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In this assignment we fix an algebraically closed field k. We will discuss

properties of affine algebraic varieties over k.

Definition. (i) An affine algebraic variety is a pair (X, A) where X is a set
and A = O(X) a k-subalgebra of the algebra k[X] of all k-valued functions on
X which satisfy

(a) A is a finitely generated k-algebra
(b) The map x 7→ νx : A → k is a bijection of X with the set of homomor-

phisms of k-algebras A→ k.
A morphism π : X → Y of affine algebraic varieties is a map of sets π :

X → Y such that the corresponding morphism π∗ on functions maps O(Y ) into
O(X)

For any ideal J ⊂ A = O(X) we denote by Z(J) ⊂ X the set of its zeroes.
Similarly for any subset Z ⊂ X we denote by J(Y ) ⊂ A the ideal of function
that vanish on Z.

We define the Zariski topology on X by condition that a subset Z ⊂ X is
closed if Z(J(Z)) = Z.

Definition. A morphism π : X → Y of affine algebraic varieties is called
finite if O(X) is a finitely generated O(Y ) module.

1. Let π : X → Y be a finite morphism. Show that its fibers are finite and
its image is closed. Namely show that Im(π) = Z(J), where J = Ker(π∗).

In particular, show that a finite morphism π is epimorphic iff π∗ : O(Y ) →
O(X) is injective.

Definition. (i) Let X, A be an affine algebraic variety and M a finitely
generated A-module. We define the support of module M to be Supp(M) :=
Z(JM ) ⊂ X, where J(M) is the annihilator of M in A.

(ii) We define d(M) to be the functional dimension of the module M .
(iii) For any closed subset Z ⊂ X we define its Hilbert dimension to be

dimH(Z) := d(O(Z)).

2. Show that d(M) = dimH(Supp(M)).

The following problem provides an axiomatic definition of the notion of di-
mension for affine algebraic varieties.

3. (i) Show that there exists no more than one function X 7→ dim X from
affine algebraic varieties to integers that satisfies

(a) If π : X → Y is a finite morphism then dim X ≤ dim Y . If in addition it
is epimorphic then dim X = dim Y .



(b) dimAd = d, dim(∅) = −∞
(ii) Show that the function dim X = dimH(X) has these properties.

Definition. (i) An affine algebraic variety X is called irreducible if it can
not be presented as a union of two closed subsets strictly smaller than X.

(ii) An irreducible chain of length l in X is a collection of closed irreducible
subsets Z0 & Z1 & ... & Zl ⊂ X.

We define the Krull dimension dimK X of X to be the maximal length of
a chain of irreducible subsets in X.

4. (i) Show that any affine algebraic variety X can be canonically written
as a union of its irreducible components.

(ii) Show that Krull dimension satisfies the axiomatic definition of dimension.

Definition. Let X ⊂ An be an affine algebraic variety. Let us define the
intersection dimension dimint X of the variety X to be the minimal number
l such that the generic affine subspace L ⊂ An of codimension l + 1 does not
intersect X.

5. Show that the intersection dimension satisfies the axiomatic properties
of dimension.

6. Consider the affine space X = An, so that the algebra A = O(X) is a
polynomial algebra. Let M be a finitely generated O(X)-module.

(i) Show that the minimal number l such that Extl(M,A) 6= 0 coincides
with the codimension of the Supp(M) in X.

(ii) Prove the following Principle ideal theorem.
Let X be an irreducible affine algebraic variety of dimension m and f ∈ O(X)

a non-zero function. Then every irreducible component of the affine algebraic
variety Z(f) (zeroes of the function f) has dimension equal to m− 1.

(iii) Let Z ⊂ X = An be a closed algebraic subvariety of codimension
r. Show that one can find r functions f1, ..., fr ∈ J(Z) such that the subset
F = Z(f1, ..., fr) of their common zeroes has codimension r and contains Z.

Definition. Let Z be a subset of an affine algebraic variety X. We say
that Z is locally closed if it is an intersection of a Zariski closed subset and a
Zariski open subset.

We say that Z is constructible if it is a finite union of locally closed subsets

7. Prove the following Chevalley Theorem.
Let π : X → Y be a morphism of affine algebraic varieties. Then the image

of X in Y is a constructible subset.

8. Using devissage and Noether normalization lemma prove a stronger ver-
sion of this theorem. Namely we say that the morphism π : X → Y is special
if for some natural number d we can decompose it into a finite epimorphism
X → Z = Ad × Y and the natural projection p : Z → Y .

Show that given any morphism ν : X → Y of affine algebraic varieties we can
decompose varieties X and Y into finite number of disjoint affine subvarieties
Xi ⊂ X, Yj ⊂ Y such that for any i we can find j such that ν : Xi → Yj is a
special morphism.


