Problem assignment 6.

Algebra B3 — Commutative Algebra
Joseph Bernstein December 12, 2012.

On the notion of Hilbert polynomial.

I. Preparation about sequences. Consider the group F' consisting of sequences
of integers f = {f(i)} for i € Z. Let us introduce an equivalence relation on F' by
f~hif f(i) = h(i) for i > 0.

We say that a sequence f is eventually polynomial if there exists a polynomial
P € Q[t] such that f is equivalent to the sequence P(i). It is clear that such
polynomial P is uniquely defined.

Consider the difference operator A : F' — F defined by A(f)(i) = f(i+1) — f(3)

1. Let d be a natural number. Show that a sequence f € F is eventually poly-
nomial of degree < d iff AY1(f) ~ 0; this is also equivalent to the condition that
A(f) is eventually polynomial of degree < d — 1.

I1. Hilbert polynomial. Fix an arbitrary field K. Consider an algebra A =
Klz1,...,xy] and introduce on it algebra filtration {Ax}, where Ay = {P €
Al deg P < k} (this is an increasing filtration).

Let M be a finitely generated A-module. Fix a system of generators myq, ..., m,
and consider a filtration of M defined by a system of subspaces My = Apmi +
Apmo + ...+ Apm,..

Our goal is to prove the following fundamental result due to Hilbert.

Theorem A. The sequence fy(i) = dimg M; is eventually polynomial.

It is convenient to formulate and prove slightly more general result.

Definition. (i) A filtration ® of M is a collection of finite dimensional subspaces
O, (M) = My, C M defined for all k € Z that satisfies the following conditions.

(a) My € M; for k <1, M, =0 for k < 0 and | My = M.

(b) AxgM; C My

(ii) Filtration ® is called a good filtration if it satisfies

(c) For large k we have Ay My = M.

Clearly the filtrations considered in Theorem A are good. So we will prove more
general result

Theorem B. Suppose ® = {M}} is a good filtration of an A-module M.

(i) For any A-submodule L C M consider the induced filtration ®;, on L defined
by Ly = L) M. Then it is a good filtration.

(ii) The sequence f(i) := dim M; is eventually polynomial.

Rees construction. Let us describe a construction, essentially due to Rees, that
allows to reduce many questions about filtered algebras and modules to questions
about graded algebras and modules.

Definition. Let C' be an algebra that we consider with trivial filtration. Given
a filtered C-module V' (with increasinig filtration ®) we define a graded C[t]-module
R(V) = Rg(V) to be a submodule of M[t,t~!] given by R(V) = @y Myt*.

Clearly if A is a filtered C-algebra then R(V) is a graded C|t]- algebra, if M is a
filtered A-module then R(M) is a graded R(A)-module.

[P] 2. Show that R(V)/tR(V) = gr(V).



3. Check that a filtration ® of the A-module M is good iff the R(A)-module
Ry (M) is finitely generated.

For an A-submodule L C M consider the induced filtration ®7. Then R(L) is a
R(A)-submodule of R(A)-module R(M). Hence Hilbert basis theorem implies (i).

Coming back to the proof of theorem B let us notice that in our case the algebra
R(A) is just a polynomial algebra C' = k[to,t1,...,t,], where all variables ¢; have
degree 1 (to corresponds to ¢ and t; corresponds to tx;).

It is clear that the theorem B follows from the following

Theorem C. Consider the algebra C' = Kltg,t1,...,t,] and define the grading
C = @ C* on it by condition deg(t;) = 1. Fix a graded C-module N = @ N*.

Suppose we know that C-module N is finitely generated. Then the sequence
fn (i) := dim N? is eventually polynomial of degree < n.

Proof. Consider the operator T': N — N of degree 1 given by multiplication by
t,. Let us denote by K and C' its kernel and cokernel.

4. Check that fN(Z + 1) — fN(Z) = fc(l + 1) — fK(l)
Now note that on the modules K and C the operator t,, is zero, so they are finitely
generated modules over the algebra C' = K|tg, t1, ..., tn—1].

Using induction in n we can assume that the sequences fx and fo are eventually
polynomial of degree < n—1. But then it means that the sequence A(f) is eventually
polynomial of degree < n — 1 and hence f is eventually polynomial of degree < n.

Remarks. (i) Note that in fact we can start our induction from the case n = —1,
ie. C=K.

(ii) The most non-trivial step in this proof is the fact that the C-module K is
finitely generated - this is Hilbert’s basis theorem.

III. Some problems about Hilbert polynomials.

[P] 5. Let O be a finitely generated K-algebra and M a finitely generated O-
module.

Let us fix a system of generators x1, ..., z, € O. Then M becomes a module over
the polynomial algebra A = K|z, .., x,).

Let us choose a good filtration on M and consider the corresponding Hilbert
polynomial fys (7).

(i) Show that the degree d(M) of the polynomial fj; and its first coefficient e(M)
do not depend on the choice of a good filtration on M.

(ii) Show that the degree d(M) does not depend on the choice of generators of
the algebra O.
We call this invariant d(M) the ”functional dimension” of M.

[P] 6. (i) Show that if L is an O-submodule of M then d(M) = max(d(L),d(M/L)).

(ii) Let T' be an endomorphism of an O-module M. Show that if T is injective
then d(M/TM) is strictly less then d(M) (we assume M # 0).
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(iii) Suppose that we have a vector space M that is a module over two commutative
finitely generated algebras A and B. Let us assume that it is finitely generated over
A and also over B, so we can define two invariants d4 (M) and dg(M).

Show that if the actions of A and B on the module M commute, then da(M) =
dp(M).

[P] 7. Let X be an affine algebraic variety, M a finitely generated O(X) -module.
We define the support of M to be the subset sup(M) C X defined by the ideal
I =Ann(M) C O(X).

Show that d(M) equals dimsup(M).

8. Prove that the dimension function dimg(X) defined using Hilbert polynomial
definition has the following properties. Let m : X — Y be a morphism of affine
algebraic varieties

(i) Suppose that 7 is a finite morphism ( e.g. a closed embedding). Then
dimH X < dimH Y.

(ii) Suppose that 7 is a finite epimorphism. Then dimy X = dimpy Y.

(iii) Suppose 7 is an imbedding of a basic open subset (i.e. X = Yy). Then

[P] 9. Show that Hilbert polynomial definition of dimension for algebraic varieties
is equivalent to Krull’s definition.

(*) 10. Using Hilbert polynomial definition of dimension prove directly the Prin-
ciple ideal theorem.

Let X be an irreducible affine algebraic variety, f € O(X), Z = Z(f) the zero set
of the function f. Suppose that dim Z < dim X — 2. Then Z is empty.



