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1. Fix an abelian group A.

(i) Show that a function f on A is polynomial of degree ≤ d iff for any lattice (i.e. group
isomorphic to Zn for some n) L and any morphism ν : L→ A the function ν∗(f) on L is polynomial
in the usual sense.

(ii) Fix d ≥ 0. Given a function f ∈ Pol≤d(A) we construct a function R = Rf in d variables
ai ∈ A via R(a1, a2, ..., ad) = ∆a1 ◦ ∆a2 ◦ ... ◦ ∆ad

(f) (this makes sense since this function is
constant).

Show that the function Rf is a multilinear symmetric function.

(iii) Let us consider the function Q(x) on A defined by Q(x) = R(x, x, ..., x) (the diagonal part
of R). Show that the function h(x) := d!f(x)−Q(x) lies in F d−1(A).

Remarks. (a) The function Q is a homogeneous polynomial functions on A and the form R is
its polarization.

(b) The problem 1(iii) provides a useful computational tool for computing the function Q in
terms of f . Namely Q(x) = d! limk→∞(f(kx)/kd).

II. Intersection theory on a smooth surface.

We will be interested in the following situation. We fix a smooth connected projective surface
S (i.e. variety of dimension 2) and set A = Pic(S). We consider the function χ on A given by
χ(L) = Euler characteristic of L.

This is a quadratic function. We denote by B the corresponding symmetric bilinear form and
by Q the corresponding quadratic form.

We denote by Div(S) the abelian group of divisors of S. To every divisor E ⊂ S we associate
an invertible OS module L = O(E) ∈ Pic(S). This defines a projection p : Div(S)→ Pic(S) that
identifies the group Pic(S) with the quotient group Div(S)/PrinDiv. We would like to show that
the intersection theory of smooth divisors can be carefully described in term the form B on Pic(S)
described above.

2. (i) Let E be a smooth divisor on S and L invertible O-module. Show that B(L,O(E)) =
degL|E .

(ii) Let E,F be two smooth divisors on S. Suppose they intersect transversally. Show that the
number of intersection points < E,F > equals to B(O(E),O(F )).

Remark. In fact this is true even if the divisors E and F are not smooth provided that they
are smooth and transversal at all intersection points.

More generally, if E,F are two divisors that have finite intersection we can define the local mul-
tiplicities of intersection points like in Bezout theorem; in this case the sum of these multiplicities
equals B(O(E),O(F )).

3. Let E ⊂ S be a smooth divisor, L = O(E) ∈ Pic(S). Show that Q(L) = degNC(S), where
NC(S) is the normal bundle of C in S.

Hint. Solution 1. Show that the invertible O-module O(E)|E is isomorphic to NC(S).
Hint. Solution 2. Show that OS-module L⊗k is glued from O-module O and OS modules

i∗(N
j) for j = 1, ..., k , where i : E → S is the imbedding and N j are tensor powers of the normal

bundle N = NE on the curve E. Estimate Euler characteristics of all these sheaves up to constant
in terms of degrees of these tensor powers.

Definition. Let B(x, y) be a symmetric bilinear form on the group A with values in Z. We
denote by Q = QB the corresponding quadratic function Q(x) := B(x, x).

We say that the form B is positive if for all x ∈ A we have B(x, x) ≥ 0; we say that B is negative
if the form −B is positive.

One of the basic highly non-trivial results that underscores the intersection theory on S is the
following
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Hodge Index Theorem Fix a very ample bundle H ∈ Pic(S). Then B(H,H) > 0 and the
form B is negative on the orthogonal complement to H in Pic(S)

We will prove this statement later. Here we will prove it in the following special case.

Theory of correspondences.

Let us fix two smooth projective curves C and D and consider the surface S = C × D. Set
A = Pic(S) and consider the function χ on the group A = Pic(S), bilinear form B and quadratic
form Q on the group A defined above.

Fix a point c ∈ C and denote by h an element in A corresponding to the divisor c×D (horizontal
fiber). Similarly fix a point d ∈ D and denote by v the vertical fiber.

We would outline the proof of the following

Theorem. Let A′ denote the orthogonal complement of v is A. Then the restriction of the
bilinear form B to the subgroup A′ is negative.

In order to prove this claim it is enough to check the following

Proposition. Consider the function f = ∆v(χ) on the group A and denote by H the set of
zeroes of f (this is a ” hyperplane” parallel to A′). Then for any L ∈ H we have χ(L) ≤ 0.

4. (i) Check that B(v, v) = B(h, h) = 0 and B(h, v) = 1.
(ii) Check that for any L ∈ Pic(S) we have f(L) = χ(L|v) (restriction of L to the vertical fiber).
(iii) Check that H is parallel to A′ and show that the proposition implies the Theorem.

Step 1. Show that we can assume that for the restriction Lv of the module L to the vertical
fiber satisfies
l(Lv) = h(lv) = 0

Hint. Show that there exists an invertible O-module M on C such that l(M) = h(M) = 0.
Then

consider OC- module M ′ = M ⊗ (L|v)−1 and show that we can replace L by L′ = L⊗ pr∗(M ′)
since χ(L) = χ(L′).

The equality of Euler characteristics follows from the fact that the O-module M ′ has degree 0
and hence can be included in a connected flat family of O-modules on C that contains the trivial
module OC .

Step 2. Consider the projection p : S → D.
(i) Check that Rip∗(L) = 0 for i > 1 and that R1p∗(L) has fiber 0 at the point d.
In particular R1p∗(L) is a torsion sheaf equal to 0 in some neighborhood U of d.
(ii) Check that p∗(L) = R0p∗(L) has fiber 0 at d. Deduce from this that it is equal to 0 on C.

Step 3. Using the fact that R0p∗(L) = 0 and R1p∗(L) is a torsion sheaf and hence has only
cohomologies in degree 0 deduce that Hi(S,L) = 0 when i 6= 1. This shows that χ(L) ≤ 0, QED.

5. Show that if L ∈ H and χ(L) = 0 then in fact L lies in Pic(C) · Pic(D) ⊂ Pic(S).


