Problem assignment 10.

Algebraic Geometry and Commutative Algebra
Joseph Bernstein
April 6, 2009.

1. Let X be an affine algebraic variety, F a coherent sheaf on X.
(i) Let us assume that support of F has dimension 0 .

Show that $\operatorname{dim} \Gamma(X, F)=\sum_{x \in X} \operatorname{dim} F_{x}$ (sum of dimensions of stalks).
(ii) Suppose X is affine, $\nu: G \rightarrow H$ a morphism of coherent sheaves. Suppose that ν is an imbedding and is an isomorphism outside of a subset of dimension 0 .

Show that $\operatorname{dim} H(X) / G(X)=\sum_{x \in X} \operatorname{dim} H_{x} / G_{x}$
(iii) In particular show that if X is an affine curve and $f \in \mathcal{O}(X)$ a nonzero function, then $\operatorname{dim} \mathcal{O}(X) / f \mathcal{O}(X)=\sum_{x \in X}$ mult $_{x}(f)$
2. Let C be a smooth curve, F a coherent sheaf on C.
(i) Show that if F does not have torsion then it is locally free.
(ii) Suppose in addition C is affine and $f \in \mathcal{O}(C)$ a nonzero function. Explain how to compute $\operatorname{dim} F(C) / f F(C)$.
3. Let $p: C \rightarrow D$ be a dominant morphism of smooth curves. For a given point $d \in D$ set $n(d):=\sum_{c \in p^{-1}(d)} \operatorname{mult}_{c}(p)$.

Show that $n(d)$ does not depend on d. This number n is called the degree of morphism p.
Show that degree of p coincides with the degree of the field extension $[k(C): k(D)]$.
In what follows we fix a smooth projective curve C. We denote by $\operatorname{Div}(C)$ the free abelian group generated by points of C. An element $D=\sum_{a \in C} n_{a} \cdot a$ is called a divisor on C. The number $\operatorname{deg} D=\sum n_{a}$ is called the degree of the divisor D.

Denote by K the field $k(C)$ of rational functions on C. For every function $f \in K^{*}$ we construct a divisor $\operatorname{div}(f):=\sum_{a \in C} D e g_{a}(f) \cdot a$
4. Check the following facts
(i) The map $\operatorname{deg}: \operatorname{Div}(C) \rightarrow \mathbf{Z}$ is a group homomorphism. It is epimorphism and we denote its kernel by $\operatorname{Div}^{0}(C)$.
(ii) The map div: $K^{*} \rightarrow \operatorname{Div}(C)$ is a group homomorphism. Its kernel is the subgroup k^{*}.

The image of this morphism is called the group of principle divisors (notation PrinDiv(C))
(iii) $\operatorname{deg}(\operatorname{div}(f)) \equiv 0$. In other words $\operatorname{PrinDiv}(C) \subset \operatorname{Div}^{0}(C)$

Important invariants we will study are groups
$\operatorname{Pic}(C):=\operatorname{Div}(C) / \operatorname{PrinDiv}(C)$ and $\operatorname{Pic}^{0}(C):=\operatorname{Div}^{0}(C) / \operatorname{PrinDiv}(C)$
Definition. (i) We say that a divisor $D=\sum n_{a} a$ is effective (or positive) if all coefficients n_{a} are non-negative. If D, D^{\prime} are two divisors then the notation $D^{\prime} \geq D$ means that the divisor $D^{\prime}-D$ is effective.
(ii) We say that divisors D, D^{\prime} are equivalent (notation $D^{\prime} \sim D$) if $D^{\prime}-D$ is a principle divisor.

Definition. Given a divisor D we denote by $L(D)$ the vector space consisting from functions $f \in K^{*}$ such that $\operatorname{div}(f)+D \geq 0$ and the zero function. We set $l(D):=\operatorname{dim} L(D)$

Show that $L(D)$ is indeed a k-vector subspace in K.
5. Show the following facts
(i) If $D^{\prime} \sim D$ then $\operatorname{deg} D^{\prime}=\operatorname{deg} D$ and $l\left(D^{\prime}\right)=l(D)$
(ii) If $D^{\prime} \geq D$ then $\operatorname{deg} D^{\prime} \geq \operatorname{deg} D$ and $l\left(D^{\prime}\right) \geq l(D)$
(iii) For any point $a \in C$ and any divisor D we have $l(D) \leq l(D+a) \leq l(D)+1$.
(iv) $l(D)>0$ iff D is equivalent to an effective divisor.
(v) If $l(D)>0$ then there exists a point $a \in C$ such that $l(D-a)<l(D)$.

The fundamental problem: given $\operatorname{deg}(\mathrm{D})$ find good estimates for the number $l(D)$.
6. Upper bound. Proposition. Let D be a divisor. Show that if $\operatorname{deg} D<0$ then $l(D)=0$. If $\operatorname{deg} D \geq-1$ then $l(D) \leq \operatorname{deg} D+1$
7. Lower bound. Theorem. Set $\operatorname{def}(D)=\operatorname{deg} D+1-l(D)$. Show that $\operatorname{def}(D)$ is bounded above by some universal constant A that depends only on the curve C. Minimal such constant $g=g(C)$ is called the genus of the curve C; it is easy to see that $g(C) \geq 0$.

Hint. (i) Show that the function $\operatorname{def}(D)$ depends only on equivalence class of D and is increasing, i.e. if $D^{\prime} \geq D$ then $\operatorname{def}\left(D^{\prime}\right) \geq \operatorname{def}(D)$.
(ii) Show that there exists a family of divisors $B_{n}, n \in \mathbf{Z}_{+}$such that for every n we have $\operatorname{deg} B_{n} \geq$ $n-A_{0}$ and $\operatorname{def}\left(B_{n}\right) \leq A$.
(iii) Given a divisor D show that for large n we have $l\left(B_{N}-D\right)>0$. From this deduce that $\operatorname{def}(D) \leq A$.
8. We will see that an important role plays a function $h(D):=g-\operatorname{def}(D)=l(D)+g-1-\operatorname{deg} D$ (in other words $l(D)-h(D)=\operatorname{deg} D+(1-g)$).

By definition $h(D) \geq 0$ for all D and there exists a divisor $D_{\min }$ such that $h\left(D_{\min }\right)=0$.
(i) Show that the function $h(D)$ depends only on equivalence class of D and is decreasing, i.e. $D^{\prime} \geq D$ implies $h\left(D^{\prime}\right) \leq h(D)$.
(ii) Show that there exists a divisor D_{0} of degree $g-1$ such that $h\left(D_{0}\right)=0$.
(iii) Show that for any divisor D of degree $>2 g-2$ we have $h(D)=0$.

Hint. Use the fact that any divisor B of degree $\geq g$ is equivalent to an effective divisor.
9. Let $a \in C$ be an arbitrary point. Consider the following system of divisors $D_{k}=k \cdot a, k \in \mathbf{Z}_{+}$. We say that the the number k is a gap for the point a if $l\left(D_{k-1}\right)=l\left(D_{k}\right)$.
(i) Show that there are finite number of gaps for the point a. How many?
(ii) Show that if we remove from the curve C the point a then the resulting curve C_{a} is affine.

