Problem assignment 4.

Functions of Complex variables, II
Joseph Bernstein March 24, 2011.

1.. Let f be a continuous function on the closed disc D of radius R holomorphic on D.
We assume that f is not zero at 0 and at all points of the boundary circle S = 9D. Let
I (f) := Avslog(|f(2)]) and Io(f) := log(|f(0)]).

Prove Jensen formula. I;(f) — I(f) = 3, log(£),

where the sum is taken over all the zeroes of f inside D (with multiplicities).

Hint. Can assume R = 1. Show that functionals 7, Iy and sum over zeroes are multiplica-
tive (i.e. I(fh) = I(f)+ I(h)). Show that the formula holds for the case when there are no
zeroes, since in this case the function log(|f(z)|) is harmonic. Show that if a € D then the
formula holds for the function f, defined by fu(2) = == = 2z =% since |f,(2)| = 1 on the
unit circle. Show that any f can be written as a product of functions f, and a function without
zeroes.

Let R be a sequence of non-negative numbers r; < ro < ... going to co. We define a counting
function N = Nz by N(x) = number of terms r; that are < z.

Given a number p > 0 we say that the sequence (r;) has growth < p if one of two equivalent
conditions hold

(i) For any A > p we have N(z) < C(\) z* for large z.

(ii) For any X > p the sum 3.7, * is convergent (here we sum only terms with 7; # 0).

If Z is a discrete subset of C (with finite multiplicities) we order elements of Z so that
r; = |z;| increase and define the growth of Z to be infimum of all numbers p such that the
sequence 1; has growth < p.

[P] 2. Check that conditions (i), (ii) above are equivalent.

Definition. Fix a number p > 0. Let f be a non-zero entire function. We say that f is of
order < p if for any A > p we have an estimate log(|f(2)|) < C|z|* for large |z|.

[P] 3. Let f be a non-zero entire function of order < p. Using Jensen formula how that the
set Z of its zeroes has growth < p.

Fix a number p > 0. We fix natural number k so that £ — 1 < p < k. We will also usually
fix a number A such that k — 1 < p < A < k.
We would like to give estimates for Weierstrass products.

Consider holomorphic function

Ep(w) = (1 —w)exp(w +w?/2 + ... + wk=1/(k — 1))

and denote by gi(w) the real valued function gx(w) := log | Ex(w)|.
4. Prove the following bounds

(i) Estimate near 0

(©)  |Bpw) — 1] < Cluf if o] < 1/2

(ii) Global upper bound.

(Up)  gr(w) < C Jw]?

(iii) (Absolute value bounds)

Let t < 1/2 be a positive number. Consider discs Dq,o D D; centered at 1 of radiuses 1/2
and t.

Then we have the following bounds
(A1) |gr(w)| < Clw|* if w is outside Dy /s.
(A2)  |gr(w)| < C + |log(t)| for w inside D, /o but outside D;.

Let Z = (z;) be a discrete subset of C of growth < p. For simplicity we assume that Z does
not contain 0. Consider the Weierstrass product

f(2) = [1 Ex(2/z) and set g(2) = log|f(2)] = 22 gr(z/z).



[P] 5. Prove the following upper bound estimates

(i) The product absolutely converges everywhere

(i) g(2) < CJz*

[P] 6. Set t; = r; * . Consider the domain U equal to the union of discs D; = zi - Dy, =
{z| z/z; € Dy, }.

Show that outside U for large |z| we have an estimate |g(z)| < C|z|**¢

Hint. Summing absolute value bounds we get that for every z with |z| = R the value g(z)
can be written as a sum of two terms ¢’ and ¢”, where ¢’ is sum of terms gx(z/z;) when the
point w; = z/z; does not lie in disc D, /2 around point 1 and g" is the sum of terms when w;
lies in disc Dy /5.

Note that in first case (A1) gives us a bound |gx(w;)| < Clw;|* so we have a bound |¢/| <
Cla* 3o fzil =

In the second sum we have only finite number of summands and the corresponding points
2z; satisfy |z;| < 2R. This implies that there are < CR* terms in this sum; according to
estimate(A2) every term is bounded by C'log R < CR®.

7. Show that if we consider the projection p : C — R given by z — |z| then the image of
the domain U has measure < C. In particular for every radius R we can find a radius R’ not
far from R such that the circle Sgs of radius R’ around 0 does not intersect U.

[P] 8. Let ¢ be an entire function of order < p. We assume that ¢(0) # 0. Let Z = (z;)
denote its set of zeroes Z = Z(¢).

(i) Show that the growth of the set Z is bounded by p.

(ii) Using the set Z and k as above consider Weierstrass product f(z) =[] Ex(z/%).

Show that ¢(z) = f(z) exp(P(z)), where P is a polynomial function of degree < p.

(1;1) Consider an ”exceptional” set U = |J D;, where D; is a disc centered at z; of radius
|Shovv that outside of the set U we have a bound |¢(z)| > exp(—C|z|**¢).

(iv) Show that the exceptional set U is small, namely that the projection of the set U to R
has finite measure.

Remark. This holds for any A > p and € > 0.
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[P] 9. Fix a number p > 0. Let E = E,, denote the space of all entire functions f of order
< p. Show that this is an algebra without zero divisors.

We denote by K = K, the field of meromorphic functions generated by this algebra. If a
meromorphic function f lies in K, we say that f has order < p.

(i) Describe explicitly the multiplicative group E* of invertible elements in the algebra E.

(ii) Describe explicitly the quotient group K*/E*.

(iii) Let f be a non-zero meromorphic function. We would like to know whether it is of
order < p. Denote by Z and P sets of zeroes and poles of the function f.

Show that f lies in K, iff it satisfies the following conditions

(*) Set P has growth < p.

(**) For any p > X\ > p consider exceptional set U equal to the union of discs D, centered
at points ¢ € P, where radius of D, equals min(1, |¢|=*). Then outside of U we have a bound

[/ (2)] < exp(C (1 +[2])").



