Integration of differential forms.

Let U be an abstract domain. We denote by $V(U)$ the space $\Omega_{c}^{t o p}(U)$ of differential forms of top degree with compact support in U. We denote by $V^{\prime}(U) \subset V(U)$ be the subspace of Lie derivatives (i.e. $V^{\prime}(U)=$ $\left.\sum_{\xi \in V e c t(U)} L_{\xi}(V(U))\right)$ and by $Q(U)$ the quotient space $V(U) / V^{\prime}(U)$.

Theorem. Suppose the domain U is connected. Then the space $Q(U)$ is 1-dimensional.

Proof. Let us introduce coordinates $\left(x_{i}\right)$ and consider partial derivatives ∂_{i}. The corollary to Weyl's formulas shows that $V^{\prime}(U)=\sum_{i} L_{\partial_{i}} V(U)$.

Step 1. Lemma. (i) Suppose C is an open coordinate cube. Then the space $Q(C)$ is one dimensional and non-trivial functional on it is given by an integral $\int_{(x)}$ (here integral might be a Riemann integral or just a repeated integral).
(ii) If D is another coordinate cube that lies in C then the natural morphism $Q(D) \rightarrow Q(C)$ is an isomorphism.

The proof of (i) for dimension 1 is a straightforward application of integration in dimension 1. Using smooth dependence of 1-dimensional integral on parameters we can reduce the proof of (i) in dimension n to dimension $n-1$ and hence prove it by induction.

Item (ii) immediately follows from (i).
Step 2. The lemma in step 1 implies that the space $Q\left(\mathbf{R}^{n}\right)$ is 1-dimensional. This implies that for any open coordinate cube $C \subset U$ the image of the space $V(C)$ in $Q(U)$ is 1-dimensional (analyze morphisms $Q(C) \rightarrow Q(U) \rightarrow$ $Q\left(\mathbf{R}^{n}\right)$). We denote this subspace (this line) by $l(C)$.

Step 3. If two cubes $C, D \subset U$ intersect then $l(C)=l(D)$.
Enough to consider the case $D \subset C$ which follows from Step 1.
Step 4. For any line l in $Q(U)$ consider the union U_{l} of all cubes $C \subset U$ such that $l(C)=l$. This gives a decomplsition of U into open disjoint subsets. Since U is connected it coincides with U_{l} for some specific l.

Step 5 . We have shown that U can be covered by open subcubes C such that $l(C)=l$. Partition of unity then implies that $Q(U)=l$, QED.

Corollary. If we have two coordinate systems (x) and (y) on U then there exists a constant c such that on the space $V(U)$ we have an identity

$$
\int_{(x)} \rho=c \int_{(y)} \rho
$$

Now it is not difficult to check that the constant c is this formula is 1 or -1 depending on orientations of coordinate systems $(x),(y)$.

Remark. In particular this proves the formula for change of variables in an integral.

