Problem assignment 7.5

Representations of Finite Groups.
Joseph Bernstein May 10, 2007.

Brauer’s Induction Theorem.

Here I will give a proof of Brauer induction theorem.
In the proof I use several lemmas (lemmas 1 - 5) which are pretty standard.
I leave them, as exercises.

Definition. Let p be a prime number. A finite group FE is called p-
elementary if is it is isomorphic to a direct product of a cyclic group C,,
of order m prime to p and a p-group S.

Lemma 1. Show that a subgroup of an elementary group is elementary.

Fix a finite group G and denote by R(G) its character ring. We will prove
Brauer Induction Theorem. The group R(G) is spanned by represen-
tations of the form Ind%(x), where E C G is an elementary subgroup and x a
one dimensional representation of F.

Proof.
Step 1. Set I(G) =Y, Ind%(R(E)CR(G). It is enough to prove
Statement 1. I(G) contains the element 1 = 1.

Indeed, from projection formula it is clear that I(G) is an ideal of R(G). If
it contains 1 it coincides with R(G).

On the other hand, for an elementary group F any irreducible representation
p is induced from a character of some subgroup E’ since E is nilpotent.

Since E’ is elementary this shows that R(FE) is spanned by representations
induced from characters of elementary subgroups, and hence R(G) = I(QG) is
spanned by such induced characters.

For every finite group H let C'(H) denote the space of complex valued func-
tions on H invariant under conjugation. C(H) is an algebra with respect to
multiplication. For any subgroup DCH we have restriction and induction mor-
phisms Resh : C(H) — C(D) and Ind¥ : C(D) — C(H).

Definition. A character system @ is a correspondence which assigns to
every finite group H a subgroup Q(H) of the space C(H) such that these sub-
groups are closed with respect to multiplication, restriction and induction.

Examples.

(i) Q(H) = R(H). Here we identify R(H) with a subgroup Ch(H)CC(H)
using the morphism 7 +— ch(m).

(i) Q(H) = C(H).

(i) Q(H) = Cz(H), the subgroup of integer valued functions.

Step 2. Let n = #(G), p,, CC be the group of n-th roots of 1. Let A denote
subring of C generated by fi,.

Consider the character system Ry defined by Ra(H) = A- R(H) C C(H).
As before, we set Iy (G) =3 o IndG(RA(E)).

It is enough to prove

Statement 2. 1 € I, (G).

In order to see that Statement 2. implies Statement 1. we will use the
following



Lemma 2. There exists a homomorphism of groups v : A — Z such that
v(l)=1.

Notice that for any group H there exists unique morphism of groups v =
v @ Ra(H) — R(H) such that v(Ar) = v(A)r for A € A and r € R(H). This
is true since R(H) has a basis {p1,..., pr} of irreducible representations which
stays a basis in C(H).

Clearly the system of morphisms vy is compatible with restriction and in-
duction. In particular, this implies that v(Ix(G))CI(G).

Now if we know that 1 € In we get that 1 = v(1) € v(Ip)CI.

Step 3. Consider the character system Q(H) = Ry(H)(Cz(H), i.e. we
consider all functions f € Ry (H) that take only integer values. Consider the
ideal J =" i Ind%(Q(E)). Our aim is to prove

Statement 3. 1 € J

Step 4. It is enough to prove the following

Statement 4. For any prime number p and any integer N we have 1 €
J(modp™), ie. 1 € J +pNCz(G).

The fact that statement 4 implies statement 3 follows from the following
general

Lemma 3. Let L be a lattice, i.e. a group isomorphic to Z". Consider a
tower of subgroups ACBCL. Then in order to show that A = B it is enough
to check that A = B(mod p) for all primes p and all integers N (here A =
B(mod pV) means A+ pNL = B +pVL).

Step 5. Fix a prime number p and show that the statement 4 holds for
powers of p. In fact in order to do this it is enough to show much weaker

Statement 5. There exists a function f € J such that for every element
g € G its value f(g) is prime to p.

Indeed, suppose we found such function f. Then the function f; = fP~! lies
in J since J is an ideal and it satisfies f; =1 (mod pCz(QG)).

Now we recursively define a sequence of functions f1, fa,... € J by fri1 = ft
and see that fr, =1 (mod p*Cz(G)), which proves the statement 4.

Step 6. Fix a prime number p. An element g of a finite group G is called
p-regular if ord(g) is prime to p and it is called p-singular if ord(g) is a power
of p.

Let us remind the following standard

Lemma 4. (Jordan decomposition). (i) Let G be a finite group. Every
element ¢ € G can be uniquely written as ¢ = ¢,¢s, where g, and g5 are
commuting p-regular and p-singular elements of G.

These elements are called p-regular and p-singular parts of g.

Let us note that the uniqueness in the Jordan decomposition implies that
the maps g — g, and g — g5 are compatible with morphisms of groups. In
particular, they map conjugacy classes into conjugacy classes.



Step 7. It is enough to prove the following

Statement 7. Let a € G be a p-regular element. Then there exists a
function f, € J such that f,(z) = 0 if element z, is not conjugate to a and
fa(z) is prime to p if x, is conjugate to a.

Indeed, it is clear that the function f which is a sum of functions f, over

representatives a of p-regular conjugacy classes satisfies conditions of statement
5.

Step 8. Proof of statement 7. So now we fixed a prime number p and a
p-regular element a € G.

Set m = ord(a) and denote by D the cyclic subgroup generated by a. Let
us denote by C(a) the centralizer of the element a € G.

Let us fix a p-Sylov subgroup S of the group C(a) and set E = D x SCC(a).

It is easy to see that F is an elementary subgroup and the projection p :
FE — D coincides with the map x — x,..

Consider the function ¢ € C(F) defined by ¢(z) = 0 if p(z) # a and
o(x) =m if p(z) = a.

Claim. (i) ¢ € Q(F)

(ii) The function f, = Ind%(¢) satisfies the conditions of statement 7.

Proof of claim.

(i) Function ¢ takes integer values. Also we can write it in the form ¢ =
> x(a=1)-x’, where the sum is taken over all characters x of the group D and
X' 1s the character of the group F defined by x/(z) = x(p(x)).

Since coefficients x(a~!) lie in A we see that ¢ € Ry (E), i.e. ¢ € Q(E).

(ii) This is a straightforward computation. By definition

(*) falz) = deG/E ¢1(g'zg), where

¢y is the extension by 0 of the function ¢ to G.

Let x € G. If z, is not conjugate to a then all the terms in the sum are 0
since the function ¢, is supported on elements which regular part equals a.

Assume now that z,. is conjugate to a. By conjugating we can assume that
Ty = a.

Let us write Jordan decomposition z = at, where ¢t = x,. It is clear that
t e C(a).

It is clear that in the sum (*) above non-zero contribution is given only by
terms ¢ such that (g~ 'zg), equals to a. Since (¢~ 'xg), = g 12,9 = g~ 'ag this
means that g € C(a). Thus we have

(**) fo(@) = X gecia)/ B o9~ zg),

Let us denote the set C(a)/E by Y and consider the subset

Z={geY|gltg € S}.

It is clear from the formula (**) that f,(x) =m - #(Z).

We want to show that this number is prime to p.

Note that an element g € Y belongs to Z iff g7'tg € E , ie. tg € gE. In
other words this is equivalent to the condition that y is a fixed point of the left



action of ¢t on Y. Since the size of Y is prime to p this follows from the following
general

Lemma 5. Let t be a p-regular transformation of a finite set Y and ZCY
be the subset of its fixed points. Then #(Z) = #(Y") (mod p).



