Problem assignment 6.

Representations of Finite Groups.

Joseph Bernstein

April 26, 2007.

Consider a finite field $F = \mathbf{F}_q$. We assume that $charF \neq 2$. To simplify the computations you can assume that the size q of the field F is "large".

We are going to study the representations of the group G = SL(2, F).

We denote by H the subgroup of diagonal matrices in G. This group is isomorphic to F^* via the isomorphism $a \in F^* \mapsto diag(a, a^{-1}) \in H$.

We denote by B the subgroup of upper triangular matrices and by N the subgroup of unipotent matrices in B. We denote by p the natural projection $p: B \to H$ with kernel N.

Let E be a quadratic extension of the field F, so that $E \simeq \mathbf{F}_{q^2}$. We have a natural embedding $E^* \to GL(2, F)$. Let us denote by T the group of elements of norm 1 in E and also the image of this group in G = SL(2, F).

For every element $g \in G$ we denote by P_g its characteristic polynomial. We say that g is regular semisimple if the polynomial P_g has distinct roots; the set of such elements we denote G'.

1. Show that $\#(G) = q(q-1)(q+1) \sim q^3$.

[P] 2. Show that the group G has the following conjugacy classes

(I) Regular conjugacy classes.

(i) Split semisimple classes.

Class γ_a of an element $a \in H, a \neq \pm 1$.

Size of the class γ_a equals $q(q+1) \sim q^2$.

Classes γ_a and $\gamma_{a'}$ are distinct unless $a' = a^{\pm 1}$. Thus the number of the split semisimple classes equals $(q-3)/2 \sim q/2$.

(ii) Elliptic semisimple classes.

Class γ_d for every element $d \in T, d \neq \pm 1$.

Size of the class γ_d equals $q(q-1) \sim q^2$

Classes γ_d and $\gamma_{d'}$ are distinct unless $d' = d^{\pm 1}$. Thus the number of the elliptic semisimple classes equals $(q-1)/2 \sim q/2$.

Non-regular conjugacy classes.

(iii) Identity class γ_1 ; its size is 1

(iii') Minus identity class γ_{-1} ; its size is 1.

(iv) Unipotent classes γ_u, γ'_u . These are two conjugacy classes of non-trivial elements in the unipotent subgroup N. These classes have size $(q+1)(q-1)/2 \sim q^2/2$.

(iv') Minus unipotent classes $\gamma_{-u},\gamma_{-u'}$. They also have size $(q+1)(q-1)/2\sim q^2/2.$

[P] 3. For every character χ of the group H we denote by ρ_{χ} its extension to the group B and we consider the induced representation $\pi_{\chi} = Ind_B^G(\rho_{\chi})$.

Check that the character $ch(\pi_{\chi})$ has the following values:

 $\chi(a) + \chi^{-1}(a)$ on γ_a , 0 on γ_d ,

 $q+1 \text{ on } \gamma_1, \qquad 1 \text{ on } \gamma_u \text{ and } \gamma_{u'}.$

Compute the values on other conjugacy classes.

[P] 4. Show that the representations π_{χ} have the following structure

If the character χ is **regular** i.e. $\chi^2 \neq 1$, then the representation $\pi_c hi$ is irreducible

For the trivial character χ the representation π_1 is the direct sum of the trivial representation **1** and an irreducible representation of degree q (we will call it the Steinberg representation and denote St).

If χ is a Legendre character of H (the unique non-trivial character such that $\chi^2 = 1$), then the representation π_{χ} is a sum of two non-equivalent irreducible representations π^+, π^- of dimension (q+1)/2.

Write formulas for the characters of these representations.

[P] 5. Consider representations $\Pi_{\chi} = Ind_{H}^{G}(\chi)$.

Compute the character table of these representations.

Show that the character $R_{\chi} = ch(\Pi_{\chi}) - ch(\pi_{\chi})$ is 0 on all regular elements. Show that the character R_{χ} essentially does not depend on χ .

Namely show that its values on all unipotent classes do not depend on χ and values on minus unipotent classes are obtained from values on unipotent classes by multiplication by $\chi(-1)$.

Definition. Consider characters θ of the group *T*. We call such character regular if $\theta^2 \neq 1$. We call characters θ', θ conjugate if $\theta' = \theta^{\pm 1}$.

6. For any character θ of the group T consider the representation $\Pi_{\theta} = Ind_T^G(\theta)$. Compute the character table of these representations.

For any character θ of the group T consider the character $\pi_{\theta} = ch\Pi_{\theta} - R$ where we take $R = R_{\chi}$ with character χ chosen to match θ on -1, i.e. $\chi(-1) = \theta(-1)$.

Here we consider π_{θ} as a function on G. By definition it lies in the lattice Ch(G) of characters of the group G.

7. Compute the character table of characters π_{θ} and see that $\pi_{\theta'}$ equals π_{θ} iff θ' is conjugate to θ .

8. Show that the scalar product of characters $\langle \pi_{\theta'}, \pi_{\theta} \rangle$ equals

- 0 if θ' and θ are not conjugate
- 1 if $\theta' = \theta$ is regular
- 2 if $\theta' = \theta$ is not regular

[P] 9. Show that the characters π_{θ} have the following structure

(i) If θ is regular then π_{θ} is the character of an irreducible representation of degree q - 1.

(ii) If $\theta = 1$ then $\pi_{\theta} = St - 1$

(iii) If θ is the Legendre character of the group T (i.e. the unique non trivial character such that $\theta^2 = 1$) then π_{θ} is the sum of characters of two non-equivalent irreducible representations π_T^+, π_T^- of dimension (q-1)/2.

Compute the characters of these representations.

[P] 10. Describe completely the set Irr(G) and write the corresponding character table.