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Brauer’s Induction Theorem.

Here I will give a proof of Brauer induction theorem.
In the proof I use several lemmas (lemmas 1 - 5) which are pretty standard.

I leave them, as exercises.
Definition. Let p be a prime number. A finite group E is called p-

elementary if is it is isomorphic to a direct product of a cyclic group Cm

of order m prime to p and a p-group S.

Lemma 1. Show that a subgroup of an elementary group is elementary.

Fix a finite group G and denote by R(G) its character ring. We will prove
Brauer Induction Theorem. The group R(G) is spanned by represen-

tations of the form IndG
E(χ), where E ⊂ G is an elementary subgroup and χ a

one dimensional representation of E.

Proof.

Step 1. Set I(G) =
∑

E IndG
E(R(E)⊂R(G). It is enough to prove

Statement 1. I(G) contains the element 1 = 1G.

Indeed, from projection formula it is clear that I(G) is an ideal of R(G). If
it contains 1 it coincides with R(G).

On the other hand, for an elementary group E any irreducible representation
ρ is induced from a character of some subgroup E′ since E is nilpotent.

Since E′ is elementary this shows that R(E) is spanned by representations
induced from characters of elementary subgroups, and hence R(G) = I(G) is
spanned by such induced characters.

For every finite group H let C(H) denote the space of complex valued func-
tions on H invariant under conjugation. C(H) is an algebra with respect to
multiplication. For any subgroup D⊂H we have restriction and induction mor-
phisms ResD

H : C(H) → C(D) and IndH
D : C(D) → C(H).

Definition. A character system Q is a correspondence which assigns to
every finite group H a subgroup Q(H) of the space C(H) such that these sub-
groups are closed with respect to multiplication, restriction and induction.

Examples.
(i) Q(H) = R(H). Here we identify R(H) with a subgroup Ch(H)⊂C(H)

using the morphism π 7→ ch(π).
(ii) Q(H) = C(H).
(iii) Q(H) = CZ(H), the subgroup of integer valued functions.

Step 2. Let n = #(G), µn⊂C be the group of n-th roots of 1. Let Λ denote
subring of C generated by µn.

Consider the character system RΛ defined by RΛ(H) = Λ · R(H) ⊂ C(H).
As before, we set IΛ(G) =

∑
E⊂G IndG

E(RΛ(E)).
It is enough to prove
Statement 2. 1 ∈ IΛ(G).
In order to see that Statement 2. implies Statement 1. we will use the

following



Lemma 2. There exists a homomorphism of groups ν : Λ → Z such that
ν(1) = 1.

Notice that for any group H there exists unique morphism of groups ν =
νH : RΛ(H) → R(H) such that ν(λr) = ν(λ)r for λ ∈ Λ and r ∈ R(H). This
is true since R(H) has a basis {ρ1, ..., ρr} of irreducible representations which
stays a basis in C(H).

Clearly the system of morphisms νH is compatible with restriction and in-
duction. In particular, this implies that ν(IΛ(G))⊂I(G).

Now if we know that 1 ∈ IΛ we get that 1 = ν(1) ∈ ν(IΛ)⊂I.

Step 3. Consider the character system Q(H) = RΛ(H)
⋂

CZ(H), i.e. we
consider all functions f ∈ RΛ(H) that take only integer values. Consider the
ideal J =

∑
E⊂G IndG

E(Q(E)). Our aim is to prove
Statement 3. 1 ∈ J

Step 4. It is enough to prove the following
Statement 4. For any prime number p and any integer N we have 1 ∈

J(modpN ), i.e. 1 ∈ J + pNCZ(G).
The fact that statement 4 implies statement 3 follows from the following

general
Lemma 3. Let L be a lattice, i.e. a group isomorphic to Zr. Consider a

tower of subgroups A⊂B⊂L. Then in order to show that A = B it is enough
to check that A ≡ B(mod pN ) for all primes p and all integers N (here A ≡
B(mod pN ) means A + pNL = B + pNL).

Step 5. Fix a prime number p and show that the statement 4 holds for
powers of p. In fact in order to do this it is enough to show much weaker

Statement 5. There exists a function f ∈ J such that for every element
g ∈ G its value f(g) is prime to p.

Indeed, suppose we found such function f . Then the function f1 = fp−1 lies
in J since J is an ideal and it satisfies f1 ≡ 1 (mod pCZ(G)).

Now we recursively define a sequence of functions f1, f2, ... ∈ J by fk+1 = fp
k

and see that fk ≡ 1 (mod pkCZ(G)), which proves the statement 4.

Step 6. Fix a prime number p. An element g of a finite group G is called
p-regular if ord(g) is prime to p and it is called p-singular if ord(g) is a power
of p.

Let us remind the following standard
Lemma 4. (Jordan decomposition). (i) Let G be a finite group. Every

element g ∈ G can be uniquely written as g = grgs, where gr and gs are
commuting p-regular and p-singular elements of G.

These elements are called p-regular and p-singular parts of g.
Let us note that the uniqueness in the Jordan decomposition implies that

the maps g 7→ gr and g 7→ gs are compatible with morphisms of groups. In
particular, they map conjugacy classes into conjugacy classes.



Step 7. It is enough to prove the following
Statement 7. Let a ∈ G be a p-regular element. Then there exists a

function fa ∈ J such that fa(x) = 0 if element xr is not conjugate to a and
fa(x) is prime to p if xr is conjugate to a.

Indeed, it is clear that the function f which is a sum of functions fa over
representatives a of p-regular conjugacy classes satisfies conditions of statement
5.

Step 8. Proof of statement 7. So now we fixed a prime number p and a
p-regular element a ∈ G.

Set m = ord(a) and denote by D the cyclic subgroup generated by a. Let
us denote by C(a) the centralizer of the element a ∈ G.

Let us fix a p-Sylov subgroup S of the group C(a) and set E = D×S⊂C(a).
It is easy to see that E is an elementary subgroup and the projection p :

E → D coincides with the map x 7→ xr.
Consider the function φ ∈ C(E) defined by φ(x) = 0 if p(x) 6= a and

φ(x) = m if p(x) = a.

Claim. (i) φ ∈ Q(E)
(ii) The function fa = IndG

E(φ) satisfies the conditions of statement 7.

Proof of claim.
(i) Function φ takes integer values. Also we can write it in the form φ =∑

χ χ(a−1) ·χ′, where the sum is taken over all characters χ of the group D and
χ′ is the character of the group E defined by χ′(x) = χ(p(x)).

Since coefficients χ(a−1) lie in Λ we see that φ ∈ RΛ(E), i.e. φ ∈ Q(E).
(ii) This is a straightforward computation. By definition
(*) fa(x) =

∑
g∈G/E φ!(g−1xg), where

φ! is the extension by 0 of the function φ to G.
Let x ∈ G. If xr is not conjugate to a then all the terms in the sum are 0

since the function φ! is supported on elements which regular part equals a.
Assume now that xr is conjugate to a. By conjugating we can assume that

xr = a.
Let us write Jordan decomposition x = at, where t = xs. It is clear that

t ∈ C(a).
It is clear that in the sum (*) above non-zero contribution is given only by

terms g such that (g−1xg)r equals to a. Since (g−1xg)r = g−1xrg = g−1ag this
means that g ∈ C(a). Thus we have

(**) fa(x) =
∑

g∈C(a)/E φ!(g−1xg),

Let us denote the set C(a)/E by Y and consider the subset
Z = {g ∈ Y |g−1tg ∈ S}.
It is clear from the formula (**) that fa(x) = m ·#(Z).
We want to show that this number is prime to p.
Note that an element g ∈ Y belongs to Z iff g−1tg ∈ E , i.e. tg ∈ gE. In

other words this is equivalent to the condition that y is a fixed point of the left



action of t on Y . Since the size of Y is prime to p this follows from the following
general

Lemma 5. Let t be a p-regular transformation of a finite set Y and Z⊂Y
be the subset of its fixed points. Then #(Z) ≡ #(Y ) (mod p).


