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1.. Let f be a continuous function on the closed disc D̄ of radius R holomorphic on D.
We assume that f is not zero at 0 and at all points of the boundary circle S = ∂D. Let
I1(f) := AvS log(|f(z)|) and I0(f) := log(|f(0)|).

Prove Jensen formula. I1(f)− I0(f) =
∑
a log(Ra ),

where the sum is taken over all the zeroes of f inside D (with multiplicities).
Hint. Can assume R = 1. Show that functionals I1, I0 and sum over zeroes are multiplica-

tive (i.e. I(fh) ≡ I(f) + I(h)). Show that the formula holds for the case when there are no
zeroes, since in this case the function log(|f(z)|) is harmonic. Show that if a ∈ D then the
formula holds for the function fa defined by fa(z) = z−a

1−āz = z z−a
z−1−ā since |fa(z)| ≡ 1 on the

unit circle. Show that any f can be written as a product of functions fa and a function without
zeroes.

Let R be a sequence of non-negative numbers r1 ≤ r2 ≤ ... going to∞. We define a counting
function N = NR by N(x) = number of terms ri that are ≤ x.

Given a number ρ ≥ 0 we say that the sequence (ri) has growth ≤ ρ if one of two equivalent
conditions hold

(i) For any λ > ρ we have N(x) ≤ C(λ) xλ for large x.
(ii) For any λ > ρ the sum

∑
r−λi is convergent (here we sum only terms with ri 6= 0).

If Z is a discrete subset of C (with finite multiplicities) we order elements of Z so that
ri = |zi| increase and define the growth of Z to be infimum of all numbers ρ such that the
sequence ri has growth ≤ ρ.

[P] 2. Check that conditions (i), (ii) above are equivalent.

Definition. Fix a number ρ ≥ 0. Let f be a non-zero entire function. We say that f is of
order ≤ ρ if for any λ > ρ we have an estimate log(|f(z)|) ≤ C|z|λ for large |z|.

[P] 3. Let f be a non-zero entire function of order ≤ ρ. Using Jensen formula how that the
set Z of its zeroes has growth ≤ ρ.

Fix a number ρ ≥ 0. We fix natural number k so that k − 1 ≤ ρ < k. We will also usually
fix a number λ such that k − 1 ≤ ρ < λ < k.

We would like to give estimates for Weierstrass products.

Consider holomorphic function
Ek(w) = (1− w) exp(w + w2/2 + ...+ wk−1/(k − 1))
and denote by gk(w) the real valued function gk(w) := log |Ek(w)|.
4. Prove the following bounds
(i) Estimate near 0
(C) |Ek(w)− 1| ≤ C|w|λ if |w| < 1/2

(ii) Global upper bound.
(Up) gk(w) ≤ Ck |w|λ

(iii) (Absolute value bounds)
Let t < 1/2 be a positive number. Consider discs D1/2 ⊃ Dt centered at 1 of radiuses 1/2

and t.
Then we have the following bounds

(A1) |gk(w)| ≤ C|w|λ if w is outside D1/2.
(A2) |gk(w)| ≤ C + | log(t)| for w inside D1/2 but outside Dt.

Let Z = (zi) be a discrete subset of C of growth ≤ ρ. For simplicity we assume that Z does
not contain 0. Consider the Weierstrass product

f(z) =
∏
Ek(z/zi) and set g(z) = log |f(z)| =

∑
gk(z/zi).



[P] 5. Prove the following upper bound estimates

(i) The product absolutely converges everywhere

(ii) g(z) ≤ C|z|λ

[P] 6. Set ti = r−λ−1
i . Consider the domain U equal to the union of discs Di = zi ·Dti =

{z| z/zi ∈ Dti}.
Show that outside U for large |z| we have an estimate |g(z)| ≤ C|z|λ+ε

Hint. Summing absolute value bounds we get that for every z with |z| = R the value g(z)
can be written as a sum of two terms g′ and g′′, where g′ is sum of terms gk(z/zi) when the
point wi = z/zi does not lie in disc D1/2 around point 1 and g′′ is the sum of terms when wi
lies in disc D1/2.

Note that in first case (A1) gives us a bound |gk(wi)| ≤ C|wi|λ so we have a bound |g′| ≤
C|z|λ

∑
|zi|−λ.

In the second sum we have only finite number of summands and the corresponding points
zi satisfy |zi| ≤ 2R. This implies that there are ≤ CRλ terms in this sum; according to
estimate(A2) every term is bounded by C logR < CRε.

7. Show that if we consider the projection p : C → R given by z 7→ |z| then the image of
the domain U has measure ≤ C. In particular for every radius R we can find a radius R′ not
far from R such that the circle SR′ of radius R′ around 0 does not intersect U .

[P] 8. Let φ be an entire function of order ≤ ρ. We assume that φ(0) 6= 0. Let Z = (zi)
denote its set of zeroes Z = Z(φ).

(i) Show that the growth of the set Z is bounded by ρ.

(ii) Using the set Z and k as above consider Weierstrass product f(z) =
∏
Ek(z/zi).

Show that φ(z) = f(z) exp(P (z)), where P is a polynomial function of degree ≤ ρ.

(iii) Consider an ”exceptional” set U =
⋃
Di, where Di is a disc centered at zi of radius

|zi|−λ.
Show that outside of the set U we have a bound |φ(z)| ≥ exp(−C|z|λ+ε).

(iv) Show that the exceptional set U is small, namely that the projection of the set U to R
has finite measure.

Remark. This holds for any λ > ρ and ε > 0.

[P] 9. Fix a number ρ ≥ 0. Let E = Eρ denote the space of all entire functions f of order
≤ ρ. Show that this is an algebra without zero divisors.

We denote by K = Kρ the field of meromorphic functions generated by this algebra. If a
meromorphic function f lies in Kρ we say that f has order ≤ ρ.

(i) Describe explicitly the multiplicative group E∗ of invertible elements in the algebra E.

(ii) Describe explicitly the quotient group K∗/E∗.

(iii) Let f be a non-zero meromorphic function. We would like to know whether it is of
order ≤ ρ. Denote by Z and P sets of zeroes and poles of the function f .

Show that f lies in Kρ iff it satisfies the following conditions

(*) Set P has growth ≤ ρ.
(**) For any µ > λ > ρ consider exceptional set U equal to the union of discs Dq centered

at points q ∈ P , where radius of Dq equals min(1, |q|−λ). Then outside of U we have a bound
|f(z)| ≤ exp(C (1 + |z|)µ).


