Problem assignment 4.

Algebra B3 - Commutative Algebra
Joseph Bernstein
November 22, 2012.
In problems we fix an algebraically closed field k. You can use NSS (Nullstellensatz) in solutions of the problems, but please specify when you use NSS.

1. Let V be a linear space over k and $T: V \rightarrow V$ its endomorphism. Let us assume that the field k is uncountable and that $\operatorname{dim}_{k}(V)$ is countable.
(i) Show that if $V \neq 0$ then the operator T has non-empty spectrum $S p(T)$ (here $\operatorname{sp}(T)=\{a \in A \mid$ operator $T-a$ is not invertible $\}$).
$[\mathbf{P}]$ (ii) Show that $S p(T)=0$ iff the operator T is locally nilpotent.
2. Let (X, \mathcal{P}) be an affine algebraic variety. Given a function $f \in \mathcal{P}$ we denote by X_{f} the basic open subset $X_{f}:=\{x \in X \mid f(x) \neq 0\}$.
[$\mathbf{P}]$ (i) Consider the algebra B of functions on X_{f} generated by restrictions of functions in \mathcal{P} to X_{f} and by the function $1 / f$. Show that this algebra is isomorphic to the algebra \mathcal{P}_{f} and that $\left(X_{f}, \mathcal{P}_{f}\right)$ is an affine algebraic variety.
(ii) Let U be an open subset of X. Define the notion of a regular function on U. We denote the algebra of regular functions on U by $\mathcal{O}(U)$. Prove the following

Statement (Serre's lemma). Every regular function on an affine algebraic variety X is polynomial.
[$\mathbf{P}]$ (iii) Using Serre's lemma compute the algebras of regular functions for the following open subsets of $X=\mathbf{A}^{n}$
$U=X ; U=X \backslash H_{i}$, where $H_{i}=V\left(x_{i}\right) ; U=X \backslash \bigcup H_{i} ; U=X \backslash 0$.
(iv) Let X be a quadratic cone in \mathbf{A}^{n} defined by a non-degenerate quadratic form Q. Compute algebras of regular functions on X and on $U=X \backslash 0$.
3. Let K be an infinite field. Consider the algebra $C=C_{n}(K):=K\left[x_{1}, \ldots, x_{n}\right]$. Show that it can be interpreted as the algebra of polynomial functions on the affine space $\mathbf{A}^{n}(K):=\left\{\left(a_{a}, \ldots, a_{n}\right) \mid a_{i} \in\right.$ $K\}$.
(i) Let $f \in C$ be a non-zero polynomial of degree d. Show that there exists a linear change of coordinates $y_{i}=\sum b_{i j} x_{j}$ such that in coordinates y the polynomial f is monic of degree d with respect to coordinate y_{n}.

Deduce that the algebra $C / C f$ is finite over the subalgebra $B=k\left[y_{1}, \ldots, y_{n-1}\right]$.
(ii) Prove Noether's Normalization Lemma.

Let M be a non-zero finitely generated \mathcal{P}_{n}-module. Then there exist a number d and a system of linear forms $y_{i}=\sum a_{i j} x_{j}, 1 \leq i \leq d$ such that
(α) module M is finitely generated over the algebra $B=K\left[y_{1}, \ldots, y_{d}\right]$
(β) Annihilator of M in B is 0 .
In fact given one such system show that almost every system of d linear forms y_{i} has these properties.
∇ Remarks. (i). Try to formulate and prove the analogue of Noether's Normalization Lemma for the case of a finite field K.
[P] (iii) Show that for an algebratcally closed field K Noether's Normalization lemma above implies Nullstellensatz.
∇ 4. Fix an infinite field K and consider the algebra $C=K\left[x_{1}, \ldots, x_{n}\right]$ for some $n>0$. Let M be a non-zero finitely generated C-module. Prove a version of the Nullstellensatz following the steps bellow.
((i) Show that there exists a non-zero polynomial $f \in C$ such that the quotient module $M / f M$ is non-zero.
(ii) Show that there exists a non-zero linear form $y=\sum a_{j} x_{j}$ that satisfies the following condition:
$(*)$ There exists a monic polynomial $Q \in K[t]$ such that the quotient module $M / Q(y) M$ is non-zero.
(iii) Show that any non-zero linear form y on \mathbf{A}^{n} satisfies the property $\left(^{*}\right)$ above.
(iv) Show that there exists an ideal $J \subset C$ of finite codimension such that the quotient module $N=M / J M$ is non-zero.
(v) Show that for any maximal ideal $\mathfrak{m} \subset C$ the quotient field $L=C / \mathfrak{m}$ is a finite extension of the field K.
(vi) Show that all these statements hold for the case of a finite field K.
5. Let A be a finitely generated k-algebra (k is algebraically closed). Consider the set $X=$ $M(A):=\operatorname{Mor}_{k-a l g}(A, k)$.

Show that we can identify X with the set of maximal ideals of A.
(i) Define Zariski topology on X. For every subset $Z \subset X$ consider the ideal $J_{Z} \subset A$ of functions that vanish on Z. For any ideal $J \subset A$ denote by $V(J)$ the set of common zeroes $a \in X$ of all elements of J. Show that

If Z is a subset of X then $V\left(J_{Z}\right)$ coincides with the closure of Z in Zariski topology.
If I is an ideal of A then the ideal $J_{V(I)}$ coincides with the radical of I.
[P] (ii) Let $\nu: B \rightarrow A$ be a finite morphism of finitely generated k-algebras. Show that the corresponding map of sets $\nu^{*}: M(A) \rightarrow M(B)$ is closed and has finite fibers.
∇ 6. Prove the following arithmetic version of Nullstellensatz
Theorem. Let A be a non-zero finitely generated Z-algebra. Then it has a morphism $\nu: A \rightarrow F$ where F is some finite field.

Definition. Let X be a topological space. The topological space X is called irreducible if it is not empty and it can not be written as a union of two proper closed subsets $F_{1}, F_{2} \varsubsetneqq X$

A subset $Z \subset X$ is called irreducible if it is irreducible in induced topology.
7. (i) Show that a non-empty space X is irreducible iff it satisfies the following condition:
(*) Every non-empty open subset $U \subset X$ is dense in X.
(ii) Show that a subset $Z \subset X$ is irreducible iff its closure is irreducible.
(iii) Let $\nu: X \rightarrow Y$ be a continuous map of topological spaces. Show that if a subset $Z \subset X$ is irreducible then its image $\nu(Z)$ is irreducible.
8. Let A be an algebra, $X=S p e c A$ its spectrum.

Define Zariski topology on X in terms of closed subsets V_{J} and in terms of basic open subsets X_{f}. Check that they give the same topology.
(i) Let $f \in A$. Show that the basic open subset X_{f} is empty iff f is nilpotent. Show that $X_{f}=X$ iff f is a unit.

More generally, show that $X_{f}=X_{h}$ iff $\operatorname{Rad}(f)=\operatorname{Rad}(h)$.
(ii) Show that there axists a natural order reversing bijection between radical ideals of A and closed substs of X. Show that under this bijection prime ideals bijectively correspond to closed irreducible subsets and maximal ideals bijectively correspond to closed points of X.

Deduce that a point x is contained in the closure of a point y iff $\mathfrak{p}_{x} \supset \mathfrak{p}_{y}$.
(iii) Show that if $x, y \in X$ are distinct points then there exists an open subset U that contains one of them but not another.
[$\mathbf{P}]$ (iv) Show that the space X is quasi-compact in Zariski topology.
Show that an open subset $U \subset X$ is quasi-compact iff it is a union of a finite number of basic open subsets.
$[\mathbf{P}]$ (v) Show that a closed subset $F \subset X$ is irreducible iff it is a closure of some point $x \in X$.

