Problem assignment 6.

Algebra B3 - Commutative Algebra
Joseph Bernstein
December 12, 2012.

On the notion of Hilbert polynomial.

I. Preparation about sequences. Consider the group F consisting of sequences of integers $f=\{f(i)\}$ for $i \in \mathbf{Z}$. Let us introduce an equivalence relation on F by $f \sim h$ if $f(i)=h(i)$ for $i \gg 0$.

We say that a sequence f is eventually polynomial if there exists a polynomial $P \in \mathbf{Q}[t]$ such that f is equivalent to the sequence $P(i)$. It is clear that such polynomial P is uniquely defined.

Consider the difference operator $\triangle: F \rightarrow F$ defined by $\triangle(f)(i)=f(i+1)-f(i)$

1. Let d be a natural number. Show that a sequence $f \in F$ is eventually polynomial of degree $\leq d$ iff $\triangle^{d+1}(f) \sim 0$; this is also equivalent to the condition that $\Delta(f)$ is eventually polynomial of degree $\leq d-1$.
II. Hilbert polynomial. Fix an arbitrary field K. Consider an algebra $A=$ $K\left[x_{1}, \ldots, x_{n}\right]$ and introduce on it algebra filtration $\left\{A_{k}\right\}$, where $A_{k}=\{P \in$ $A \mid \operatorname{deg} P \leq k\}$ (this is an increasing filtration).

Let M be a finitely generated A-module. Fix a system of generators m_{1}, \ldots, m_{r} and consider a filtration of M defined by a system of subspaces $M_{k}=A_{k} m_{1}+$ $A_{k} m_{2}+\ldots+A_{k} m_{r}$.

Our goal is to prove the following fundamental result due to Hilbert.
Theorem A. The sequence $f_{M}(i)=\operatorname{dim}_{K} M_{i}$ is eventually polynomial.
It is convenient to formulate and prove slightly more general result.
Definition. (i) A filtration Φ of M is a collection of finite dimensional subspaces $\Phi_{k}(M)=M_{k} \subset M$ defined for all $k \in \mathbf{Z}$ that satisfies the following conditions.
(a) $M_{k} \subset M_{l}$ for $k \leq l, M_{k}=0$ for $k \ll 0$ and $\bigcup M_{k}=M$.
(b) $A_{k} M_{l} \subset M_{k+l}$
(ii) Filtration Φ is called a good filtration if it satisfies
(c) For large k we have $A_{1} M_{k}=M_{k+1}$.

Clearly the filtrations considered in Theorem A are good. So we will prove more general result

Theorem B. Suppose $\Phi=\left\{M_{k}\right\}$ is a good filtration of an A-module M.
(i) For any A-submodule $L \subset M$ consider the induced filtration Φ_{L} on L defined by $L_{k}=L \bigcap M_{k}$. Then it is a good filtration.
(ii) The sequence $f(i):=\operatorname{dim} M_{i}$ is eventually polynomial.

Rees construction. Let us describe a construction, essentially due to Rees, that allows to reduce many questions about filtered algebras and modules to questions about graded algebras and modules.
Definition. Let C be an algebra that we consider with trivial filtration. Given a filtered C-module V (with increasing filtration Φ) we define a graded $C[t]$-module $R(V)=R_{\Phi}(V)$ to be a submodule of $M\left[t, t^{-1}\right]$ given by $R(V)=\oplus_{k} M_{k} t^{k}$.

Clearly if A is a filtered C-algebra then $R(V)$ is a graded $C[t]$ - algebra, if M is a filtered A-module then $R(M)$ is a graded $R(A)$-module.
$[\mathbf{P}]$ 2. Show that $R(V) / t R(V)=g r(V)$.
3. Check that a filtration Φ of the A-module M is good iff the $R(A)$-module $R_{\Phi}(M)$ is finitely generated.

For an A-submodule $L \subset M$ consider the induced filtration Φ_{L}. Then $R(L)$ is a $R(A)$-submodule of $R(A)$-module $R(M)$. Hence Hilbert basis theorem implies (i).

Coming back to the proof of theorem B let us notice that in our case the algebra $R(A)$ is just a polynomial algebra $C=k\left[t_{0}, t_{1}, \ldots, t_{n}\right]$, where all variables t_{i} have degree 1 (t_{0} corresponds to t and t_{i} corresponds to $\left.t x_{i}\right)$.

It is clear that the theorem B follows from the following
Theorem C. Consider the algebra $C=K\left[t_{0}, t_{1}, \ldots, t_{n}\right]$ and define the grading $C=\bigoplus C^{k}$ on it by condition $\operatorname{deg}\left(t_{i}\right)=1$. Fix a graded C-module $N=\bigoplus N^{k}$.

Suppose we know that C-module N is finitely generated. Then the sequence $f_{N}(i):=\operatorname{dim} N^{i}$ is eventually polynomial of degree $\leq n$.

Proof. Consider the operator $T: N \rightarrow N$ of degree 1 given by multiplication by t_{n}. Let us denote by K and C its kernel and cokernel.
4. Check that $f_{N}(i+1)-f_{N}(i) \equiv f_{C}(i+1)-f_{K}(i)$

Now note that on the modules K and C the operator t_{n} is zero, so they are finitely generated modules over the algebra $C^{\prime}=K\left[t_{0}, t_{1}, \ldots, t_{n-1}\right]$.

Using induction in n we can assume that the sequences f_{K} and f_{C} are eventually polynomial of degree $\leq n-1$. But then it means that the sequence $\triangle(f)$ is eventually polynomial of degree $\leq n-1$ and hence f is eventually polynomial of degree $\leq n$.

Remarks. (i) Note that in fact we can start our induction from the case $n=-1$, i.e. $C=K$.
(ii) The most non-trivial step in this proof is the fact that the C-module K is finitely generated - this is Hilbert's basis theorem.

III. Some problems about Hilbert polynomials.

[P] 5. Let \mathcal{O} be a finitely generated K-algebra and M a finitely generated \mathcal{O} module.

Let us fix a system of generators $x_{1}, \ldots, x_{n} \in \mathcal{O}$. Then M becomes a module over the polynomial algebra $A=K\left[x_{1}, . ., x_{n}\right]$.

Let us choose a good filtration on M and consider the corresponding Hilbert polynomial $f_{M}(i)$.
(i) Show that the degree $d(M)$ of the polynomial f_{M} and its first coefficient $e(M)$ do not depend on the choice of a good filtration on M.
(ii) Show that the degree $d(M)$ does not depend on the choice of generators of the algebra \mathcal{O}.

We call this invariant $d(M)$ the "functional dimension" of M.
[P] 6. (i) Show that if L is an \mathcal{O}-submodule of M then $d(M)=\max (d(L), d(M / L))$.
(ii) Let T be an endomorphism of an \mathcal{O}-module M. Show that if T is injective then $d(M / T M)$ is strictly less then $d(M)$ (we assume $M \neq 0$).
(iii) Suppose that we have a vector space M that is a module over two commutative finitely generated algebras A and B. Let us assume that it is finitely generated over A and also over B, so we can define two invariants $d_{A}(M)$ and $d_{B}(M)$.

Show that if the actions of A and B on the module M commute, then $d_{A}(M)=$ $d_{B}(M)$.
[P] 7. Let X be an affine algebraic variety, M a finitely generated $\mathcal{O}(X)$-module. We define the support of M to be the subset $\sup (M) \subset X$ defined by the ideal $I=\operatorname{Ann}(M) \subset \mathcal{O}(X)$.

Show that $d(M)$ equals $\operatorname{dim} \sup (M)$.
8. Prove that the dimension function $\operatorname{dim}_{H}(X)$ defined using Hilbert polynomial definition has the following properties. Let $\pi: X \rightarrow Y$ be a morphism of affine algebraic varieties
(i) Suppose that π is a finite morphism (e.g. a closed embedding). Then $\operatorname{dim}_{H} X \leq \operatorname{dim}_{H} Y$.
(ii) Suppose that π is a finite epimorphism. Then $\operatorname{dim}_{H} X=\operatorname{dim}_{H} Y$.
(iii) Suppose π is an imbedding of a basic open subset (i.e. $X=Y_{f}$). Then $\operatorname{dim}_{H} X \leq \operatorname{dim}_{H} Y$
[P] 9. Show that Hilbert polynomial definition of dimension for algebraic varieties is equivalent to Krull's definition.
${ }^{(*)}$ 10. Using Hilbert polynomial definition of dimension prove directly the Principle ideal theorem.

Let X be an irreducible affine algebraic variety, $f \in \mathcal{O}(X), Z=Z(f)$ the zero set of the function f. Suppose that $\operatorname{dim} Z \leq \operatorname{dim} X-2$. Then Z is empty.

