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I. Preparation about sequences. Consider the group F consisting of sequences of
rational numbers f = {f(i), i ∈ Z}. Let us introduce an equivalence relation on F by f ∼ h
if f(i) = h(i) for i� 0.

We say that a sequence f is eventually polynomial if there exists a polynomial P ∈
Q[t] such that f is equivalent to the sequence P (i). It is clear that such polynomial P is
uniquely defined.

Consider the difference operator 4 : F → F defined by 4(f)(i) = f(i+ 1)− f(i)

1. Let d be a natural number. Show that a sequence f ∈ F is eventually polynomial of
degree ≤ d iff 4d+1(f) ∼ 0; this is also equivalent to the condition that 4(f) is eventually
polynomial of degree ≤ d− 1.

II. Hilbert polynomial. Fix an arbitrary fieldK. Consider an algebraA = K[x1, ..., xn]
and introduce on it algebra filtration {Ak}, where Ak = {P ∈ A| deg P ≤ k}.

Let M be a finitely generated A-module. Fix a system of generators m1, ...,mr and
consider a filtration of M defined by Mk = Akm1 +Akm2 + ...+Akmr.

Our goal is to prove the following fundamental result due to Hilbert.

Theorem A. The sequence fM (i) = dimMi is eventually polynomial (here dimension
is over the field K).

It is convenient to formulate and prove slightly more general result.

Definition. (i) A filtration of M is a collection of finite dimensional subspaces Mk ⊂M
defined for all k ∈ Z that satisfies the following conditions.

(a) Mk ⊂Ml for k ≤ l, Mk = 0 for k � 0 and
⋃
Mk = M .

(b) AkMl ⊂Mk+l

(ii) Filtration {Mk} is called good filtration if it satisfies

(c) For large k we have A1 Mk = Mk+1.

Clearly the filtrations considered in Theorem A are good. So we will prove more general
result

Theorem B. Suppose {Mk} is a good filtration of an A-module M .

(i) For any A-submodule L ⊂ M consider the induced filtration on L defined by Lk =
L
⋂
Mk. Then it is a good filtration.

(ii) The sequence f(i) := dimMi is eventually polynomial.

Consider the graded algebra C = K[t0.t1, ..., tn]. Using the filtration {Mk} on M con-
struct a graded C-module N = M̂ ⊂M [t, t−1] by M̂k = Mkt

k, where t0 acts as multiplica-
tion by t and ti acts as a multiplication by txi for i = 1, ..., n.

2. Check that a filtration {Mk} is good iff the C-module M̂ is finitely generated.

For an A-submodule L ⊂ M consider the induced filtration {Lk}. Then L̂ is a D-
submodule of D-module M̂ . Hence Hilbert basis theorem implies (i).

It is clear that the theorem B follows from the following

Theorem C. Consider the algebra C = K[t0, t1, ..., tn] and define the grading C =
⊕
Ck

on it by condition deg(ti) = 1. Fix a graded C-module N =
⊕
Nk.

Suppose we know that C-module N is finitely generated. Then the sequence fN (i) :=
dimN i is eventually polynomial of degree ≤ n.

Proof. Consider the operator T : N → N of degree 1 given by multiplication by tn. Let
us denote by K and C its kernel and cokernel.

3. Check that fN (i+ 1)− fN (i) ≡ fC(i+ 1)− fK(i)

Now note that on the modules K and C the operator tn is zero, so they are finitely
generated modules over the algebra C ′ = K[t0, t1, ..., tn−1].

Using induction in n we can assume that the sequences fK and fC are eventually polyno-
mial of degree ≤ n− 1. But then it means that the sequence 4(f) is eventually polynomial
of degree ≤ n− 1 and hence f is eventually polynomial of degree ≤ n.
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Remarks. (i) Note that in fact we start our induction from the case n = −1, i.e. C = K.

(ii) The most non-trivial step in this proof is the fact that the C-module K is finitely
generated - this is Hilbert’s basis theorem.

III. Some problems about Hilbert polynomials.

4. Let O be a finitely generated K-algebra and M a finitely generated O-module.
Let us fix a system of generators x1, ..., xn ∈ O. Then M becomes a module over the

polynomial algebra A = K[x1, .., xn].
Let us choose a good filtration on M and consider the corresponding Hilbert polynomial

fM (i).

(i) Show that the degree d(M) of the polynomial fM and its first coefficient e(M) do not
depend on the choice of a good filtration on M .

(ii) Show that the degree d(M) does not depend on the choice of generators of the algebra
O.

We call this invariant d(M) the ”the functional dimension” of M .

5. (i) Show that if L is an O-submodule of M then d(M) = max(d(L), d(M/L)).

(ii) Let A be an endomorphism of an O-module M . Show that if A is injective then
d(M/AM) is strictly less then d(M) (we assume M 6= 0).

(iii) Suppose that we have a vector space M that is a module over two commutative
finitely generated algebras A and B. Let us assume that it is finitely generated over A and
also over B, so we can define two invariants dA(M) and dB(M).

Show that if the actions of A and B on the module M commute, then dA(M) = dB(M).

6. Let X be an affine algebraic variety, M a finitely generated O(X) -module. We define
the support of M to be the subset sup(M) ⊂ X defined by the ideal I = Ann(M) ⊂ O(X).

Show that d(M) equals dim sup(M).

7. Prove that the dimension function dimH(X) defined using Hilbert polynomial def-
inition has the following properties. Let π : X → Y be a morphism of affine algebraic
varieties

(i) Suppose that π is a finite morphism ( e.g. a closed embedding). Then dimH X ≤
dimH Y .

(ii) Suppose that π is a finite epimorphism. Then dimH X = dimH Y .

(iii) Suppose π is an imbedding of a basic open subset (i.e. X = Yf ). Then dimH X ≤
dimH Y

8. Show that Hilbert polynomial definition of dimension for algebraic varieties is equiv-
alent to Krull’s definition.

(*) 9. Using Hilbert polynomial definition of dimension prove directly the Principle
ideal theorem.

Let X be an irreducible affine algebraic variety, f ∈ O(X), Z = Z(f) the zero set of the
function f . Suppose that dimZ ≤ dimX − 2. Then Z is empty.
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