Automorphic Forms - Home Assignment 4

Joseph Bernstein

December 6, 2012

Question 1

Our goal in this question is to identify (as much as one can) the functions appearing in the Fourier series of a Maass form.
(a) Let f be a Maass form of Laplace eigenvalue μ (that is, f is invariant under $\Gamma(1)=$ $S L_{2}(\mathbb{Z})$, has moderate growth, and satisfies $\left.\Delta f=y^{2}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right) f=\mu f\right)$. Show that

$$
f(x+i y)=\sum_{n \in \mathbb{Z}} W_{n}(y) \exp (2 \pi i n x),
$$

for some functions of moderate growth $W_{n}(y)$.
(b) Let $n \neq 0$. Show that if we let $W_{n}(y)=y^{1 / 2} F_{n}(y)$ then $F_{n}(y)$ satisfies the differential equation

$$
\left(-4 \pi^{2} y^{2} n^{2}-\mu-\frac{1}{4}\right) F_{n}(y)+y F_{n}^{\prime}(y)+y^{2} F_{n}^{\prime \prime}(y)=0 .
$$

Let $F_{n}(y)=K_{n}(n y)$. So, $K_{n}(y)$ is of moderate growth and satisfies

$$
\left(-4 \pi^{2} y^{2}-\mu-\frac{1}{4}\right) K_{n}(y)+y K_{n}^{\prime}(y)+y^{2} K_{n}^{\prime \prime}(y)=0 .
$$

This differential equation was studied by Whittaker, and its solutions are called Whittaker functions.
(c) Still assuming that $n \neq 0$, show that for y sufficiently large, the equation has two linearly independent solutions, one growing as $O\left(y^{-1 / 2} \exp (2 \pi y)\right)$, and the other growing as $O\left(y^{-1 / 2} \exp (-2 \pi y)\right)$. Also show that near $y=0$, both solutions exhibit at most polynomial growth.
(d) Use the fact that f has moderate growth to deduce that $K_{n}(y)=a_{n} K(y)$ for some coefficients a_{n}, and some function $K(y)$.
(e) Let $n=0$. Then show that $W_{0}(y)$ satisfies

$$
y^{2} \frac{\partial}{\partial y} W_{0}(y)=\mu W_{0}(y) .
$$

Solve this to see that if we let $\mu=\lambda^{2}-\frac{1}{4}$, then

$$
W_{0}(y)=y^{1 / 2}\left(A y^{\lambda}+B y^{-\lambda}\right) .
$$

Note that in this case, both solutions of the differential equation have moderate growth.
(f) Conclude that

$$
f(x+i y)=y^{1 / 2}\left(A y^{\lambda}+B y^{-\lambda}\right)+\sum_{n \neq 0} a_{n} y^{1 / 2} K(n y) \exp (2 \pi i n x) .
$$

Question 2

Our goal in this question is to compute the L-function of a Maass form and its functional equation.

Let

$$
f(x+i y)=y^{1 / 2}\left(A y^{\lambda}+B y^{-\lambda}\right)+\sum_{n \neq 0} a_{n} y^{1 / 2} K(n y) \exp (2 \pi i n x)
$$

be a Maass cusp form ($A=B=0$), of Laplacian eigenvalue μ, as above. Let $L(f, s)=$ $\sum_{n>0} a_{n} n^{-s}$.
(a) Suppose that f is even, that is, $f(x+i y)=f(-x+i y)$. Show that $a_{n}=a_{-n}$, and compute that

$$
M\left(y^{-1 / 2} f(i y) ; s\right)=\int_{0}^{\infty} y^{-1 / 2} f(i y) y^{s} \frac{\mathrm{~d} y}{y}=2 G\left(s-\frac{1}{2}\right) L(f, s),
$$

where $G(s)=M\left(y^{1 / 2} K(y) ; s\right)$ is the Mellin transform of $y^{1 / 2} K(y)$. Conclude that

$$
G\left(s-\frac{1}{2}\right) L(f, s)=G\left(\frac{1}{2}-s\right) L(f, 1-s)
$$

(b) Suppose that f is odd, that is, $f(x+i y)=-f(-x+i y)$. Show that $a_{n}=a_{-n}$, and compute that

$$
M\left(y^{-1 / 2} f(i y) ; s\right)=0
$$

(c) To solve this (we must have some sort of Mellin transform in order to prove the functional equation on $L(f, s)$), we would like to consider $\frac{\partial}{\partial x} f$ instead of f-which will be an even function, and have a good Mellin transform. However, this is not entirely correct; it is conceptually better if we were to consider $y^{2} \frac{\partial}{\partial x} f$ instead, as this seems to be in order with the invariant metric on the upper half plane we have seen in class. However, an even better operator to consider would be $R \cdot f=y\left(\frac{\partial}{\partial x}-i \frac{\partial}{\partial y}\right) f$. This operator is called the Maass raising operator.
The justification for this name comes form the fact that $\frac{1}{y} R \cdot f$ transforms like a modular form of weight 2 (that is, an application of R raises the weight from 0 to 2). Prove this.
(d) Compute that

$$
M\left(y^{-1 / 2}(R f)(i y) ; s\right)=\int_{0}^{\infty} y^{-1 / 2}(R f)(i y) y^{s} \frac{\mathrm{~d} y}{y}=4 \pi i G\left(s+\frac{1}{2}\right) L(f, s),
$$

where $G(s)=M\left(y^{1 / 2} K(y) ; s\right)$ is as above. Conclude that

$$
G\left(s+\frac{1}{2}\right) L(f, s)=-G\left(\frac{3}{2}-s\right) L(f, 1-s) .
$$

Note the extra minus sign!

Question 3

Our computation above left us with the unknown function

$$
G(s)=M\left(y^{1 / 2} K(y) ; s\right)=\int_{0}^{\infty} y^{1 / 2} K(y) y^{s} \frac{\mathrm{~d} y}{y} .
$$

We expect that this function can be expressed via the Gamma function. In this question, we will compute it. Our strategy will be rather indirect, and in a sense we will be solving the differential equation defining $K(y)$.
(a) Using the growth properties of $K(y)$ shown above, prove that the integral $G(s)$ converges absolutely for $\operatorname{Re} s>0$. Use the differential equation for $K(y)$ to show that for Re s sufficiently large,

$$
4 \pi^{2} G(s+2)+\mu G(s)-s(s+1) G(s)=0
$$

(b) Conclude that if we let $(s+\alpha)(s+\beta)=s(s+1)-\mu$, then

$$
\frac{G(y)}{\pi^{-s} \Gamma\left(\frac{s+\alpha}{2}\right) \Gamma\left(\frac{s+\beta}{2}\right)}
$$

is a periodic function in s, of period 2 .
(c) You may assume the well known analytic fact that within the domain of absolute convergence, the Mellin transform of a function is bounded in vertical strips. Also note that $\Gamma(s)=M(\exp (-y) ; s)$ is the Mellin transform of $\exp (-y)$. Use this to show that the function

$$
\frac{G(y)}{\pi^{-s} \Gamma\left(\frac{s+\alpha}{2}\right) \Gamma\left(\frac{s+\beta}{2}\right)}
$$

is periodic of period 2, and holomorphic and bounded in some right half plane Re $s>$ M. Conclude that it is constant. Note that this gives us an expression for $K(y)$ as an integral (via the inverse Mellin transform).
(d) Finally, recall that we let $\mu=\lambda^{2}-\frac{1}{4}, L(f, s)=\sum_{n>0} a_{n} n^{-s}$, to show that for all even Maass cusp forms f,

$$
\pi^{\frac{1}{2}-s} \Gamma\left(\frac{s+\lambda}{2}\right) \Gamma\left(\frac{s-\lambda}{2}\right) L(f, s)=\pi^{s-\frac{1}{2}} \Gamma\left(\frac{1-s+\lambda}{2}\right) \Gamma\left(\frac{1-s-\lambda}{2}\right) L(f, 1-s),
$$

and for all odd Maass cusp forms,

$$
\pi^{-\frac{1}{2}-s} \Gamma\left(\frac{1+s+\lambda}{2}\right) \Gamma\left(\frac{1+s-\lambda}{2}\right) L(f, s)=-\pi^{-\frac{3}{2}+s} \Gamma\left(\frac{2-s+\lambda}{2}\right) \Gamma\left(\frac{2-s-\lambda}{2}\right) L(f, 1-s) .
$$

