Problem assignment 3.

Representations of Finite Groups.

Joseph Bernstein

March 15, 2007.

[P] 1. Let G be a finite group and let π be a finite dimensional representation of G over the field of real numbers **R**.

(i) Show that π is isomorphic to the dual representation π^* .

(ii) Suppose that the group G is commutative and the representation π is irreducible. Show that dim π equals 1 or 2 and show that both cases are possible.

(iii) Give an example of irreducible representations (π, G, V) and (ρ, H, L) over the field **R** such that the tensor product representation $(\pi \otimes \rho, G \times H, V \otimes L)$ is reducible.

[P] 2. Let (π, V) be an irreducible complex representation of G. Show that it has an invariant Hermitian form H and that any two such forms are proportional.

 $[\mathbf{P}]$ 3. Let C be a finite commutative group and D a subgroup of C.

Show that any character $\chi : D \to \mathbf{C}^*$ of the group D can be extended to some character of the group C.

Fourier transform for finite groups.

Let C be a finite commutative group, n = #(C). We will denote by \check{C} the dual group of characters $\psi : C \to \mathbf{C}^*$.

We define Fourier transform $F : \mathcal{F}(C) \to \mathcal{F}(\check{C})$ by $F(u)(\psi) = \sum u(g)\psi(g)$.

[P] 4. Show that if we define an L^2 -structure on spaces of functions by $||u||^2 = 1/n \sum |u(g)|^2$ then the operator F satisfies the Plancherel formula $||F(u)||^2 = n||u||^2$.

Using this write down the explicit inversion formula for F.

Let **F** be a finite field of order q. Fix a non-trivial additive character ψ_0 : **F** \rightarrow **C**^{*}.

Let V be a finite dimensional vector space over \mathbf{F} . Then its dual group can be described explicitly.

Namely consider a homomorphism $\nu : V^* \to \check{V}$ defined by $\nu(\xi)(v) = \psi_0(\xi(v))$. Show that ν is an isomorphism of groups.

Usually we will identify groups V^* and \breve{V} using this isomorphism.

Consider the multiplicative group \mathbf{F}^* . It naturally acts on \mathbf{F} (by multiplication) and hence on the space $L = \mathcal{F}(\mathbf{F})$.

[P] 5. (i) Describe explicitly the decomposition of this space into irreducible components. Namely for any multiplicative character χ (i.e. a character of the multiplicative group \mathbf{F}^*) describe explicitly the subspace $L_{\chi} \subset L$ of functions which transform according to χ .

(ii) Show that the Fourier transform F maps L_{χ} into $L_{\chi^{-1}}$.

(iii) Using the Plancherel formula prove the following

Theorem(Gauss). Fix a non-trivial multiplicative character χ and a non-trivial additive character ψ for the field **F** and consider the **Gauss sum**

 $G = \sum \chi(g)\psi(g)$, where the sum is taken over $g \in \mathbf{F}^*$.

Then $|G| = q^{1/2}$.

Grothendieck group.

Definition. Let *C* be a category which has some notion of subobject and quotient object. We define the **Grothendieck group** K(C) as the abelian group generated by symbols [X] for isomorphism classes of objects $X \in Ob(C)$ and relations [X] - [Y] - [X/Y] = 0 for isomorphism classes of pairs $Y \subset X$ with $X, Y \in Ob(C)$.

[P] 6. Fix a field k. Compute the Grothendieck group K(C) of the category C in the following cases:

(i) C is the category of finite dimensional vector spaces over k.

(ii) C is the category of all vector spaces over k.

(iii) C is the category of finitely generated modules over the algebra A = k[x].

(iv) C is the category of A-modules which are finite dimensional over k (you can assume k to be algebraically closed).

7. Let G be a finite group and C the category of complex finite-dimensional representations of G.

Describe the Grothendieck group K(C) and describe the structure of a ring on this group (this ring is usually called **representation ring** of G and denoted R(G)).

Characters.

Let A be an algebra over an algebraically closed field k.

For any finite-dimensional A-module M define its character $ch_M \in A^*$ by formula $ch_M(a) = tr(a|M)$.

 (\Box) 8. Show that if finite-dimensional modules $L_1, ..., L_k$ represent distinct elements of Irr(A) (the set of isomorphism classes of simple A-modules) then the functionals ch_{L_i} are linearly independent elements of A^* .

Hint. Define an action of the algebra A on the space A^* and show that the submodule N_L generated by a character ch_L is a direct sum of simple modules isomorphic to L.

Finite dimensional algebras.

Definition. Define radical of A to be the subset $R \subset A$ of all elements $a \in A$ which acts as 0 in any irreducible (i.e. simple) A-module M.

 (\Box) **9.** Suppose that the algebra A is finite-dimensional.

Show that R is a two sided ideal of A.

Show that R is nilpotent, i.e. there exists a constant l such that $R^{l} = 0$.

Show that any nilpotent two sided ideal $J \subset A$ lies inside the radical. In other words, the radical R can be defined as the maximal two sided nilpotent ideal.

Show that the algebra B = A/R is isomorphic to a direct sum of matrix algebras (such algebra is call **semi-simple**).