Problem assignment 3.

Analysis on Manifolds.

Joseph Bernstein

March 14, 2010.

1. Let M be a manifold and $\omega \in \Omega(M)$. We would like to express the DeRham differential $d\omega$ in terms independent of coordinate systems.

(i) Show that for 1-form α we have $d\alpha(\xi, \eta) = \xi(\alpha(\eta)) - \eta(\alpha(\xi)) + \alpha([\xi, \eta])$ Show that for a k-form ω we have $d\omega(\xi_1, ..., \xi_{k+1}) = \sum_{1 \le i \le k+1} (-1)^{i+1} \xi_i(\omega(\xi_1, ..., \hat{\xi}_i, ..., \xi_{k+1})) + \sum_{1 \le i < j \le k+1} (-1)^{i+j+1} \omega([\xi_i, \xi_j], \xi_1, ..., \hat{\xi}_i, ..., \hat{\xi}_j, ..., \xi_{k+1})$

Hint. Use Weyl formulas.

Let $\nu : N \to S$ be a morphism of manifolds, $Z \subset S$ be a submanifold. We would like to study the subset $W = \nu^{-1}(Z) \subset N$ near some point $a \in W$.

2. (i) Suppose ν is a submersion at the point *a*. Show that then *W* is a submanifold near *a* and compute its tangent space.

(ii) Let us make a weaker assumption that at the point $b = \nu(a)$ the sum of subspaces $T_b Z$ and $D\nu(T_a N)$ equals to $T_b S$ (in this case we say that ν is **transversal** to the submanifold Z at the point a). Solve the same problem as in (i) for the transversal case.

3. More generally, consider two morphisms of manifolds $\mu : M \to S$ and $\nu : N \to S$. We define the **fiber product** $W \subset M \times N$ to be the set of points (m, n) such that $\mu(m) = \nu(n)$.

We say that the morphisms μ, ν are **transversal** at the point $(m, n) \in W$ if the sum of tangent spaces $D\mu(T_mM)$ and $D\nu(T_nN)$ equals to the tangent space T_cS at the point $c = \mu(m) = \nu(n)$.

Show that if $(m, n) \in W$ is a point of transversality, then the subset W is a submanifold near this point. Compute its tangent space.

4. Let M be a manifold, V a vector space.

Define the space $\Omega(M, V)$ of differential forms on M with values in V. Define the following structures on this space:

(i) Structure of left $\Omega(M)$ -module.

(ii) For any vector field ξ on M define the inner product $i_{\xi} : \Omega(M, V) \to \Omega(M, V)$.

(iii) Define the DeRham differential $d: \Omega(M, V) \to \Omega(M, V)$.

(iv) Define Lie derivatives L_{ξ} .

(v) Show that all the Weyl's formulas work in this case.

5. Choose a moving frame $e_1, ..., e_n$ in V. Then we can write $\Omega(M, V) = \bigoplus_i \Omega(M) e_i$.

(i) Explain how all operations are written in this frame. Show that all these operations are described by a matrix ω_{ij} of 1-forms. Write consistency relation for these forms.

(ii) Suppose additionally we are given a morphism $\nu : M \to V$. Write $D\nu = \sum \omega_i e_i$. Compute formulas for $d\omega_i$.

6. Let us assume that the space V in problem 4 is Euclidean, i.e. it is equipped with a scalar product <, >.

Define the scalar product $\langle , \rangle : \Omega(M, V) \times \Omega(M, V) \to \Omega(M).$

(i) Show that $L_{\xi}(<\omega, \rho >) = < L_{\xi}(\omega), \rho > + < \omega, L_{\xi}(\rho) >$

(ii) Write all relations between forms ω_{ij} and ω_i in this case.

7. Let M be a surface $\nu : M \to V = \mathbf{R}^3$ an imbedding. Choose a Darboux frame (e_1, e_2, e_3) . This means that we have chosen orthonormal vector fields ξ_1, ξ_2 on M, consider the corresponding functions $e_i = D\nu(\xi_i)$ from M to V and extend them to an orthonormal frame by adding the orthogonal function e_3 .

Consider the 2×2 matrix $h_{ij} = \omega_{i3}(e_j)$.

(i) Show that it equals $\langle de_3(\xi_i), e_j \rangle = \langle \xi_i(e_3), e_j \rangle$

(ii) Show that this is equal to $-\xi_i(\xi_j(f(x,a)))|_{x=a}$,

where $f(x, a) = \langle \nu(x), e_3(a) \rangle$. In particular show that this is twice the matrix of the second fundamental form Q_{II} in the basis (ξ_i) .

8. Write a formula for the Gauss curvature G in terms of the form ω_{12} . Using this write the formula for the Gauss curvature in terms of the basis of 1-forms ω_1, ω_2 dual to the basis of vector fields ξ_1, ξ_2 .