Problems in linear algebra.

Analysis on Manifolds.

Joseph Bernstein

February 26, 2010.

1. Let $A: V \rightarrow W$ be a morphism of vector spaces, $K=\operatorname{ker} A$ its kernel and $I=\operatorname{Im} A$ its image.

Show that $K \subset V$ and $I \subset W$ are linear subspaces.
Show that A is mono iff $K=0$. Show that if $K=0$ and $I=W$ then A is an isomorphism, i.e. there exists an inverse morphism $B: W \rightarrow V$ such that compositions $A \circ B$ and $B \circ A$ are identity morphisms.
2. Let V be a vector space and $L \subset V$ a subspace. Show that there exists a vector space Q and an epimorphism $p: V \rightarrow Q$ such that ker $p=L$.

Show that the pair (Q, p) is uniquely defined up to canonical isomorphism (i.e. any two such pairs are canonically isomorphic).

The space Q is called the quotient space; usually it is denoted by V / L.
3. Let V be vector space of dimension $n<\infty$ and $L \subset V$ be a subspace of dimension l. Show that there exists a basis e_{1}, \ldots, e_{n} of the space V such that vectors e_{1}, \ldots, e_{l} form a basis of L.

Show that in this case the vectors e_{l+1}, \ldots, e_{n} (or more precisely their images) form a basis of the quotient space V / L.
4. Let V be a vector space of dimension $n, L, L^{\prime} \subset V$ subspaces of V. Show that if $\operatorname{dim} L+\operatorname{dim} L^{\prime}>n$ then L and L^{\prime} have a non-zero intersection.
5. Let V be a vector space of dimension n and $L \subset V$ a subspace. Consider its orthogonal complement $L^{\perp} \subset V^{*}$ defined by $L^{\perp}:=\left\{f \in V^{*}|f| L=0\right\}$.
(i) What is the dimension of L^{\perp} ?
(ii) Show that $(R \cap L)^{\perp}=R^{\perp}+L^{\perp}$ and $(R+L)^{\perp}=R^{\perp} \cap L^{\perp}$.
(iii) Show that $\left(L^{\perp}\right)^{\perp}=L$.
(iv) Show that L^{\perp} is naturally isomorphic to $(V / L)^{*}$.
6. Let V be a vector space over $\mathbf{R},\left(e_{i}\right)$ a basis of V and $\left(x^{i}\right)=\left(x^{1}, \ldots x^{n}\right)$ the corresponding system of coordinates on V.
(i) How to describe a vector $v \in V$ in this coordinate system?

How to describe a covector $\xi \in V^{*}$?
How to describe an endomorphism $A: V \rightarrow V$?
How to describe a biliner form B ?
(ii) Let $\left(f_{j}\right)$ be another basis, $C=\left(c_{j}^{i}\right) \in \operatorname{Mat}(n, \mathbf{R})$ the transformation matrix from basis e to basis f (i.e $f_{j}=\sum c_{j}^{i} e_{i}$). We denote by $D=\left(d_{i}^{j}\right)$ the inverse matrix.

Describe how coordinates of vectors, covectors, endomorphisms and bilinear forms change from basis e to basis f.
7. Let B be a symmetric bilinear form on V. Denote by Q the corresponding quadratic form on V defined by $Q(x)=B(x, x)$.
(i) Show that the form B could be recovered from Q.
(ii) Show that a function Q on V is a quadratic form iff in any coordinate system it could be written as $\sum a_{i j} x^{i} x^{j}$.
(iii) Show that Q is a quadratic form iff it is homogeneous function of degree 2 which for any $a, b \in V$ satisfies the condition that the function $Q(x+a+b)-$ $Q(x+a)-Q(x+b)+Q(x)$ is constant function.
8. Let Q be a quadratic form on a vector space V of dimension n.
(i) Show that one can choose coordinate system $\left(x^{i}\right)$ on V in which the form Q is diagonal, i.e. $Q(x)=\sum a_{i}\left(x^{i}\right)^{2}$
(ii) Show that the number of zeroes in diagonal coefficients $\left(a_{i}\right)$ is an invariant of the form Q (i.e. it does not depend on a choice of the coordinate system).

Namely, show that it is equal to $\operatorname{dim} K$ where K is the kernel of the quadratic form Q, i.e. K is the kernel of the corresponding bilinear form $B: V \rightarrow V^{*}$.
(iii) We will call a subspace $L \subset V$ strictly Q-positive if the restriction of the form Q to this subspace is positive definite. Similarly we define the notion of strictly Q-negative subspace.

Show that the number of positive coefficients a_{i} equals to the maximum dimension of strictly Q-positive subspaces $L \subset V$ (and similarly for negative coefficients).

In particular these numbers are invariants of the form Q.
9. Let (V, Q) be a finite dimensional Euclidean space $E=\left(V, Q_{0}\right)$.
(i) Show that it is isomorphic to $\left(\mathbf{R}^{n}, Q_{0}\right)$, where Q_{0} is the standard quadratic form $Q_{0}\left(x_{1}, \ldots, x_{n}\right)=\sum\left(x^{i}\right)^{2}$.
(ii) Let Q be a quadratic form on an Euclidean space $E=\left(V, Q_{0}\right)$. Show that there exists a constant $C>0$ such that $|Q(x)| \leq C Q_{0}(x)$ for all $x \in V$.
10. Prove the following Spectral Theorem.

Let Q be a quadratic form on an Euclidean space $E=\left(V, Q_{0}\right)$. Then there exists a coordinate system $\left(x^{i}\right)$ in which both quadratic forms are diagonal
$Q_{0}(x)=\sum\left(x^{i}\right)^{2}$ and $Q(x)=\sum a_{i}\left(x^{i}\right)^{2}$.

