
Tangent spaces and vector fields.

Let (X, S(X)) be an abstract domain.

I claim that to every point a ∈ X canonically corresponds some vector
space TaX (this space is called the tangent space to the domain X at the
point a). We will see that for different points of X these spaces are different
and in some sense are not related (though there is some connection between
them).

I will give two descriptions of this space TaX – one geometric and one
algebraic. This is typical for differential geometry – we will usually have
equivalent descriptions of the objects we study - geometric and algebraic.
Sometimes it is easier to work with one, sometimes with another. Many no-
tions are easier to formulate in algebraic picture. They usually can be also
interpreted geometrically, but this interpretation might be quite sophisti-
cated.

Geometric picture. We are given an abstract domain (X, S(X)) and
a point a ∈ X. Define a short curve as a smooth morphism γ : R → X
defined in some neighborhood of the point 0 such that γ(0) = a.

Consider the set SC of all short curves. We introduce an equivalence
relation on this set. Namely we say that γ1 ∼ γ2 if for every function
f ∈ S(X) the functions γ∗1(f) and γ∗2(f) in S(R) are close at 0, i.e. γ∗1(f)−
γ∗2(f) = o(t).

Problem 1. Consider a coordinate system on X. It allows to introduce a
distance d between points of X. Show that two curves γ1, γ2 are equivalent
iff d(γ1(t), γ2(t)) = o(t).

Definition. The tangent vector ξ to X at the point a is a short curve up
to above equivalence relation.

The set of tangent vectors we denote by T geoma X.

Algebraic picture.

Definition. Let a be a point of X. An a-derivation of the algebra S(X)
is a linear morphism D : S(X)→ R that satisfies the Leibnitz rule
D(fh) = D(f)h(a) + f(a)D(h)

All a-derivations form a linear space Dera(S(X)). This is an algebraic

version of the tangent space; we will denote it T alga X.

I claim that the set T geoma X is canonically in bijection with the set

T alga X = Dera(S(X)). Let us construct the corresponding map of sets.

Given a short curve γ we define the derivation Dγ : S(X)→ R by

Dγ(f) := d
dtγ

∗(f)|t=0

Problem 2. Check that

(i) Dγ ∈ Dera(S(X))
(ii) Dγ1 = Dγ2 iff γ1 ∼ γ2
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Proposition. The map T geoma X → Dera(S(X)) is a bijection.

Note that we constructed both sets and the map between them without
choosing any coordinate system. Now in order to prove the proposition we
will introduce a coordinate system (xi) on X (we assume the coordinates
vanish at the point a).

Consider the operators ∂i : S(X)→ R defined by ∂i(f) = ∂f
∂xi

(a).

Claim. Morphisms ∂i lie in Da(S(X)) and form a basis of this space.
This claim easily follows from

Hadamard’s Lemma. Any function f ∈ S(X) can be written as f =
f(0)+

∑
bix

i+
∑
xihi where bi are constants and hi are functions such that

hi(0) = 0.

Problem 3. Prove the claim above using Hadamard’s lemma and explain
how it implies the proposition the proposition.

Vector fields.

Definition. A vector field ξ is a collection of tangent vectors ξa for all
points a ∈ X.

Such vector field ξ defines a linear morphism ξ : S(X)→ F (X) (the space
of all functions on X). We say that ξ is smooth is ξ(S(X)) ⊂ S(X).

In coordinates we can write ξx =
∑
ai(x)∂i, i.e. ξ(f) =

∑
ai ∂f
∂xi

. The

vector field is smooth iff the coordinate functions ai are smooth.
Since ai = ξ(xi) we see that a vector field ξ is smooth iff ξ(xi) ∈ S(X)

for coordinate functions xi.

We denote by V ect(X) the space of smooth vector fields on X. This is
one of the central objects of differential geometry.

Let us give a purely algebraic description of this space.

Definition. (from algebra). Let k be a field and A any k-algebra. This
means that A is a k-vector space equipped with a bilinear multiplication
m : A×A→ A. So far we do not impose other restrictions on m.

A k-derivation of the algebra A is a k-linear morphism D : A→ A that
satisfies the Leibnitz rule
D(m(a, b)) = m(Da, b) +m(a,Db).
The k linear space of such derivations we denote Derk(A).

It is clear from above that V ect(X) = Derk(S(X)).

Problem 4. Let U ⊂ X be an open subdomain.

(i) Show that for any point a ∈ U the tangent spaces TaU and TaX are
canonically isomorphic.

(ii) Define the restriction morphism resU,X : V ect(X)→ V ect(U). Namely
show that for any vector field ξ on X there exists unique vector field η on
U such that for any function f ∈ S(X) we have ξ(f)|U = η(f |U ).

This shows that notions of tangent space and of a vector field are local in
nature.
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Lie algebra structure on vector fields.

From the algebraic description we can discover a new structure on the
space of vector fields – the structure of a Lie algebra. This is a very impor-
tant structure. We will also explain the geometric meaning of this structure,
but this will be much later.

Lemma (from algebra). Let A be a k-algebra, D1, D2 ∈ Derk(A) its
derivation. Consider the operator D : A→ A defined by D = D1D2−D2D1

(standard notation for this operation is D = [D1, D2]; the operator D is
called the commutator or bracket of operators D1 and D2).

Then D is a k-derivation of the algebra A.

The proof is a straightforward calculation.

Thus we see that the space V ect(X) of vector fields on an abstract domain
X has an additional operation – (bracket or commutator of vector fields).
It is a Lie algebra with respect to bracket, i.e. this operation satisfies Jacobi
identity.

Problem 5. a) Show the following properties of the commutator

(i) [ξ, η] is skew symmetric in ξ, η and satisfies the Jacobi identity
[ξ, [η, θ]] + [θ, [ξ, η]] + [η, [θ, ξ]] = 0

(ii) ξ(fh) = fξ(h) + ξ(f)h, (fξ)(h) = f(ξ(h)), [ξ, fη] = ξ(f)η + f [ξ, η]

(b) Write down explicitly bracket operation for vector fields in coordi-
nates.


