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The goal of this exercise is to classify the infinitesimal equivalence classes of representations
of GL2(R), similarly to what was done in class for SL2(R). Our general strategy is as follows:
after doing some geometry, we will explicitly define representations of GL2(R) that will be called
the principal series representations. We will show out that all irreducible Harish-Chandra
modules of GL2(R) can be embedded in the principal series, and give a list of all non-zero
morphisms between these representations.

Question 1
We begin with some geometry. Let G = GL2(R), G+ = {g ∈ G | det(g) > 0}, K = O2(R),
and:

P =

{(
a b
0 d

)
∈ G

}
,

P+ =

{(
a b
0 d

)
∈ G | a > 0, d > 0

}
,

U =

{(
1 b
0 1

)
∈ G

}
,

Z =

{(
r 0
0 r

)
∈ G

}
,

Z+ =

{(
r 0
0 r

)
∈ G | r > 0

}
.

(a) Prove the Iwasawa decomposition: any element g ∈ G may be written uniquely as
g = p+k, where p+ ∈ P+ and k ∈ K.

(b) Conclude that Z\G/K is isomorphic to the upper half plane H+.

(c) Show that Z+ · U\G is the union of two punctured planes R2 − {0}.

Question 2
Let us define the principal series representation for G = GL2(R). Let χ1, χ2 : R× → C× be
two multiplicative characters. Let the trivially extended character χ : P → C× be

χ

((
a b
0 d

))
=

∣∣∣a
d

∣∣∣1/2 χ1(a)χ2(d).

(The normalization
∣∣a
d

∣∣1/2 might seem a bit odd now, but as we will see it makes our life
much simpler later on).

Now, define the principal series represntation (π, V (χ1, χ2)) to be the space

V (χ1, χ2) = {f : G → C | f is smooth, f(pg) = χ(p)f(g) ∀p ∈ P} ,

with action given by right translation, that is, (π(h) · f)(g) = f(gh).
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The goal of this question is to determine the structure of this representation, and its relation
to the principal series of SL2(R).

(a) Show that any f ∈ V (χ1, χ2) is completely determined by its values on the circle
SO(2,R) ⊆ K.

(b) Conclude that V (χ1, χ2) has a basis given by Fourier series, that is, it is generated as
a Banach space by the functions

fk

((
a b
0 d

)(
cos θ − sin θ
sin θ cos θ

))
=

∣∣∣a
d

∣∣∣1/2 χ1(a)χ2(d) exp(ikθ),

for all k such that (−1)k = χ1(−1)χ2(−1). Show that these functions are a base for
its (g,K)-module, and show that it is weakly admissible.

(c) Since we already have a basis for the (g,K)-module corresponding to V (χ1, χ2), let us
explicitly write down the actions of g and K on this basis.

For any α ∈ g, let

Dαf(g) =
∂

∂t
f(g exp(αt))

∣∣∣∣
t=0

be the action of the Lie algebra. Denote (note that these matrices are in a different
basis than the ones defined in class for SL2(R)):

Z =

(
1 0
0 1

)
∈ g

H =

(
0 −1
1 0

)
∈ g

X =

(
1 0
0 −1

)
∈ g

Y =

(
0 1
1 0

)
∈ g.

Show that (letting χ1(r) = |r|s1 sign(r)ε1 , χ2(r) = |r|s2 sign(r)ε2):

π

((
cos θ − sin θ
sin θ cos θ

))
fk = exp(ikθ)fk

π

((
−1 0
0 1

))
fk = (−1)ε1f−k

DZfk = (s1 + s2)fk

DHfk = ikfk

DEfk := (DX − iDY )fk = (s1 − s2 + 1 + k)fk+2

DF fk := (DX + iDY )fk = (s1 − s2 + 1− k)fk−2.

Conclude that V (χ1, χ2) is admissible.

(d) Show that if we let χ2 = 1, and

vk(r cos θ, r sin θ) = fk

((
r 0
0 1

)(
cos θ − sin θ
sin θ cos θ

))
,

then the function vk is an element of the principal series representation Vχ1 of SL2(R)
defined in class, and in fact this defines a morphism from the restriction of the principal
series representation V (χ1, 1) to SL2(R) to the principal series representation Vχ1 .
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Remark 1. We note that the main consequence of switching from SL2(R) to GL2(R) is

the existence of the element

(
−1 0
0 1

)
, which enables us to refect the weights, sending

elements of weight k to elements of weight −k. Relating this to phenomenon that we
have encountered before, it can be seen that the action of this element on Maass forms
is precisely the reflection sending f(x + iy) to f(−x + iy) (which is why we encountered
that extra symmetry). Also, in the previous exercise when we took the derivative of an
odd Maass form, we remarked that there was some subtlety in the choice of operator. The
choice that we presented (the Maass raising operator) can in fact be seen to correspond
to the operator DE above. In a similar fashion, the operator DF is sometimes called the
Maass lowering operator, as it lowers the weight.

Question 3
The goal of this question is to determine the when the principal series representation is
reducible, and what kinds of isomorphisms exist between principal series representations.

(a) Use the above explicit action to show that V (χ1, χ2) is reducible iff there is some
integer k ̸= 1 such that (−1)k = χ1(−1)χ2(−1) and s1 − s2 = k − 1.

(b) If k is an integer as above, show that V (χ1, χ2) decomposes into two irreducible sub-
quotients (in contrast to the three we had for SL2(R)), one of which is finite dimen-
sional and the other infinite dimensional. We let D±

k (χ) be the infinite dimensional

irreducible subquotient of V (χ| · |
k−1
2 sign(·)k, χ| · |−

k−1
2 ).

We also define D±
1 (χ) = V (χ sign(·), χ), for completeness. The representations D±

k (χ)
for k ̸= 1 are sometimes called essentially discrete series representations, while D±

1 (χ)
is sometimes called limit of essentially discrete series.

(c) Use the explicit action above to show that whenever there is no integer k such that
(−1)k = χ1(−1)χ2(−1) and s1 − s2 = k − 1 (that is, whenever V (χ1, χ2) has no
essentially discrete or limit of essentially discrete as a subquotient) then, as (g,K)-
modules,

V (χ1, χ2)
K-finite ∼= V (χ2, χ1)

K-finite.

Remark 2. Note that this isomorphism can be made into an isomorphism of the entire
smooth part (for Re(s1 − s2) sufficiently large) by

f(g) 7→
∫
R
f

((
0 1
1 0

)(
1 u
0 1

)
g

)
du,

which has meromorphic continuation to any value of s1 − s2, with poles whenever
V (χ1, χ2) is reducible.

(d) Next, show that for any χ and k, we have D±
k (χ)

K-finite ∼= D±
2−k(χ sign(·)k) K-finite (that

is, although V (χ1, χ2) might not be isomorphic to V (χ2, χ1) when it is not irreducible,
they still have the same irreducible subquotient).

(e) Show that for any χ and k, we have

D±
k (χ)

K-finite ∼= D±
k (χ sign(·))K-finite ∼= D±

2−k(χ)
K-finite.

Keep in mind that V (χ1, χ2)
K-finite � V (χ1 sign(·), χ2 sign(·))K-finite when it is irre-

duible.

Remark 3. It can be seen that essentially discrete series representations and limit of
essentially discrete series representations correspond to holomorphic modular forms, while
irreducible principal series representations correspond to Maass forms.
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Question 4
The goal of this question is to finish the classification of irreducible Harish-Chandra modules
for GL2(R).

(a) Show that the differential operators DZ and ∆ = 1
2DEDF + 1

2DFDE + D2
H lie in

the center of the universal enveloping algebra U(g) (that is, they commute with all
differential operators Dα with α ∈ g) and in fact that they commute with the action
of K as well.

(b) Conclude that DZ and ∆ act on arbitrary irreducible (g,K)-modules by scalars (hint:
use Schur’s lemma). Compute their values on the principal series representation
V (χ1, χ2).

(c) Show that the isomorphisms found in question ?? are, up to scalar, all of the nonzero
morphisms between irreducible representations D±

k (χ) (with k possibly 1) and the
irreducible of the principal serires representations V (χ1, χ2).

(d) Show that any admissible irreducible (g,K)-module is isomorphic to either an irre-
ducible principal series representation V (χ1, χ2), an essentially discrete series repre-
sentation D±

k (χ), or a limit of essentially discrete series representation D±
1 (χ).

Remark 4. We note that up to a scalar, the operator ∆ above is the Laplacian we intro-
duced on Maass forms. When added with an appropriate multiple of D2

Z , it is also known
as the Casimir operator.
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