Problem assignment 10.

Algebraic Geometry and Commutative Algebra

Joseph Bernstein

November 23, 2011.

[P] 1. Let X be an irreducible separated algebraic variety, K = k(X) its field of rational functions.

For every point $x \in X$ consider the local algebra $\mathcal{O}_{x,X}$ as a subalgebra of K. Show that for different points $x, y \in X$ these subalgebras are different.

2. (i) Show that any curve C is a quasi-projective variety, i.e. it can be realized as a subvariety of a projective space.

Hint. Use Chow's lemma.

(ii) Show that a smooth curve C can be realized as subvariety of \mathbf{P}^3 .

(iii) Construct a curve C that can not be realized as a subvariety of \mathbf{P}^{1000}

3. Let C be a smooth curve, F a coherent sheaf on C.

(i) Show that if F does not have torsion then it is locally free.

(ii) Suppose in addition C is affine and $f \in \mathcal{O}(C)$ a nonzero function. Explain how to compute $\dim F(C)/fF(C)$.

4. Let $p: C \to D$ be a dominant morphism of smooth projective curves. For a given point $d \in D$ set $n(d) := \sum_{c \in p^{-1}(d)} mult_c(p)$.

Show that n(d) does not depend on d. This number n is called the **degree** of morphism p. Show that degree of p coincides with the degree of the field extension [k(C) : k(D)].

In what follows we fix a smooth projective curve C. We denote by Div(C) the free abelian group generated by points of C. An element $D = \sum_{a \in C} n_a \cdot a$ is called a **divisor** on C. The number $degD = \sum n_a$ is called the **degree** of the divisor D.

Denote by K the field k(C) of rational functions on C. For every function $f \in K^*$ we construct a divisor $div(f) := \sum_{a \in C} deg_a(f) \cdot a$

5. Check the following facts

(i) The map $deg: Div(C) \to \mathbf{Z}$ is a group homomorphism. It is epimorphism and we denote its kernel by $Div^0(C)$.

(ii) The map $div: K^* \to Div(C)$ is a group homomorphism. Its kernel is the subgroup k^* .

The image of this morphism is called the group of principle divisors (notation PrinDiv(C)) (iii) $deg(div(f)) \equiv 0$. In other words $PrinDiv(C) \subset Div^0(C)$

Important invariant that we are going to study is the **Picard group** Pic(C) defined by Pic(C) := Div(C)/PrinDiv(C).

We also consider its subgroup $Pic^0(C) := Div^0(C)/PrinDiv(C)$.

Definition. (i) We say that a divisor $D = \sum n_a a$ is effective (or positive) if all coefficients n_a are non-negative. If D, D' are two divisors then the notation $D' \ge D$ means that the divisor D' - D is effective.

(ii) We say that divisors D, D' are equivalent (notation $D' \sim D$) if D' - D is a principle divisor.

Definition. Given a divisor D we denote by L(D) the vector space consisting from functions $f \in K^*$ such that $div(f) + D \ge 0$ and the zero function. We set $l(D) := \dim L(D)$

Show that L(D) is indeed a k-vector subspace in K.

[P] 6. Show the following facts

(i) If $D' \sim D$ then degD' = degD and l(D') = l(D)

(ii) l(D) > 0 iff D is equivalent to an effective divisor.

(iii) For any point $a \in C$ and any divisor D we have $l(D) \leq l(D+a) \leq l(D) + 1$.

(iv) If l(D) > 0 then for almost every point $a \in C$ we have l(D - a) = l(D) - 1.

The fundamental problem: given a divisor D find good estimates for the number l(D).

7. Upper bound. Proposition. Let D be a divisor. Show that if degD < 0 then l(D) = 0. If $degD \ge -1$ then $l(D) \le degD + 1$

Definition. For any divisor D we set def(D) = degD + 1 - l(D) (we call this **defect** of D).

8. Lower bound. Theorem. Show that def(D) is bounded above by some universal constant A that depends only on the curve C. Minimal such constant g = g(C) is called the **genus** of the curve C; show that $g(C) \ge 0$.

Hint. (i) Show that the function def(D) depends only on equivalence class of D and is increasing, i.e. if $D' \ge D$ then $def(D') \ge def(D)$.

(ii) Show that there exists a family of divisors $D_k, k \in \mathbb{Z}_+$, such that degrees of D_k tend to ∞ and defects of D_k are bounded by some constant A.

(iii) Given a divisor D show that for large k we have $l(D_k - D) > 0$. From this deduce that $def(D) \leq A$.

Definition. Important role in what follows plays a function

$$\begin{split} h(D) &:= g - \operatorname{def}(D) = l(D) + g - 1 - \operatorname{deg} D \quad (\text{equivalently } l(D) - h(D) = \operatorname{deg} D + 1 - g). \\ \text{By definition } h(D) &\geq 0 \text{ for all } D \text{ and there exists a divisor } D_{\min} \text{ such that } h(D_{\min}) = 0. \end{split}$$

[P] 9. (i) Show that the function h(D) depends only on equivalence class of D and is decreasing. More precisely, for any point $a \in C$ we have $h(D) \ge h(D+a) \ge h(D) - 1$.

(ii) Show that there exists a divisor D_0 of degree g - 1 such that $h(D_0) = 0$.

(iii) Let D be a divisor of degree > 2g - 2. Show that h(D) = 0. Compute l(D).

Hint. Use the fact that any divisor B of degree $\geq g$ is equivalent to an effective divisor.

[P] 10. Let $a \in C$ be an arbitrary point. Consider the following system of divisors $D_k = k \cdot a$, $k \in \mathbb{Z}_+$. We say that the number k is a **gap** for the point a if $l(D_{k-1}) = l(D_k)$.

(i) Show that there exists a finite number of gaps for the point a. How many ?

(ii) Show that if we remove from the curve C the point a then the resulting curve C_a is affine.