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I. Preparation about sequences. Consider the group F' consisting of sequences of
rational numbers f = {f(i),7 € Z}. Let us introduce an equivalence relation on F by f ~ h
if f(i) = h(z) for i > 0.

We say that a sequence f is eventually polynomial if there exists a polynomial P €
Q[t] such that f is equivalent to the sequence P(%). It is clear that such polynomial P is
uniquely defined.

Consider the difference operator A : F' — F defined by A(f)(7) = f(i + 1) — f(3)

1. Let d be a natural number. Show that a sequence f € F' is eventually polynomial of
degree < d iff A4FTL(f) ~ 0; this is also equivalent to the condition that A(f) is eventually
polynomial of degree < d — 1.

II. Hilbert polynomial. Fix an arbitrary field K. Consider an algebra A = K[z, ..., T,,]
and introduce on it algebra filtration {Ay}, where Ay = {P € A| deg P < k}.

Let M be a finitely generated A-module. Fix a system of generators myq,...,m, and
consider a filtration of M defined by My = Agmqi + Agms + ... + Apm,..

Our goal is to prove the following fundamental result due to Hilbert.

Theorem A. The sequence fp/(i) = dim M; is eventually polynomial (here dimension
is over the field K).

It is convenient to formulate and prove slightly more general result.

Definition. (i) A filtration of M is a collection of finite dimensional subspaces My C M
defined for all k € Z that satisfies the following conditions.

(a) My, C M for k <1, Mk:Ofork<<0andUMk:M.

(b) ApM,; C MkJrl

(ii) Filtration {My} is called good filtration if it satisfies

(c) For large k we have Ay My = My41.

Clearly the filtrations considered in Theorem A are good. So we will prove more general
result

Theorem B. Suppose {M},} is a good filtration of an A-module M.

(i) For any A-submodule L C M consider the induced filtration on L defined by Ly =
L\ My. Then it is a good filtration.

(ii) The sequence f(i) := dim M; is eventually polynomial.

Consider the graded algebra C' = K{tg.t1, ..., t,]. Using the filtration {M}} on M con-
struct a graded C-module N = M C M{t,t71] by MP¥ = M t*, where to acts as multiplica-
tion by ¢ and ¢; acts as a multiplication by tx; for i =1, ..., n.

2. Check that a filtration {M}} is good iff the C-module M is finitely generated.

For an A-submodule L C M consider the induced filtration {L;}. Then L is a D-
submodule of D-module M. Hence Hilbert basis theorem implies (1).

It is clear that the theorem B follows from the following

Theorem C. Consider the algebra C' = K|[tg, t1, ..., t,,] and define the grading C = @ C*
on it by condition deg(t;) = 1. Fix a graded C-module N = @ N*.

Suppose we know that C-module N is finitely generated. Then the sequence fy (i) :=
dim N is eventually polynomial of deg}ee <n.

Proof. Consider the operator T': N — N of degree 1 given by multiplication by ¢,. Let
us denote by K and C' its kernel and cokernel.

3. Check that fn(i+1)— fn(i) = fe(i+1) — fx(3)

Now note that on the modules K and C' the operator t, is zero, so they are finitely
generated modules over the algebra C' = K|tg, t1, ..., tn—1]-

Using induction in n we can assume that the sequences fx and fo are eventually polyno-
mial of degree < n — 1. But then it means that the sequence A(f) is eventually polynomial
of degree < n — 1 and hence f is eventually polynomial of degree < n.



Remarks. (i) Note that in fact we start our induction from the case n = —1,i.e. C = K.

(ii) The most non-trivial step in this proof is the fact that the C-module K is finitely
generated - this is Hilbert’s basis theorem.

III. Some problems about Hilbert polynomials.

4. Let O be a finitely generated K-algebra and M a finitely generated O-module.

Let us fix a system of generators z1,...,z, € O. Then M becomes a module over the
polynomial algebra A = Klx1, .., z,).

Let us choose a good filtration on M and consider the corresponding Hilbert polynomial
S ().

(i) Show that the degree d(M) of the polynomial fy; and its first coefficient e(M) do not
depend on the choice of a good filtration on M.

(ii) Show that the degree d(M) does not depend on the choice of generators of the algebra
0.
We call this invariant d(M) the ”the functional dimension” of M.

5. (i) Show that if L is an O-submodule of M then d(M) = max(d(L),d(M/L)).

(ii) Let A be an endomorphism of an O-module M. Show that if A is injective then
d(M/AM) is strictly less then d(M) (we assume M # 0).

(iii) Suppose that we have a vector space M that is a module over two commutative
finitely generated algebras A and B. Let us assume that it is finitely generated over A and
also over B, so we can define two invariants d4 (M) and dg(M).

Show that if the actions of A and B on the module M commute, then d4 (M) = dg(M).

6. Let X be an affine algebraic variety, M a finitely generated O(X) -module. We define
the support of M to be the subset sup(M) C X defined by the ideal I = Ann(M) C O(X).
Show that d(M) equals dim sup(M).

7. Prove that the dimension function dimg (X) defined using Hilbert polynomial def-
inition has the following properties. Let m : X — Y be a morphism of affine algebraic
varieties

(i) Suppose that 7 is a finite morphism ( e.g. a closed embedding). Then dimg X <
dimH Y.

(i) Suppose that 7 is a finite epimorphism. Then dimy X = dimgy Y.

(ili) Suppose 7 is an imbedding of a basic open subset (i.e. X = Y}). Then dimyz X
dimH Y
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8. Show that Hilbert polynomial definition of dimension for algebraic varieties is equiv-
alent to Krull’s definition.

(*) 9. Using Hilbert polynomial definition of dimension prove directly the Principle
ideal theorem.

Let X be an irreducible affine algebraic variety, f € O(X), Z = Z(f) the zero set of the
function f. Suppose that dim Z < dim X — 2. Then Z is empty.



