Problem assignment 3.

Algebraic Theory of D-modules.

Joseph Bernstein

1. Exterior tensor product of D-modules.

Consider two affine spaces X, Y. Let M be a $D(X)$-module and N be a $D(Y)$ - module.
(i) Consider the vector space $M \otimes_{K} N$ and define on it the structure of a $D(X \times Y)$-module. This module is called the exterior tensor product of M and N, the standard notation is $M \boxtimes N$.
(ii) Show that $d(M \boxtimes N)=d(M)+d(N)$ and $e(M \boxtimes N)=e(M) e(N)$.
2. Tensor product over \mathcal{O}. Let M, N be two $D(X)$-modules. Consider the space $M \otimes N:=M \otimes_{\mathcal{O}_{(X)}} N$ and define on it the structure of a $D(X)$ module using the Leibnitz rule. This defines on D-modules the bifunctor of (inner) tensor product.
(i) Show that $M \otimes N$ is canonically isomorphic to the module $\Delta^{0}(M \boxtimes N)$ where Δ is the diagonal imbedding $\Delta: X \rightarrow X \times X$.
(ii) Interpret the analytic meaning of this algebraic operation. Convince yourselves that the inner tensor product of finitely generated D-modules is not always finitely generated.
[$\mathbf{P}]$ (iii) Show that if M, N are holonomic then the tensor product $M \otimes N$ is also holonomic.
$[\mathrm{P}]$ 3. Tensor product of left and right D-modules. Let M be a left $D(X)$-module and R a right $D(X)$-module.

Consider the tensor product $M \otimes_{\mathcal{O}(X)} R$ and define on it the natural structure of a right $D(X)$-module.

Explain the analytic meaning of this construction. Convince yourselves that there is no natural tensor product of right D-modules.

Show that the tensor product of holonomic modules is holonomic.
[P] 4. Let X be a real vector space X. Fix a real polynomial P on X and consider as before the family of functions P^{λ}.

Let f be a generalized function on X. We assume that the function f is not very singular (e.g. it is a Schwartz function, or more generally, it is a finite sum of differential operators applied to continuous functions). In this case we can define the family of generalized functions $G(\lambda):=P^{\lambda} f$ for $\boldsymbol{\operatorname { R e }} \lambda \gg 0$.

Show that if the function f is holonomic then the family $G(\lambda)$ extends as a meromorphic function of λ to the whole complex plane.

More precisely, show that these family of functions satisfies a recurrence relation of the following form
$\left(^{*}\right)$ There exist a differential operator $d \in D(X)[\lambda]$ and a polynomial $b \in C[\lambda]$ such that the following identity holds $d(\lambda) G(\lambda+1)=b(\lambda) G(\lambda)$.
[P] 5. (i) Similarly to problem 4 show that the function $G(\lambda, \mu):=P^{\lambda} Q^{\mu} f$ has meromorphic continuation in two variables λ, μ.(ii) Show that in this case the function $b(\lambda, \mu)$ can be chosen as a product of linear functions.
$[\mathbf{P}]$ 6. Let T be a differential operator with constant coefficients on $X=\mathbf{R}^{n}$. We would like to find a fundamental solution F for T, i.e a distribution solution of the differential equation $T(F)=\delta$ (delta function).

Using results discussed in class show that such solution always exists.
Show that we can choose F to be a Schwartz distribution.
Show that we can choose F to be a holonomic distribution.
$[\mathbf{P}]$ 7. Let P be a real polynomial on $X=\mathbf{R}^{n}$. Consider on X a function $H(x)=\exp (i P(x))$ and denote by F its Fourier transform.

Show that F is a holonomic distribution. Later we will see that this implies that F is analytic outside some explicitly described analytic subset.
[P] 8. Let P be a real polynomial on $X=\mathbf{R}^{n}$. Let us assume that it is strictly positive and grows at infinity (for example assume that $P \geq\left(1+\sum x_{i}^{2}\right)$).
(i) Consider the function $F(\lambda):=\int_{X} P^{\lambda} d x$. This function is defined for $\boldsymbol{\operatorname { R e }} \lambda \ll 0$.

Show that the function F expends to a meromorphic function on the whole complex plane. To do this show that the function F satisfies a recurrence relation of the following shape
$\left({ }^{* *}\right)$ There exists a number m and rational functions $a_{i}(\lambda)$ for $i=0,1, \ldots, m$ such that the following identity holds

$$
F(\lambda+m+1)=\sum_{i=0}^{m} a_{i}(\lambda) F(\lambda+i)
$$

(ii) Fix a holonomic Schwartz distribution E and consider the function $F=$ F_{E} defined by $F(\lambda):=\int_{X} P^{\lambda} E$.

Prove the same results for this function.

