of the group G over the field k.

Definition. Let M be an A-module and $L \subset M$ a submodule. We say that L splits as a direct summand in M if there exists a complementary A-submodule $R \subset M$ (this means that $L \cap R = 0$ and L + R = M).

We say that an A-module M is **completely reducible** is any submodule in M splits as a direct summand.

[P] 7. Show that for a submodule $L \subset M$ the following conditions are equivalent:

(i) L splits in M as a direct summand

(ii) Let $i: L \to M$ denote the natural imbedding. Then there exists a left inverse morphism of A-modules $p: M \to L$ (this means that $p \circ i = Id_L$).

(iii) For any module $N \in \mathcal{M}(A)$ the natural restriction map $Hom_{\mathcal{M}}(M, N) \to Hom_{\mathcal{M}}(L, N)$ given by $\nu \mapsto \nu \circ i$ is an epimorphism of sets.

Remark. The last condition (iii) is a typical way how different properties of objects and morphism are characterized in category theory - not in term of inner structure, but in term of relations to other objects.

8. (i) Show that if A-module M is completely reducible then any subquotient of M is also completely reducible.

 $(\Box)(*)$ (ii) Show that if A-modules M, N are completely reducible then their direct sum $M \oplus N$ is also completely reducible.

[P] 9. Assume that the field k is algebraically closed and A-module M has finite dimension over k. We would like to understand the structure of the algebra $\mathcal{E}(M) = \operatorname{End}_{\mathcal{M}}(M)$.

(i) Show that if M is simple then $\mathcal{E}(M) = k$.

(ii) Show that if M is completely reducible then $\mathcal{E}(M)$ is isomorphic to a finite direct sum of matrix algebras over k.

 (\Box) **10.** Let A be a finite dimensional algebra over an algebraically closed field k. Let us consider finite dimensional A-modules.

Show that the following conditions are equivalent

(i) Any A-module is completely reducible.

(ii) Free module A is completely reducible.

(iii) A has a faithful completely reducible module M.

(iv) A is isomorphic to a direct sum of matrix algebras.

Remark. The meaning of the markings for the problems is explained in the assignment 1.