Problem assignment 11.

Algebraic Geometry and Commutative Algebra

Joseph Bernstein

April 23, 2009.

In what follows we fix a smooth projective curve C.

First let us describe a more geometric approach that describes the group Div(C)/PrinDiv(C).

Consider the category $\mathcal{P}ic(C)$ whose objects are invertible \mathcal{O} -modules L. We denote by Pic(C) the set of isomorphism classes in $\mathcal{P}ic(C)$. The set Pic(C) has a natural structure of an abelian group defined by $[L] \cdot [N] = [L \otimes N]$.

To any divisor D on C we assign an invertible \mathcal{O} -module $\mathcal{O}(D)$ defined as follows: $\Gamma(U, \mathcal{O}(D)) = \{f \in k(C)^* \mid div(f) + D \ge 0 \text{ on } U\} \bigcup 0.$

1. Show that the morphism $D \mapsto [\mathcal{O}(D)]$ defines an isomorphism of abelian groups $Div(C)/PrinDiv(C) \simeq Pic(C)$.

Hint. Consider the category $\mathcal{P}ic'(C)$ consisting of pairs (L,ξ) where L is an invertible \mathcal{O} module and ξ a non-zero rational section of L. Show that the correspondence $D \mapsto (\mathcal{O}(D), 1)$ defines an isomorphism of the set Div(C) with the set of isomorphism classes of the category $\mathcal{P}ic'(C)$. Also show that the category $\mathcal{P}ic'(C)$ is discrete (e.i. its objects do not have non identity automorphisms).

Remark. Given a divisor D we define an autofunctor - "twist by D"- on the category $\mathcal{P}ic'(C)$ by $L \mapsto L(D) = \mathcal{O}(D) \otimes L$. In other words

 $\Gamma(U, L(D)) := \{ \text{rational sectors } \xi \text{ of } L \text{ that satisfy the following condition } div_L(\xi) + D \ge 0 \}.$

Definition. For an invertible \mathcal{O} -module L we define the following invariant l(L): we consider the space of global sections $\Gamma(L) := \Gamma(C, L)$ and set $l(L) := \dim \Gamma(L)$.

2. Define the degree deg(L) and show that if deg(L) < 0 then l(L) = 0 and if $deg(L) \ge 0$ then $l(L) \le deg(L) + 1$.

Definition. We define another important invariant h(L) of the invertible \mathcal{O} -module L using formula $l(L) - h(L) \equiv deg(L) + 1$.

3. Show that for all L the number h(L) is non-negative and when deg(L) > 2g - 2 we have h(L) = 0.

Our next goal is to give a "geometric" construction of the invariant h. Namely we will construct a functor $H : \mathcal{P}ic(C) \to Vect$ such that $h(L) = \dim H(L)$. We will see later that this functor coincides with the cohomology functor $L \mapsto H^1(C, L)$. Compare that $l(L) = \dim \Gamma(L)$, where $\Gamma(L) = H^0(C, L)$.

Let T be an effective divisor. We will be interested in the case when $deg(T) \gg 0$. Also for simplicity we assume that T is simple. i.e. all coefficients n_a are 0 and 1. Thus we can consider T as a finite subset of C.

For any invertible \mathcal{O} -module L consider a morphisms of \mathcal{O} -modules $i_T : L \to L(T)$. This is an imbedding of \mathcal{O} -modules and we will denote by $\mathcal{P}(L,T)$ the quotient \mathcal{O} -module.

4. Check that the \mathcal{O} -module $\mathcal{P}(L,T)$ is a sum of skyscraper sheaves at points $a \in T$, such that the stalk of this sheaf at the point $a \in T$ is **canonically** isomorphic to a one

dimensional k-vector space $\hat{L}(a) := T_a(C) \otimes L|_a$. In particular the space of global sections $P(L,T) = \Gamma(C,\mathcal{P}(L,T))$ is isomorphic to $\bigoplus_{a \in T} \hat{L}(a)$.

5. Consider exact sequence of morphisms of \mathcal{O} -modules

(*) $0 \to L \to L(T) \to \mathcal{P}(L,T) \to 0$

Let us apply to it the functor Γ and get a sequence of morphisms of vector spaces $(^{**}) \ 0 \to \Gamma(L) \to \Gamma(L(T)) \to P(L,T)$

(i) Show that this sequence is exact

(ii) Denote by $H_T(L)$ the cokernel of the morphism $\nu_T : \Gamma(L(T)) \to P(L,T)$.

(iii) Show that dim $H_T(L) = h(L) - h(L(T))$. In particular, if h(L(T)) = 0 (for example this happens if $deg(T) \gg 0$) then dim $H_T(L) = h(L)$.

6. If $T \leq T'$ we have canonical imbedding $P(L,T) \rightarrow P(L,T')$.

(i) Show that it induces a morphism $H_T(L) \to H_{T'}(L)$.

(ii) Show that this morphism is always mono.

Using Problem 6 we define $H(L) := \lim_T H_T(L)$.

For every T we have an imbedding $H_T(L) \to H(L)$. Problem 5 implies that this is an isomorphism if h(L(T)) = 0. In particular this is an isomorphism when deg(T) is very large.

7. Fix a point $a \in C$. Suppose there exists a function $f \in k(C)$ that is regular outside of a and has pole of order exactly 1 at the point a.

Show that f defines an isomorphism of the curve C with \mathbf{P}^1 . In particular in this case C has genus 0.

For any integer d we denote by $Pic^{d}(C) \subset Pic(C)$ the set of divisors of degree d (modulo principle divisors).

8. Let C be a curve of genus 1.

(i) Show that in this case the canonical map $C \to Pic^1(C)$ is a bijection.

(ii) Let us fix a point $a \in C$. Show that the set of points of C has a canonical structure of an abelian group such that the point a is its zero element.

9. Let C be a curve of genus g. For any $d \ge 0$ consider an algebraic variety $Sym^d(C)$ obtained as a quotient of the variety $C^d = C \times C \times ... \times C$ by action of the symmetric group Sym_d interchanging the factors.

(i) Construct a natural map $\nu_d : Sym^d(C) \to Pic^d(C)$. Show that it is bijective when d = g.

Use this to define a group structure on the variety $Sym^{g}(C)$. We will see later that this is a structure of an algebraic group.

(ii) Suppose $d \ge g$. Show that the map ν_d is epimorphic. Describe its fibers.