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On the notion of Hilbert polynomial.

I. Preparation about sequences. Consider the group F consisting of sequences
of integers f = {f(i)} for i ∈ Z. Let us introduce an equivalence relation on F by
f ∼ h if f(i) = h(i) for i ≫ 0.

We say that a sequence f is eventually polynomial if there exists a polynomial
P ∈ Q[t] such that f is equivalent to the sequence P (i). It is clear that such
polynomial P is uniquely defined.

Consider the difference operator △ : F → F defined by △(f)(i) = f(i+1)− f(i)

1. Let d be a natural number. Show that a sequence f ∈ F is eventually poly-
nomial of degree ≤ d iff △d+1(f) ∼ 0; this is also equivalent to the condition that
△(f) is eventually polynomial of degree ≤ d− 1.

II. Hilbert polynomial. Fix an arbitrary field K. Consider an algebra A =
K[x1, ..., xn] and introduce on it algebra filtration {Ak}, where Ak = {P ∈
A| deg P ≤ k} (this is an increasing filtration).

Let M be a finitely generated A-module. Fix a system of generators m1, ...,mr

and consider a filtration of M defined by a system of subspaces Mk = Akm1 +
Akm2 + ...+Akmr.

Our goal is to prove the following fundamental result due to Hilbert.

Theorem A. The sequence fM (i) = dimK Mi is eventually polynomial.

It is convenient to formulate and prove slightly more general result.

Definition. (i) A filtration Φ of M is a collection of finite dimensional subspaces
Φk(M) = Mk ⊂ M defined for all k ∈ Z that satisfies the following conditions.

(a) Mk ⊂ Ml for k ≤ l, Mk = 0 for k ≪ 0 and
∪

Mk = M .
(b) AkMl ⊂ Mk+l

(ii) Filtration Φ is called a good filtration if it satisfies

(c) For large k we have A1 Mk = Mk+1.

Clearly the filtrations considered in Theorem A are good. So we will prove more
general result

Theorem B. Suppose Φ = {Mk} is a good filtration of an A-module M .

(i) For any A-submodule L ⊂ M consider the induced filtration ΦL on L defined
by Lk = L

∩
Mk. Then it is a good filtration.

(ii) The sequence f(i) := dimMi is eventually polynomial.

Rees construction. Let us describe a construction, essentially due to Rees, that
allows to reduce many questions about filtered algebras and modules to questions
about graded algebras and modules.

Definition. Let C be an algebra that we consider with trivial filtration. Given
a filtered C-module V (with increasing filtration Φ) we define a graded C[t]-module
R(V ) = RΦ(V ) to be a submodule of M [t, t−1] given by R(V ) = ⊕kMkt

k.
Clearly if A is a filtered C-algebra then R(V ) is a graded C[t]- algebra, if M is a

filtered A-module then R(M) is a graded R(A)-module.

[P] 2. Show that R(V )/tR(V ) = gr(V ).
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3. Check that a filtration Φ of the A-module M is good iff the R(A)-module
RΦ(M) is finitely generated.

For an A-submodule L ⊂ M consider the induced filtration ΦL. Then R(L) is a
R(A)-submodule of R(A)-module R(M). Hence Hilbert basis theorem implies (i).

Coming back to the proof of theorem B let us notice that in our case the algebra
R(A) is just a polynomial algebra C = k[t0, t1, ..., tn], where all variables ti have
degree 1 (t0 corresponds to t and ti corresponds to txi).

It is clear that the theorem B follows from the following

Theorem C. Consider the algebra C = K[t0, t1, ..., tn] and define the grading
C =

⊕
Ck on it by condition deg(ti) = 1. Fix a graded C-module N =

⊕
Nk.

Suppose we know that C-module N is finitely generated. Then the sequence
fN (i) := dimN i is eventually polynomial of degree ≤ n.

Proof. Consider the operator T : N → N of degree 1 given by multiplication by
tn. Let us denote by K and C its kernel and cokernel.

4. Check that fN (i+ 1)− fN (i) ≡ fC(i+ 1)− fK(i)

Now note that on the modules K and C the operator tn is zero, so they are finitely
generated modules over the algebra C ′ = K[t0, t1, ..., tn−1].

Using induction in n we can assume that the sequences fK and fC are eventually
polynomial of degree ≤ n−1. But then it means that the sequence△(f) is eventually
polynomial of degree ≤ n− 1 and hence f is eventually polynomial of degree ≤ n.

Remarks. (i) Note that in fact we can start our induction from the case n = −1,
i.e. C = K.

(ii) The most non-trivial step in this proof is the fact that the C-module K is
finitely generated - this is Hilbert’s basis theorem.

III. Some problems about Hilbert polynomials.

[P] 5. Let O be a finitely generated K-algebra and M a finitely generated O-
module.

Let us fix a system of generators x1, ..., xn ∈ O. Then M becomes a module over
the polynomial algebra A = K[x1, .., xn].

Let us choose a good filtration on M and consider the corresponding Hilbert
polynomial fM (i).

(i) Show that the degree d(M) of the polynomial fM and its first coefficient e(M)
do not depend on the choice of a good filtration on M .

(ii) Show that the degree d(M) does not depend on the choice of generators of
the algebra O.

We call this invariant d(M) the ”functional dimension” of M .

[P] 6. (i) Show that if L is anO-submodule ofM then d(M) = max(d(L), d(M/L)).

(ii) Let T be an endomorphism of an O-module M . Show that if T is injective
then d(M/TM) is strictly less then d(M) (we assume M ̸= 0).
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(iii) Suppose that we have a vector spaceM that is a module over two commutative
finitely generated algebras A and B. Let us assume that it is finitely generated over
A and also over B, so we can define two invariants dA(M) and dB(M).

Show that if the actions of A and B on the module M commute, then dA(M) =
dB(M).

[P] 7. Let X be an affine algebraic variety, M a finitely generated O(X) -module.
We define the support of M to be the subset sup(M) ⊂ X defined by the ideal
I = Ann(M) ⊂ O(X).

Show that d(M) equals dim sup(M).

8. Prove that the dimension function dimH(X) defined using Hilbert polynomial
definition has the following properties. Let π : X → Y be a morphism of affine
algebraic varieties

(i) Suppose that π is a finite morphism ( e.g. a closed embedding). Then
dimH X ≤ dimH Y .

(ii) Suppose that π is a finite epimorphism. Then dimH X = dimH Y .

(iii) Suppose π is an imbedding of a basic open subset (i.e. X = Yf ). Then
dimH X ≤ dimH Y

[P] 9. Show that Hilbert polynomial definition of dimension for algebraic varieties
is equivalent to Krull’s definition.

(*) 10. Using Hilbert polynomial definition of dimension prove directly the Prin-
ciple ideal theorem.

Let X be an irreducible affine algebraic variety, f ∈ O(X), Z = Z(f) the zero set
of the function f . Suppose that dimZ ≤ dimX − 2. Then Z is empty.


