
Algebraic Geometry and Commutative Algebra

Problem assignment 5.

Joseph Bernstein April 4, 2011.

[P] 1. Let ν : X → Y be a morphism of algebraic varieties.

(i) Show that if ν is dominant, i.e. its image is dense in Y , then dimX ≥ dimY .

(ii) Show that if ν has finite fibers then dimX ≤ dimY .

(iii) Show that if ν has finite fibers then their cardinalities are bounded by some constant
Cν .

∇ 2. Let X be an affine algebraic variety. Fix a finite dimensional subspace V ⊂ P(X)
and consider the vector space D = V ⊕ V ⊕ ... ⊕ V (sum of d copies). Every point
d − (v1, ..., vd) ∈ D defines a morphism νd of the algebra B = k[y1, ..., yd] into P(X) by
νd(yi = vi.

(i) Consider the subset U ⊂ D of points d ∈ D such that the morphism νd is finite.
Show that this is an open subset. In particular if it is not empty then it is dense.

(ii) Let us define the dimension dimF (X) of an affine algebraic variety X to be the
minimal number d for which there exists a finite morphism ν : B = k[y1, ..., yd]→ P(X).

Using (i) show that this function satisfies the basic properties of dimension function:

(a) For open covering X =
⋃
Ui we have dimX = max dimUi

(b) For finite epimorphism ν : X → Y we have dimX = dimY .
(c) dim Ad = d

[P] 3. (i) Let us consider subset Mr(m,n) of the space of m× n matrices consisting of
all matrices of rank r. Show that this is an algebraic variety and compute its dimension.

(ii) Compute dimension of the Grassmannian manifold Grk(V ) -variety of k-dimensional
subspaces of V , where dimV = n.

(iii) Compute dimension of the set of all quadratic hypersurfaces in P6.

[P] 4. (i) Let X ⊂ P6 be a closed surface (i.e. 2-dimensional subvariety). Let us denote
by LX the set of all lines P1 ⊂ P6 intersecting X.

Show that LX is a closed algebraic subvariety of the space L(P6) of all lines in P6 and
compute its dimension.

(ii) Let X,Y, Z be three closed surfaces in P6. We are looking for lines l ⊂ P6 that
intersect all three of them. Show that if there exists such a line then there are infinitely
many such lines.

Definition. A function u on a topological space X is called constructible if it takes
finite number of values and every level set of it is constructible.

The general ideology of algebraic geometry is that if u is a function on an algebraic vari-
ety X with integer values which is ”algebraically defined”, then it is always constructible.

Let X be a variety over a base S, i.e. it is given together with a morphism pX : X → S
of algebraic varieties. We interpret S as a base and consider the family of varieties Xs :=
(pX)−1(s) for s ∈ S as an ”algebraic family of varieties” parameterized by points of S.

Similarly, given two varieties X,Y over S and a morphism ν : X → Y over S (for-
mulate precisely what it means) we get an ”algebraic family of morphisms νs : Xs → Ys
parameterized by points of the base S.

We would like to consider natural functions and properties depending on points of s ∈ S
which describe some algebraic properties of varieties Xs and morphisms νs.

[P] 5. (i) Consider the function u(s) := dimXs. Show that u is a constructible function
on S.

(*) (iii) Show that if ν has finite fibers then the function u(s) = ](Xs) is constructible.
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[P] (*) 6. Consider the situation in problem 5 and assume for simplicity that S,X, Y
are affine. Given some property P of morphisms of algebraic varieties let us consider the
subset SP ⊂ S consisting of points s such that the morphism νs satisfies P.

Show that the subsets SP are constructible for the following properties:

(i) imbedding (ii) closed imbedding
(iii) epimorphism (iv) dominant morphism
(v) finite morphism (vi) morphism with finite fibers

∇ (*) (*) 7. In problem 5 consider the function c on the base S defined as follows
c(s) := number of irredicible components of Xs.

Show that this function is constructible (I do not know how to prove this though this
is definitely correct).

[P] ∇ 8. (CA) Let A be a ring (commutative with 1). Denote by Spec(A) the set of
its prime ideals.

(i) Introduce the Zariski topology on Spec(A).

(ii) Show that the intersection of all prime ideals equals to the Nil radical of A.

(iii) Suppose we know that the ring A is Noetherian.
Show that A has a finite number of minimal prime ideals and that every prime ideal

of A contains some minimal prime ideal. In particular, show that the intersection of the
minimal prime ideals of A equals to the Nil radical of A.

Hint. Show that Spec(A) is a Noetherian topological space and study its irreducible
components.


