Problem assignment 5.

Algebraic Theory of *D*-modules.

Joseph Bernstein

In this assignment we fix an algebra A and let $\mathcal{M}(A)$ denote the category of left A-modules.

1. Suppose that the algebra A is Noetherian. We denote by $\mathcal{M}^{f}(A)$ the category of finitely generated A-modules.

Show that an A-module $P \in \mathcal{M}^f(A)$ is projective in category $\mathcal{M}(A)$ iff it is projective in the category $\mathcal{M}^f(A)$.

More generally, show that if cohomological dimension of P is bounded by d in small category $\mathcal{M}^f(A)$, then it is bounded by d in the large category $\mathcal{M}(A)$.

[P] 2. Let A be a Noetherian algebra and M a finitely generated A-module. Suppose we know that $chdim(M) \leq d$.

Consider the functor $E: N \mapsto Ext^d(M, N)$. Show that there exists a right A-module R such that this functor is isomorphic to the functor T_R defined by $T_R(N) = R \otimes_A N$. Show that the module R is defined uniquely up to canonical isomorphism.

Definition. Suppose we are given a vector space V over a field K.

Let us define a **finiteness structure** F on V to be a finite collection of commuting operators $x_i : V \to V$, i = 1, ..., n which define on V a structure of a **finitely generated** module over the algebra $A = K[x_1, ..., x_n]$.

Two finiteness structures $F = (x_i)$ and $H = (y_j)$ we call **equivalent** if operators x_i and y_j commute.

[P] 3. (i) Show that a finiteness structure on V allows unambiguously define the functional dimension d(V).

[P] 4. Let *F* be a finiteness structure on *V*; it is given by a structure of an *A*-module on *V* where $A = K[x_1, ..., x_n]$.

For a given integer l consider the vector space $D^l(V) = D^l_F(V)$ defined by $D^l(V) := Ext_A^{n-l}(V, \omega_A)$, where ω_A is the A-module $\Omega^n(A)$ of highest degree differential forms on the affine space X corresponding to the algebra A. By construction this is a space with a finiteness structure.

(i) Show that for two equivalent finiteness structures F and H on V the spaces $D^{l}(V)$ constructed using F and using H are **canonically isomorphic**.

(ii) Show that $d(D^l(V) \leq l$

(iii) Show that if d(V) = d then $D^{l}(V) = 0$ for l > d.

(iv) Show that if d(V) = 0, i.e. V is a finite dimensional vector space over K, then the space $D^0(V)$ is just the dual vector space V^* .

 (\Box) **5.** Is this construction of the space $D^{l}(V)$ compatible with the composition of equivalences ?

[P] 6. Consider a commutative algebra A and an A-module M.

Let B be a finitely generated subalgebra of A (or, more generally, a finitely generated commutative algebra together with a morphism $\nu : B \to A$).

We say that the module M is B-finite if it is finitely generated as B-module. We say that M is CM (Cohen-Macaulay) of dimension d if for some polynomial subalgebra B in d variables M is B-finite and projective.

Show that in this case for any polynomial algebra B in d variables if M is B-finite then it is automatically B-projective.

7. let \mathfrak{g} be a finite-dimensional Lie algebra over the field K. Show that the category $\mathcal{M}(\mathfrak{g})$ of \mathfrak{g} -modules is Noetherian and has finite cohomological dimension.