Problem assignment 7.

Algebra B3 – Commutative Algebra

December 19, 2012.

Joseph Bernstein

Jordan Hoelder Theory and length function.

Let D be an algebra and $\mathcal{A} = \mathcal{M}(D)$ the category of left D-modules.

Definition. A *D*-module *S* is called **simple** (or irreducible) if $S \neq 0$ and any submodule of *S* is either 0 or *S*.

1. Show that if S is simple then any nonzero morphism $\nu : M \to S$ is epimorphic and any nonzero morphism $\nu : S \to N$ is monomorphism.

We will consider filtrations of a *D*-module *M* by *D*-submodules; filtration *F* is a collection of submodules $0 = M_0 \subset M_1 \subset ... \subset M_l = M$. We will say that the filtration *F* is strict if all inclusions are strict.

If we have such filtration we say that the module M is glued from D-modules $Q_i = M_i/M_{i-1}$.

Note that the strict filtration F is maximal, i.e. it can not be included in a larger strict filtration, iff all the quotient modules Q_i are simple.

Remark. Note that Atiyah and MacDonalds work with decreasing filtrations – this leads to the same notions up to small change of notations; they call a strict filtration a **chain**; a maximal chain they call a **composition series.**

Definition. We say that a *D*-module *M* has **finite length** if it can be glued from a finite number of simple objects S_i , i = 1, ..., l. In other words *M* has a finite composition series.

Theorem (Jordan-Hoelder). Suppose that *D*-module *M* is glued from simple modules $S_i, i = 1, ..., l$. Then

(i) Any strict filtration $\Phi: 0 = N_0 \subsetneqq \dots \subsetneqq N_r = M$ of the module M by D-submodules has length $r \leq l$.

(ii) The filtration Φ is maximal iff it has length l. In this case the quotient modules $Q_i = N_i/N_{i-1}$ are simple and the collection of modules Q_i up to permutation of indexes and up to isomorphism of modules coincides with the collection S_i .

[P] 2. Prove JH theorem.

Hint. Consider projection $p: M \to L = M/S$, where $S = S_1$. Consider the image $p(\Phi)$ of the filtration Φ . Using induction show that if the length of Φ is $\geq l$ then the filtration $p(\Phi)$ is not strict, i.e. for some *i* we have $p(N_i) = p(N_{i+1})$. Show that this implies that $N_{i+1} = N_i \bigoplus S$.

JH-theorem implies that the subcategory $\mathcal{A}^{fl} \subset \mathcal{A}$ consisting of modules of finite length is an abelian subcategory of \mathcal{A} closed with respect to subquotients and extensions. On this subcategory we have a well defined **length function** $M \mapsto l(M)$ (length of the module M). This function satisfies the following properties:

(i) It is additive, i.e. for every short exact sequence $0 \to L \to M \to N \to 0$ we have l(M) = l(L) + l(N).

(ii) It is strictly positive, i.e $l(M) \ge 0$ and l(M) = 0 iff M = 0.

 $[\mathbf{P}]$ **3.** Prove that a *D*-module *M* has finite length iff it satisfies both descending and ascending chain conditions.

One can formulate another, slightly more general, version of JH theorem. Let us say that two *D*-modules M, N are Jordan - Hoelder equivalent (notation $M \sim_{JH} N$) if they have filtrations Φ and Ψ of the same finite length such that the sequences of their quotients are the same up to isomorphism and permutation of indexes.

Theorem GJH. The relation \sim_{JH} on the set of isomorphism classes of *D*-modules is an equivalence relation.

 ∇ 4. Prove theorem GJH. Show why Jordan-Hoelder theorem above is a special case of this theorem.

Remark. All the results of Jordan-Hoelder theory hold for an arbitrary abelian category \mathcal{A} .

Definition. A (commutative) algebra A is called **Artinian** if any finitely generated A-module has finite length.

5. Let A be a commutative algebra.

[P] (i) Show that the following conditions are equivalent.

(a) A is Artinian.

(b) Free A-module A has finite length.

(c) The algebra A is Noetherian of dimension 0.

(*) (ii) Show that conditions a,b,c above are equivalent to the following condition

(d) Free A-module A satisfies descending chain condition.

[P] 6. Let R be an Artinian algebra. Consider the graded algebra $A = R[x_1, ..., x_n]$ (grading with respect to degree in x's).

Let $M = \bigoplus M^k$ be a finitely generated graded A module. Show that the sequence of numbers $a(k) = l(M^k)$ is ep (eventually polynomial).

[P] 7. Let A be a Noetherian local ring, \mathfrak{m} the maximal ideal of A and $k = A/\mathfrak{m}$ the residue field. Fix an ideal $\mathfrak{a} \subset \mathfrak{m}$.

(i) Show that the following conditions are equivalent

(a) \mathfrak{a} is a defining ideal, i.e. it contains the ideal \mathfrak{m}^k for some k.

(b) The algebra A/\mathfrak{a} is Artinian.

(ii) Fix a defining ideal $\mathfrak{a} \subset A$. Consider a finitely generated A-module and fix an \mathfrak{a} -filtration Φ of the module M.

Show that if the filtration Φ is good then the sequence of numbers $b(k) := l(M/\Phi^k(M))$ is ep.

(iii) For any finitely generated A-module M define its Hilbert dimension d(M). Show that for a short exact sequence $0 \to L \to M \to N \to 0$ we have $d(M) = \max(d(L), d(N))$.