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Representations of Finite Groups.

Joseph Bernstein May 31, 2007.

I. Variations on Jordan-Hoelder theory.
Fix an algabra A with 1 and consider the category M = M(A) of (left, unital)

A-modules.
We denote by Irr(M) the set of isomorphism classes of simple objects in M.

Definition. For every A-module M we define the Jordan-Hoelder content of M
to be the subset JH(M) ⊂ Irr(M) which consists of all simple modules which are
isomorphic to subquotients of the module M .

(¤)1. Show the following properties of Jordan-Hoelder content
(i) If L ⊂ M a submodule, then JH(M) = JH(L)

⋃
JH(M/L).

(ii) Let Mα ⊂ M be a system of submodules such that M =
⋃

α Mα. Then
JH(M) =

⋃
JH(Mα.

(iii) JH(M) = ∅ iff M = 0.
Hint. In the proof one needs the following lemma which easily follows from Zorn’s

lemma
Lemma. Let M be a non-zero finitely generated A-module. Then it has a simple

quotient.

Remark. In case of a module M of finite length we can introduce a more precise
invariant JH ′(M) which is a multiset in Irr(M), i.e. it gives a multiplicity to every
element of ρ ∈ Irr(M).

Probably one can develop similar notion for arbitrary module M .

II. Separation by simple modules.

[P] 2. Let A be a finite-dimensional algebra over an algebraically closed field k.
Fix an element a ∈ A.

(i) Suppose we know that the two-sided ideal J = AaA contains an element b which
is not nilpotent. Show that there exists a simple A-module M such that aM 6= 0.

(ii) Conversely, prove that if for some simple A-module M we have aM 6= 0, then
the left ideal Aa ⊂ A contains an element b which is not nilpotent.

(¤)(iii) Show the same statements (i), (ii) for the case when k = C and the algebra
A has countable dimension.

In the proof you will need the following:
Lemma. Let V be a complex vector space of countable dimension and T ∈

End(E). Suppose the operator T is not locally nilpotent. Then there exists a complex
number c such that the operator T − c is not invertible.

III. Reduction to subalgebra.

Let A be an algebra with 1. Fix an idempotent e ∈ A (i.e. e2 = e). We denote by
Irr(A)e the subset of Irr(A) which consists of modules L such that eL 6= 0.

Our goal is to show that the study of these modules can be reduced to study of
modules over a smaller algebra B.

Namely consider the algebra B = eAe. Note that B does not contain the unit
element 1 ∈ A, but as an abstract algebra it is an algebra with an identity element
(namely element e).

We define the restriction functor R : M(A) →M(B) by R(M) = eM . Equivalent
description R(M) = {m ∈ M |em = m}).

We can give a different description of the algebra B and the functor R.
3’. Consider A-module T = Ae.
(i) Show that the algebra of endomorphisms EndA(T ) is canonically isomorphic

to the opposite algebra B0.



(ii) Show that the functor R : M(A) →M(B) above can be described as follows:
R(M) = HomA(T, M) with the natural action of the algebra B induced by the

right action of B on T .
(iii) Show that the functor R is exact.

[P] 3. (i) Show that if M is a simple A-module then R(M) is either 0 or is a
simple B-module.

(ii) Show that the corresponding map of sets R : Irr(A)e → Irr(B) is an imbed-
ding.

(iii) Show that the map of sets R : Irr(A)e → Irr(B) is epimorphic.
Hint. First prove the following
Lemma. Let M be an A-module and N = R(M). Then for any B-submodule

S ⊂ N there exists an A-submodule L ⊂ M such that R(L) = S.

IV. Partitions.

Consider the set I = (1, 2, ..., n). Decomposition x of I is the presentation of I
as a disjoint union of non-empty subsets I1, ..., Ir. The sizes of these sets define a
partition λ = λ(x) of the number n; we say that x has type λ.

Definition. Two partitions x, y of the set I we call transversal if together they
separate points of the set I.

Two partitions λ, µ of the number n we call transversal if there exists a pair of
transversal decompositions x, y of types λ and µ.

[P] 4. (i) Show that partitions λ, µ are transversal iff λ ≤ µt (µt is the dual
partition).

In other words the set of all partitions transversal to λ is the segment Jλ = {µ|µ ≤
µt}.

(ii) Show that if λ = µt, then the symmetric group Sn acts simply transitively on
the set of pairs of transversal partitions (x, y) of types λ, µ.

V. Gelfand pairs.

[P] 5. Let H be a finite group and B ⊂ H its subgroup. Show that (H, B) is a
strong Gelfand pair iff the pair of groups G = H × B, D = ∆(B) ⊂ G is a Gelfand
pair.

In fact prove that the corresponding algebra H(G//D) (the algebra of D-bi-
invariant measures on G) is naturally isomorphic to the algebra H(H)B ( the central-
izer of the algebra H(B) in H(H)).

6. Using Gelfand’s trick show that the algebra H(Sn)Sn−1 (see problem 5) is com-
mutative. Use this fact to show that the restriction of an irreducible representation
of the group Sn to the subgroup Sn−1 is always multiplicity free.

[P] 7. Consider the natural sequence of imbeddings S1 ⊂ S2 ⊂ S3 ⊂ ... ⊂ Sn (from
left to write) and use them to realize for every i the algebra H(Si) as a subalgebra of
the algebra H = H(Sn).

Let us denote by U the subalgebra of H generated by centers of all algebras H(Si).
Show that the subalgebra U is commutative. Show that it is a maximal commu-

tative subalgebra, i.e. it coincides with its centralizer in H.


