Problem assignment 7.5

Representations of Finite Groups.

Joseph Bernstein

May 10, 2007.

Brauer's Induction Theorem.

Here I will give a proof of Brauer induction theorem.

In the proof I use several lemmas (lemmas 1 - 5) which are pretty standard. I leave them, as exercises.

Definition. Let p be a prime number. A finite group E is called **p**elementary if is it is isomorphic to a direct product of a cyclic group C_m of order m prime to p and a p-group S.

Lemma 1. Show that a subgroup of an elementary group is elementary.

Fix a finite group G and denote by R(G) its character ring. We will prove

Brauer Induction Theorem. The group R(G) is spanned by representations of the form $Ind_E^G(\chi)$, where $E \subset G$ is an elementary subgroup and χ a one dimensional representation of E.

Proof.

Step 1. Set $I(G) = \sum_E Ind_E^G(R(E) \subset R(G))$. It is enough to prove **Statement 1.** I(G) contains the element $1 = \mathbf{1}_G$.

Indeed, from projection formula it is clear that I(G) is an ideal of R(G). If it contains 1 it coincides with R(G).

On the other hand, for an elementary group E any irreducible representation ρ is induced from a character of some subgroup E' since E is nilpotent.

Since E' is elementary this shows that R(E) is spanned by representations induced from characters of elementary subgroups, and hence R(G) = I(G) is spanned by such induced characters.

For every finite group H let C(H) denote the space of complex valued functions on H invariant under conjugation. C(H) is an algebra with respect to multiplication. For any subgroup $D \subset H$ we have restriction and induction morphisms $\operatorname{Res}_{H}^{D}: C(H) \to C(D)$ and $\operatorname{Ind}_{D}^{H}: C(D) \to C(H)$.

Definition. A character system Q is a correspondence which assigns to every finite group H a subgroup Q(H) of the space C(H) such that these subgroups are closed with respect to multiplication, restriction and induction.

Examples.

(i) Q(H) = R(H). Here we identify R(H) with a subgroup $Ch(H) \subset C(H)$ using the morphism $\pi \mapsto ch(\pi)$.

(ii) Q(H) = C(H).

(iii) $Q(H) = C_{\mathbf{Z}}(H)$, the subgroup of integer valued functions.

Step 2. Let n = #(G), $\mu_n \subset \mathbf{C}$ be the group of *n*-th roots of 1. Let Λ denote subring of \mathbf{C} generated by μ_n .

Consider the character system R_{Λ} defined by $R_{\Lambda}(H) = \Lambda \cdot R(H) \subset C(H)$. As before, we set $I_{\Lambda}(G) = \sum_{E \subset G} Ind_E^G(R_{\Lambda}(E))$.

It is enough to prove

Statement 2. $1 \in I_{\Lambda}(G)$.

In order to see that **Statement 2.** implies **Statement 1.** we will use the following

Lemma 2. There exists a homomorphism of groups $\nu : \Lambda \to \mathbb{Z}$ such that $\nu(1) = 1$.

Notice that for any group H there exists unique morphism of groups $\nu = \nu_H : R_{\Lambda}(H) \to R(H)$ such that $\nu(\lambda r) = \nu(\lambda)r$ for $\lambda \in \Lambda$ and $r \in R(H)$. This is true since R(H) has a basis $\{\rho_1, ..., \rho_r\}$ of irreducible representations which stays a basis in C(H).

Clearly the system of morphisms ν_H is compatible with restriction and induction. In particular, this implies that $\nu(I_{\Lambda}(G)) \subset I(G)$.

Now if we know that $1 \in I_{\Lambda}$ we get that $1 = \nu(1) \in \nu(I_{\Lambda}) \subset I$.

Step 3. Consider the character system $Q(H) = R_{\Lambda}(H) \bigcap C_{\mathbf{Z}}(H)$, i.e. we consider all functions $f \in R_{\Lambda}(H)$ that take only integer values. Consider the ideal $J = \sum_{E \subset G} Ind_E^G(Q(E))$. Our aim is to prove

Statement 3. $1 \in J$

Step 4. It is enough to prove the following

Statement 4. For any prime number p and any integer N we have $1 \in J(modp^N)$, i.e. $1 \in J + p^N C_{\mathbf{Z}}(G)$.

The fact that statement 4 implies statement 3 follows from the following general

Lemma 3. Let *L* be a lattice, i.e. a group isomorphic to \mathbb{Z}^r . Consider a tower of subgroups $A \subseteq B \subseteq L$. Then in order to show that A = B it is enough to check that $A \equiv B \pmod{p^N}$ for all primes *p* and all integers *N* (here $A \equiv B \pmod{p^N}$) means $A + p^N L = B + p^N L$).

Step 5. Fix a prime number p and show that the statement 4 holds for powers of p. In fact in order to do this it is enough to show much weaker

Statement 5. There exists a function $f \in J$ such that for every element $g \in G$ its value f(g) is prime to p.

Indeed, suppose we found such function f. Then the function $f_1 = f^{p-1}$ lies in J since J is an ideal and it satisfies $f_1 \equiv 1 \pmod{pC_{\mathbf{Z}}(G)}$.

Now we recursively define a sequence of functions $f_1, f_2, ... \in J$ by $f_{k+1} = f_k^p$ and see that $f_k \equiv 1 \pmod{p^k C_{\mathbf{Z}}(G)}$, which proves the statement 4.

Step 6. Fix a prime number p. An element g of a finite group G is called **p-regular** if ord(g) is prime to p and it is called **p-singular** if ord(g) is a power of p.

Let us remind the following standard

Lemma 4. (Jordan decomposition). (i) Let G be a finite group. Every element $g \in G$ can be uniquely written as $g = g_r g_s$, where g_r and g_s are commuting p-regular and p-singular elements of G.

These elements are called p-regular and p-singular parts of g.

Let us note that the uniqueness in the Jordan decomposition implies that the maps $g \mapsto g_r$ and $g \mapsto g_s$ are compatible with morphisms of groups. In particular, they map conjugacy classes into conjugacy classes. **Step 7.** It is enough to prove the following

Statement 7. Let $a \in G$ be a p-regular element. Then there exists a function $f_a \in J$ such that $f_a(x) = 0$ if element x_r is not conjugate to a and $f_a(x)$ is prime to p if x_r is conjugate to a.

Indeed, it is clear that the function f which is a sum of functions f_a over representatives a of p-regular conjugacy classes satisfies conditions of statement 5.

Step 8. Proof of statement 7. So now we fixed a prime number p and a p-regular element $a \in G$.

Set m = ord(a) and denote by D the cyclic subgroup generated by a. Let us denote by C(a) the centralizer of the element $a \in G$.

Let us fix a p-Sylov subgroup S of the group C(a) and set $E = D \times S \subset C(a)$.

It is easy to see that E is an elementary subgroup and the projection p: $E \to D$ coincides with the map $x \mapsto x_r$.

Consider the function $\phi \in C(E)$ defined by $\phi(x) = 0$ if $p(x) \neq a$ and $\phi(x) = m \text{ if } p(x) = a.$

Claim. (i) $\phi \in Q(E)$

(ii) The function $f_a = Ind_E^G(\phi)$ satisfies the conditions of statement 7.

Proof of claim.

 $\sum_{\chi} \chi(a^{-1}) \cdot \chi'$, where the sum is taken over all characters χ of the group D and χ' is the character of the group E defined by $\chi'(x)$. (i) Function ϕ takes integer values. Also we can write it in the form ϕ = is the character of the group E defined by $\chi'(x) = \chi(p(x))$.

Since coefficients $\chi(a^{-1})$ lie in Λ we see that $\phi \in R_{\Lambda}(E)$, i.e. $\phi \in Q(E)$.

(ii) This is a straightforward computation. By definition

(*) $f_a(x) = \sum_{g \in G/E} \phi_!(g^{-1}xg)$, where $\phi_!$ is the extension by 0 of the function ϕ to G.

Let $x \in G$. If x_r is not conjugate to a then all the terms in the sum are 0 since the function ϕ_{l} is supported on elements which regular part equals a.

Assume now that x_r is conjugate to a. By conjugating we can assume that $x_r = a.$

Let us write Jordan decomposition x = at, where $t = x_s$. It is clear that $t \in C(a).$

It is clear that in the sum (*) above non-zero contribution is given only by terms g such that $(g^{-1}xg)_r$ equals to a. Since $(g^{-1}xg)_r = g^{-1}x_rg = g^{-1}ag$ this means that $g \in C(a)$. Thus we have $(**) f_a(x) = \sum_{g \in C(a)/E} \phi_!(g^{-1}xg),$

Let us denote the set C(a)/E by Y and consider the subset

 $Z = \{g \in Y | g^{-1}tg \in S\}.$

It is clear from the formula (**) that $f_a(x) = m \cdot \#(Z)$.

We want to show that this number is prime to p.

Note that an element $g \in Y$ belongs to Z iff $g^{-1}tg \in E$, i.e. $tg \in gE$. In other words this is equivalent to the condition that y is a fixed point of the left action of t on Y. Since the size of Y is prime to p this follows from the following general

Lemma 5. Let t be a p-regular transformation of a finite set Y and $Z \subset Y$ be the subset of its fixed points. Then $\#(Z) \equiv \#(Y) \pmod{p}$.