
Vector bundles and connections.

I. Vector bundles.

Let M be a manifold.

1. Give the definition of a vector bundle E on M . Define sub-bundle L ⊂ E and the
quotient bundle N = E/L.

We will denote by S(M,E) the S(M)-module of smooth sections of the bundle E.

Problem 1. (i) Show that any vector bundle E on M has a positive definite metric.

(ii) Show that for any sub-bundle L ⊂ E one can find a splitting, i.e. an isomorphism
E ≈ L

⊕
N where N = E/L.

2. Given vector bundles E,F on M describe construction of new vector bundles E∗, E⊗
F, Hom(E,F ), End(E), Alt(E) and so on; these operations we call tensor constructions.

3. Describe the Ω(M)-module Ω(M,E) of differential forms on M with values in a vector
bundle E.

Given a bilinear pairing B : E × F → D of vector bundles on M show how to extend it
to a pairing of Ω(M)-modules Ω(M,E)× Ω(M,F )→ Ω(M,D)

4. Let ν : M → N be a morphism of manifolds.

For any bundle F on M describe the induced bundle E = ν∗(F ) on M .
Show that this operation is functorial and compatible with tensor constructions and

pairings.
Describe canonical morphisms S(N,F )→ S(M, ν∗(F )) and Ω(N,F )→ Ω(M, ν∗(F )).

Show that (νµ)∗ is canonically isomorphic to µ∗ν∗ .

II. Connections on a vector bundle.

5. Let E be a vector bundle on M . A connection on E is a linear morphism O :
S(M,E)→ Ω1(M,E) that satisfies the Leibnitz rule

O(fu) = df u+ fO(u)

Remark. Equivalent way of describing a connection on E is by giving a collection of
operators Oξ : S(M,E) → S(M,E) corresponding to vector fields ξ on M (operators of
covariant differentiation). List the axiomatic properties of these operators that make this
collection of operators a connection.

Problem 5.1. (i) Show that the space of all connections on E is an affine space over the
linear space Ω1(M, End(E)).

(ii) Show that on a trivial vector bundle E = Rn any connection can be written in a
standard form O = d+ α, where α ∈ Ω1(Mat(n,R)).

(iii) Show that for every vector bundle E the set of connections on E is not empty.

Problem 5.2. Show how given connections on vector bundles E,F one can define in
canonical way connections on the vector bundles constructed from E and F using tensor
constructions.

Problem 5.3 Let ν : M → N be a morphism of manifolds, F a vector bundle on N and
E = ν∗(F ). Show that for any connection OF on F there exists unique connection OE on
E that satisfies OE(ν∗(u)) = ν∗(OF (u)) for all sections u ∈ S(N,F ).

This connection OE is called induced connection; we will denote it ν∗(OF ).

Problem 5.4. Let O be a connection on a vector bundle E on M . Let L be any
sub-bundle of E and N = E/L the quotient bundle.
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Show that the connection O defines a morphism of S(M) -modules αO : S(M,L) →
Ω1(M,N) and hence a morphism of vector bundles α : L→ T ∗(M)⊗N .

Show that the connection O induces a connection on the sub-bundle L iff this morphism
α vanishes.

Problem 5.5. Suppose that the vector bundle E is decomposed as a direct sum E =
L⊕N . Using projection show that any connection O on E defines a connection prL(O) on
L.

Problem 5.6. Let E be a vector bundle with an Euclidean structure given by a positive
definite form B. Let O be a connection on E preserving the form B.

For any sub-bundle L ⊂ E define the projection connection OL = prL(O) on L.

Prove that this connection OL preserves the restriction BL of the form B to the sub-bundle
L.

III. Extension of a connection to the higher degree forms.

6. Let O be a connection on a vector bundle E on M . Show that O uniquely extends to
the linear morphism O : Ω(M,E)→ Ω(M,E) of degree 1 that satisfies the Leibnitz rule

O(αω) = dα ω + (−1)deg(α)α O(ω) for α ∈ Ω(M), ω ∈ Ω(M,E).

From now on by connection on a vector bundle E we mean this morphism O : Ω(M,E)→
Ω(M,E).

Problem 6. Show that this extension of connection is compatible with taking induced
connections (see Problem 5.3).

IV. Curvature of a connection.

7. Given a connection O : Ω(M,E) → Ω(M,E) on a vector bundle E consider the
operator of degree 2 R = O2 : Ω(M,E)→ Ω(M,E). Show that this operator is a morphism
of Ω(M)-modules. In particular show that it is defined by multiplication by some form
R = R(O) ∈ Ω2(End(E)).

This form R(O) is called the curvature of the connection O.

Problem 7.1. Show that in case of trivial bundle Rn and connection O = d+α we have
R(O) = dα+ α · α.

Problem 7.2. Show that the curvature form R = R(O) can be computed as follows:
R(ξ, η) = [Oξ,Oη]− O[ξ,η] for vector fields ξ, η.

Problem 7.3. Explain how to compute connection in bundles obtained by tensor con-
structions.

Problem 7.4. Show that the operation of taking the curvature of the connection is
compatible with induction of vector bundles and connections.

Problem 7.5. Prove the Bianchi identity O(R(O)) = 0.

V. Characteristic classes.

8. Let E be a vector bundle on M , O a connection on E and R = R(O) ∈ Ω2(End(E))
the corresponding curvature form.
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Given a homogeneous polynomialQ of degree k onMat(n,R) that is conjugation invariant
describe the form cQ = cQ(R) ∈ Ω2k(M) that evaluates the polynomial Q on the form R.

Problem 8.1. (i) Show that the form cQ(R) is closed.

(ii) Show that if O′ is another connection and R′ = R(O′) then the forms R,R′ are
homologous.

Thus we see that the form cQ(R) defines a DeRham cohomology class in H2k(M) and
this class depends just on the vector bundle E and does not depend on the specific choice
of the connection.

This class is called the characteristic class of the bundle E corresponding to a polyno-
mial Q.

VI. Affine connections.

9. Consider the case when E = T (M) - the tangent bundle of M . A connection O on
this bundle is called an affine connection. It defines connections on all bundles obtained
from T (M) by tensor constructions.

Let us denote by σ the canonical 1-form σ ∈ Ω1(M,E) that is defined in this case.
Given an affine connection O we define its torsion form T (O) ∈ Ω2(E) by T (O) := O(σ).
We say that an affine connection is torsion free if its torsion form is 0.

Problem 9. Let O be a torsion free affine connection and R its curvature. Show that
the 3-form R · σ ∈ Ω3(E) vanish.

VII. Levi-Civita connection.

10. Let M be a manifold and B a Riemannian metric on M . Show that there exists
unique affine connection O on M that satisfies

(i) O preserves the form B.
(ii) O is torsion free.

This canonical connection on the Riemannian manifold M is called Levi Civita con-
nection. This connection O and its curvature form R = R(O) play the central role in
Riemannian geometry.

Problem 10. Let M be a Riemannian manifold with Riemannian metric B. Let N ⊂M
be a submanifold.

Denote by T ′ the restriction of the tangent bundle T (M) to the submanifold N . This
bundle has a metric B′ and a connection O′ induced from Riemannian metric and Levi
Civita connection on the bundle T (M).

Consider the natural imbedding of vector bundles T (N) → T ′ and endow N with the
Riemannian structure given by the form BN obtained by restriction of the form B′.

Show that the Levi-Civita connection on the Riemannian manifold N is obtained by
projection of the connection O′ on the sub-bundle T (N) ⊂ T ′ (see problem 5.6).

Remark. This gives one of the ways to investigate Levi-Civita connections. Namely in
order to investigate the Levi Civita connection ON on a Riemannian manifold N we can
isometrically imbed N into an Euclidean space M = RN (maybe of high dimension) and
investigate ON as a projection of the standard affine connection OM on the Euclidean space.


