
Problem assignment 3.

Representations of Finite Groups.
Joseph Bernstein March 15, 2007.

[P] 1. Let G be a finite group and let π be a finite dimensional representation
of G over the field of real numbers R.

(i) Show that π is isomorphic to the dual representation π∗.
(ii) Suppose that the group G is commutative and the representation π is

irreducible. Show that dim π equals 1 or 2 and show that both cases are possible.
(iii) Give an example of irreducible representations (π,G, V ) and (ρ,H,L)

over the field R such that the tensor product representation (π⊗ρ,G×H,V ⊗L)
is reducible.

[P] 2. Let (π, V ) be an irreducible complex representation of G. Show
that it has an invariant Hermitian form H and that any two such forms are
proportional.

[P] 3. Let C be a finite commutative group and D a subgroup of C.
Show that any character χ : D → C∗ of the group D can be extended to

some character of the group C.

Fourier transform for finite groups.

Let C be a finite commutative group, n = #(C). We will denote by C̆ the
dual group of characters ψ : C → C∗.

We define Fourier transform F : F(C) → F(C̆) by F (u)(ψ) =
∑
u(g)ψ(g).

[P] 4. Show that if we define an L2-structure on spaces of functions by
||u||2 = 1/n

∑
|u(g)|2 then the operator F satisfies the Plancherel formula

||F (u)||2 = n||u||2.
Using this write down the explicit inversion formula for F .

Let F be a finite field of order q. Fix a non-trivial additive character ψ0 :
F → C∗.

Let V be a finite dimensional vector space over F. Then its dual group can
be described explicitly.

Namely consider a homomorphism ν : V ∗ → V̆ defined by ν(ξ)(v) =
ψ0(ξ(v)). Show that ν is an isomorphism of groups.

Usually we will identify groups V ∗ and V̆ using this isomorphism.

Consider the multiplicative group F∗. It naturally acts on F (by multiplica-
tion) and hence on the space L = F(F).

[P] 5. (i) Describe explicitly the decomposition of this space into irreducible
components. Namely for any multiplicative character χ (i.e. a character of the
multiplicative group F∗) describe explicitly the subspace Lχ ⊂ L of functions
which transform according to χ.

(ii) Show that the Fourier transform F maps Lχ into Lχ−1 .
(iii) Using the Plancherel formula prove the following
Theorem(Gauss). Fix a non-trivial multiplicative character χ and a non-

trivial additive character ψ for the field F and consider the Gauss sum
G =

∑
χ(g)ψ(g), where the sum is taken over g ∈ F∗.

Then |G| = q1/2.



Grothendieck group.

Definition. Let C be a category which has some notion of subobject and
quotient object. We define the Grothendieck group K(C) as the abelian
group generated by symbols [X] for isomorphism classes of objects X ∈ Ob(C)
and relations [X] − [Y ] − [X/Y ] = 0 for isomorphism classes of pairs Y ⊂ X
with X,Y ∈ Ob(C).

[P] 6. Fix a field k. Compute the Grothendieck group K(C) of the category
C in the following cases:

(i) C is the category of finite dimensional vector spaces over k.
(ii) C is the category of all vector spaces over k.
(iii) C is the category of finitely generated modules over the algebra A = k[x].
(iv) C is the category of A-modules which are finite dimensional over k (you

can assume k to be algebraically closed).

7. Let G be a finite group and C the category of complex finite-dimensional
representations of G.

Describe the Grothendieck group K(C) and describe the structure of a ring
on this group (this ring is usually called representation ring of G and denoted
R(G)).

Characters.

Let A be an algebra over an algebraically closed field k.
For any finite-dimensional A-module M define its character chM ∈ A∗ by

formula chM (a) = tr(a|M).
(�)8. Show that if finite-dimensional modules L1, ....Lk represent distinct

elements of Irr(A) (the set of isomorphism classes of simple A-modules) then
the functionals chLi are linearly independent elements of A∗.

Hint. Define an action of the algebra A on the space A∗ and show that the
submodule NL generated by a character chL is a direct sum of simple modules
isomorphic to L.

Finite dimensional algebras.

Definition. Define radical of A to be the subset R ⊂ A of all elements
a ∈ A which acts as 0 in any irreducible (i.e. simple) A-module M .

(�)9. Suppose that the algebra A is finite-dimensional.
Show that R is a two sided ideal of A.
Show that R is nilpotent, i.e. there exists a constant l such that Rl = 0.
Show that any nilpotent two sided ideal J ⊂ A lies inside the radical. In

other words, the radical R can be defined as the maximal two sided nilpotent
ideal.

Show that the algebra B = A/R is isomorphic to a direct sum of matrix
algebras (such algebra is call semi-simple).


