
Problem assignment 8.

Representations of Finite Groups.

Joseph Bernstein May 24, 2007.

Consider a finite field F = Fq. To simplify the computations you can assume that
the size q of the field F is ”large”.

We consider groups G = SL(2, F ) and G = GL(n, F ) and describe a method
which in principle allows to obtain the classification of irreducible representations of
these groups. In order to do this we will recall some basic definitions and properties
of algebraic groups and their representations.

Fix K = F̄ an algebraic closure of F .

Definition. (i) An algebraic group G is an algebraic variety G equipped with a
structure of a group, such that the group operations m (the multiplication map) and
inv (the inverse map) are morphisms of algebraic varieties.

The basic algebraic group is the group GL(n, K). We will consider only groups G
which are subgroups of GL(n, K) closed in Zariski topology (i.e. they are defined by
a system of polynomial equations).

(ii) An algebraic representation π of an algebraic group G is a finite dimensional
representation over the field K such that the corresponding map π : G → GL(V ) is
an algebraic morphism.

For an algebraic group G denote by Rep(G) the category of algebraic representa-
tions of G and by R(G) its Grothendieck group.

Consider the algebraic group K∗ = GL(1,K). For this group there is a standard
convenient notation Gm - multiplicative group. We will use this notation.

1. (i) Show that any algebraic group homomorphism ρ : Gm → K∗ has a form
a 7→ an for some integer n.

In other words the group L(Gm) = Mor(Gm,K∗) of algebraic morphisms from
Gm to K∗ is canonically isomorphic to Z.

(ii) Show that the ring R(Gm) is isomorphic to the group ring Z(L(Gm)) of the
group L(Gm) (this is a free abelian group with basis given by elements of the group
L(Gm) and natural multiplication law).

[P] 2. More generally, let us consider the group H = Hn of diagonal matrices in
GL(n, K) (we consider it as an algebraic group).

(i) Show that the group L(H) = Mor(H,K∗) is naturally isomorphic to Zn.
(ii) Show that the representation ring R(H) is naturally isomorphic to the group

algebra Z(L(H)) of the group L(H).

We would like to study (algebraic) representations of the group Gn = GL(n, K).
Usually we can get a lot of information about representations of Gn by restricting
them to the subgroup of diagonal matrices H = Hn.

[P] 3. Consider the natural restriction morphism res : R(Gn)→ R(Hn).
(i) Show that the image R of the restriction morphism is invariant with respect to

the natural action of the symmetric group W = Sn on L(Hn) and hence on R(Hn).
(ii) Show that the image R contains all W -invariant elements
(*) (iii) Show that res is an imbedding (we will not use this fact).

Brauer character construction..
Fix a W -invariant finite subset O ∈ L(Hn) (you can think about O as a W -orbit).

Starting from such subset O we will construct in a very explicit and simple way a
complex valued function fO on GL(n, K) which has a property that its restriction to
any finite subgroup D ⊂ GL(n, K) is a character.

First of all fix a nondegenerate character (i.e. an imbedding) ν : K∗ → C∗.
Suppose we are given an element g ∈ GL(n, K). We will assign to g an element

h(g) ∈ Hn defined up to permutations (i.e. up to the action of the symmetric group
W on Hn) .



Namely, h(g) is an element conjugate to the semisimple part of g. In other words,
one can think about h(g) as a collection of eigenvalues of the matrix g.

Now we set fO(g) =
∑

ξ∈O ν(ξ(h(g))).
Since the set O is W -invariant this number does not depend on the choice of the

representative h(g).

[P] 4. Show that for any finite subgroup G ⊂ GL(n, K) the restriction of the
function fO to G lies in R(G) = Ch(G).

Hint. Use the result of problem 3 to construct an element r ∈ R(GL(n, K)) such
that the function fO coincides with the Brauer character corresponding to the element
r.

[P] 5. (i) Use the result of problem 4 in order to classify irreducible representations
of the group GL(2, F ).

Try to do the same for GL(3, F ), GL(4, F ).
(ii) Classify irreducible representations of the group SL(2, F ) when characteristic

of F is odd.

(�)6. Consider the group G = GL(n, F ).
(i) Describe ”most” of irreducible representations of the group G.
(*) (ii) Classify all irreducible representations of G.

Let us discuss some generalizations of Jordan-Hoelder theorem.
Fix an algebra A. We will study the category M of (left) A-modules. Let us

denote by I the set of isomorphism classes of objects in M.
Definition. (i) Let M be an A-module. A filtration of M is a finite decreasing

sequence Φ of submodules M = M0 % M1 % ... % Mk = 0.
(ii) Given a filtration Φ we denote by Cont(Φ) (content of Φ) the multiset of

elements in I consisting of all quotients Mi/Mi−1 (we count them with multiplicities,
but do nor care about their order).

In other words, one can think about Cont(Φ) as a function on I which assigns to
each isomorphism class of modules R the multiplicity m(R) which is the number of
places when R appears in the sequence of quotients Mi/Mi−1.

(iii) We say that a filtration Ψ refines filtration Φ if all submodules which appear
in Φ also appear in Ψ.

(�)7. ( Jordan Hoelder Theorem).
(i) Let M be an A-module and Φ,Ψ two filtrations of M . Then there exist their

refinements Φ′,Ψ′ such that Cont(Φ′) = Cont(Ψ′).
(ii) Let M,N be two A-modules. We say that they are JH-equivalent if they have

filtrations with equal content.
Show that this defines an equivalence relation on the set I.
Show that this is the minimal equivalence relation ∼ on the set I which satisfies

the following property (semi-simplification property)
(*) If L ⊂M then M ∼ (L⊕M/L).
Remark. Explain how each of the statements (i), (ii) implies the standard version

of Jordan-Hoelder theorem (about modules of finite length).


