# Automorphic Forms - Home Assignment 6 

Joseph Bernstein

December 29, 2012

The primary topic of this exerxise is the adeles and their properties.
Define the ring of adeles to be the the subring $\mathbb{A}_{\mathbb{Q}} \subseteq \mathbb{R} \times \prod \mathbb{Q}_{p}$, defined by:

$$
\mathbb{A}_{\mathbb{Q}}=\left\{\left(a_{\infty}, a_{2}, a_{3}, a_{5}, a_{7}, a_{11}, \ldots\right) \in \mathbb{R} \times \prod \mathbb{Q}_{p} \mid a_{p} \in \mathbb{Z}_{p} \text { for almost all } p\right\}
$$

It is sometimes convenient to simply write $\Pi \mathbb{Q}_{v}$ instead of $\mathbb{R} \times \prod \mathbb{Q}_{p}$, where $v$ is either a prime or infinity. It is customary to refer to $v$ as a place, and say that $v=\infty$ is the infinite place, and $v=p$ for any prime $p$ is a finite place. Finally, we let $\mathbb{Q}_{\infty}=\mathbb{R}$.

We denote by $\mathbb{A}_{\text {fin }}$ the subring of inite adeles $\mathbb{A}_{\text {fin }}=\left\{\left(0, a_{2}, a_{3}, a_{5}, \ldots\right) \in \mathbb{A}_{\mathbb{Q}}\right\}$.

## Question 1

Define the topology on $\mathbb{A}_{\mathbb{Q}}$ to be the minimal topology containing all open sets of the form

$$
U=U_{\infty} \times \prod U_{p}=\prod U_{v}
$$

where $U_{p}=\mathbb{Z}_{p}$ for almost all primes $p$.
(a) Prove that addition and multiplication in $\mathbb{A}_{\mathbb{Q}}$ are continuous with respect to this topology.
(b) Show that the set $\hat{\mathbb{Z}}=\Pi \mathbb{Z}_{p} \subseteq \mathbb{A}_{\text {fin }}$ is compact with the subspace topology inherited from $\mathbb{A}_{\mathbb{Q}}$.
(c) Conclude that $[0,1] \times \hat{\mathbb{Z}} \subseteq \mathbb{A}_{\mathbb{Q}}$ is also compact.
(d) Define the embedding $i_{\text {diag }}: \mathbb{Q} \rightarrow \mathbb{A}_{\mathbb{Q}}$ by $i_{\text {diag }}(q)=(q, q, q, q, \ldots)$ for all $q \in \mathbb{Q}$. That is, $i_{\text {diag }}(q)_{v}=q$ for all places $v$. Show that the set $[0,1) \times \Pi \mathbb{Z}_{p}$ is a fundamental domain for the action of $Q$ on $\mathbb{A}_{\mathbb{Q}}$ via addition, and conclude that $\mathbb{A}_{\mathbb{Q}} / \mathbb{Q}$ is compact.
(e) Show that $U=(-1 / 2,1 / 2) \times \Pi \mathbb{Z}_{p}$ is a neighborhood of the origin $0 \in \mathbb{A}_{\mathbb{Q}}$ such that 0 is the only rational point in it. Conclude that $\mathbb{Q}$ is discrete in $\mathbb{A}_{\mathbb{Q}}$.
(f) Use the Chinese remainder theorem to show that $\mathbb{Q}$ is dense in $\mathbb{A}_{\text {fin }}$, with respect to the embedding $i_{\mathrm{fin}}: \mathbb{Q} \rightarrow \mathbb{A}_{\mathrm{fin}}$ given by $i_{\mathrm{fin}}(q)=(0, q, q, q, \ldots)$ for all $q \in \mathbb{Q}$. That is, $i_{\mathrm{fin}}(q)_{\infty}=0, i_{\mathrm{fin}}(q)_{p}=q$ for all fininte primes $p$.
(g) Show that $\mathbb{R}+\mathbb{Q}$ is dense in $\mathbb{A}_{\mathbb{Q}}$. This is known as strong approximation.

Definition 1. Given any function $f: \mathbb{A}_{\mathbb{Q}} \rightarrow \mathbb{C}$, we will say that $f$ is smooth if for every $x \in \mathbb{A}_{\mathbb{Q}}$, there is an open neighborhood $U=\prod U_{v}$ of $x$ such that $f(u)=\hat{f}\left(u_{\infty}\right)$ for all $u \in U$ and some smooth function $\hat{f}: U_{\infty} \rightarrow \mathbb{C}$. Note that since $U_{\infty} \subseteq \mathbb{R}$, the notion of smoothness for $\hat{f}$ is already defined. Essentially, this means that locally, $f(x)$ is constant in all of its $p$-adic parameters $x_{p}$ and smooth in $x_{\infty}$.

## Question 2

In this question we give a somewhat concrete definition of the isomorphism $\mathbb{A}_{\mathbb{Q}} / \mathbb{Q} \cong$ $\lim _{\leftarrow} \mathbb{R} / N \mathbb{Z}$. We show how to explicitly give an isomorphism

$$
\lim _{\rightarrow} \operatorname{Func}^{\infty}(\mathbb{R} / N \mathbb{Z}) \rightarrow \operatorname{Func}^{\infty}\left(\mathbb{A}_{\mathbb{Q}} / \mathbb{Q}\right)
$$

called the adelic lift, and give as an example the adelic exponent (we let $\operatorname{Func}^{\infty}(X)$ denote the set of smooth functions $f: X \rightarrow \mathbb{C})$.
(a) Use the Chinese remainder theorem to define a canonical morphism

$$
\left(\frac{1}{p^{m}} \mathbb{Z}\right) /\left(p^{n} \mathbb{Z}\right) \rightarrow\left(\frac{1}{p^{m}} \mathbb{Z}\right) /\left(N^{\prime} \cdot p^{n} \mathbb{Z}\right)
$$

where $p$ is a finite prime and $N^{\prime}$ is coprime to $p$. Conclude that there are morphisms

$$
\frac{1}{p^{m}} \mathbb{Z}_{p} \rightarrow \mathbb{R} / N \mathbb{Z}
$$

for all natural $N$. Show that these morphisms are in fact a compatible system of morphisms as $N$ ranges over all natural numbers, and deduce that they induce a map

$$
\frac{1}{p^{m}} \mathbb{Z}_{p} \rightarrow \lim _{\leftarrow} \mathbb{R} / N \mathbb{Z}
$$

Show that these maps too form a compatible system of morphisms as $m$ varies, and conclude that this induces a morphism

$$
\pi_{p}: \mathbb{Q}_{p} \rightarrow \lim _{\leftarrow} \mathbb{R} / N \mathbb{Z}
$$

(b) Show that the canonical map

$$
\hat{\mathbb{Z}}=\lim _{\leftarrow} \mathbb{Z} / N \mathbb{Z} \xrightarrow{i} \lim _{\leftarrow} \mathbb{R} / N \mathbb{Z}
$$

induced by the inclusion $\mathbb{Z} \subseteq \mathbb{R}$ gives a commutative diagram

(c) Show that the diagram

can be completed to a commutative diagram as indicated.
(d) Consider the morphism $\mathbb{A}_{\mathbb{Q}}=\mathbb{R} \times \mathbb{A}_{\text {fin }} \xrightarrow{\pi} \lim _{\leftarrow} \mathbb{R} / N \mathbb{Z}$ given by

$$
\pi=\pi_{\infty} \times\left(-\pi_{\mathrm{fin}}\right)
$$

where $\pi_{\infty}: \mathbb{R} \rightarrow \lim _{\leftarrow} \mathbb{R} / N \mathbb{Z}$ is the projection. Show that $\pi$ induces an isomorphism $\mathbb{A}_{\mathbb{Q}} / \mathbb{Q} \xrightarrow{\sim} \lim _{\leftarrow} \mathbb{R} / N \mathbb{Z}$.
(e) Given a smooth periodic function $f \in \lim _{\rightarrow} \operatorname{Func}^{\infty}(\mathbb{R} / N \mathbb{Z})$ of period $N$, define its adelic lift $\tilde{f} \in \operatorname{Func}^{\infty}\left(\mathbb{A}_{\mathbb{Q}} / \mathbb{Q}\right)$ as follows. First, let $N=\prod p^{a_{p}}$ be the prime decomposition of $N$, with $a_{p}=0$ for almost all $p$. Consider the compact set $K(N)=\prod p^{a_{p}} \mathbb{Z}_{p}=$ $N \hat{\mathbb{Z}} \subseteq \mathbb{A}_{\text {fin }}$. For any $x \in \mathbb{A}_{\mathbb{Q}}$, use strong approximation to find $r \in \mathbb{R}, q \in \mathbb{Q}$ such that $r+q \in x+K(N)$ (note that $K(N)$ is not open in $\mathbb{A}_{\mathbb{Q}}$, but $\mathbb{R}+K(N)$ is open). Define

$$
\tilde{f}(x)=f(r)
$$

Check that $\tilde{f}$ is well defined, smooth and invariant to translation by $\mathbb{Q}$ (that is, $\tilde{f} \in$ $\left.\operatorname{Func}^{\infty}\left(\mathbb{A}_{\mathbb{Q}} / \mathbb{Q}\right)\right)$.

Remark 2. In the adelic language, a function invariant to translation by $\mathbb{Q}$ is often called periodic.
(f) Show that the map $f \mapsto \tilde{f}$ has an inverse given by

$$
f(r)=\tilde{f}((r, 0,0,0, \ldots))=\tilde{f} \circ i_{\infty}(r)
$$

where $i_{\infty}: \mathbb{R} \rightarrow \mathbb{A}_{\mathbb{Q}}$ is the embedding at infinity.
(g) As an example, consider the function $e(r)=\exp (2 \pi i r) \in \operatorname{Func}^{\infty}(\mathbb{R} / \mathbb{Z})$. Explicitly compute the function $\tilde{e}$ to show that

- $\tilde{e}(k)=1$ for all $k \in K(1)=\hat{\mathbb{Z}}=\prod \mathbb{Z}_{p}$.
- $\tilde{e}$ is multiplicative, that is, $\tilde{e}(x+y)=\tilde{e}(x) \cdot \tilde{e}(y)$ for all $x, y \in \mathbb{A}_{\mathbb{Q}}$.
- There are unique functions $e_{v}: \mathbb{Q}_{v} \rightarrow \mathbb{C}$ for every place $v$ such that

$$
\tilde{e}(x)=\prod e_{v}\left(x_{v}\right)=e_{\infty}\left(x_{\infty}\right) \cdot e_{2}\left(x_{2}\right) \cdot e_{3}\left(x_{3}\right) \cdot e_{5}\left(x_{5}\right) \cdots,
$$

for all $x \in \mathbb{A}_{\mathbb{Q}}$, where $x=\left(x_{\infty}, x_{2}, x_{3}, x_{5}, \ldots\right)$.

- $e_{\infty}\left(x_{\infty}\right)$ is smooth, and the functions $e_{p}$ are locally constant for all finite primes $p$, and all such functions are multiplicative.
- Finally, if $x_{\infty} \in \mathbb{R}$ then

$$
e_{\infty}\left(x_{\infty}\right)=\exp \left(2 \pi i x_{\infty}\right)
$$

Also, if $x_{p} \in \mathbb{Q}_{p}$, then

$$
e_{p}\left(x_{p}\right)=\exp \left(-2 \pi i\left\{x_{p}\right\}\right)
$$

where $\left\{x_{p}\right\}$ is the fractional part of $x_{p}$ (that is, $\left\{x_{p}\right\}$ is some rational number such that $\left.\left\{x_{p}\right\} \equiv x_{p}\left(\bmod \mathbb{Z}_{p}\right)\right)$.

## Question 3

We now define another important object of study, the group of ideles,

$$
\begin{aligned}
& \mathbb{A}_{\mathbb{Q}}^{\times}=G L_{1}\left(\mathbb{A}_{\mathbb{Q}}\right)= \\
& \left\{\left(x_{\infty}, x_{2}, x_{3}, x_{5}, x_{7} \ldots\right) \mid x_{\infty} \in \mathbb{R}^{\times}, x_{p} \in \mathbb{Q}_{p}^{\times} \text {for all } p, \text { and } x_{p} \in \mathbb{Z}_{p}^{\times} \text {for almost all } p\right\} .
\end{aligned}
$$

We would now like to define a topology on $\mathbb{A}_{\mathbb{Q}}^{\times}$. However, the naive topology given by the subspace topology induced on the ideles from the adeles via the embedding $i: \mathbb{A}_{\mathbb{Q}}^{\times} \rightarrow \mathbb{A}_{\mathbb{Q}}$ is, as we will see, inadequate. Let us refer to this topology by $\mathcal{T}_{\text {naive }}$.
As we will see below, the correct topology on $\mathbb{A}_{\mathbb{Q}}^{\times}$is the topology induced from the embedding $\left(i, i^{-1}\right): \mathbb{A}_{\mathbb{Q}}^{\times} \rightarrow \mathbb{A}_{\mathbb{Q}} \times \mathbb{A}_{\mathbb{Q}}$, where $i^{-1}(x)=i(x)^{-1}$ is the inverse of $i$, and the topology on $\mathbb{A}_{\mathbb{Q}} \times \mathbb{A}_{\mathbb{Q}}$ is the usual product topology. Let us refer to this topology on $\mathbb{A}_{\mathbb{Q}}^{\times}$as $\mathcal{T}$.
(a) Show that the topology $\mathcal{T}$ is generated by all sets of the form: $U=\prod U_{v}=U_{\infty} \times \prod U_{p}$, where $U_{v}$ is open in $\mathbb{Q}_{v}^{\times}$for all places $v$, and $U_{p}=\mathbb{Z}_{p}^{\times}$for almost all $p$.
(b) Show that $\mathcal{T}_{\text {naive }} \subsetneq \mathcal{T}$.
(c) Show that $\{-1,1\} \times \prod \mathbb{Z}_{p}^{\times}$is a maximal compact subgroup of $\mathbb{A}_{\mathbb{Q}}^{\times}$.
(d) Show that $(0, \infty) \times \prod \mathbb{Z}_{p}^{\times}$is a fundamental domain for the multiplicative action of $\mathbb{Q}^{\times}$ on the ideles via the embedding $i_{\text {diag }}: \mathbb{Q}^{\times} \rightarrow \mathbb{A}_{\mathbb{Q}}^{\times}$(verify that the image of $\mathbb{Q}^{\times}$is indeed in $\mathbb{A}_{\mathbb{Q}}^{\times}!$).
(e) Show that $\mathbb{R} \cdot \mathbb{Q}$ is not dense in the ideles (hint: show that if $i_{\mathrm{fin}}(q) \in \prod \mathbb{Z}_{p}^{\times}$, then $q= \pm 1)$. Therefore, strong approximation does not hold on the ideles.

## Question 4

In a similar manner to our treatment of $\mathbb{A}_{\mathbb{Q}}^{\times}=G L_{1}\left(\mathbb{A}_{\mathbb{Q}}\right)$, let us consider $G L_{2}\left(\mathbb{A}_{\mathbb{Q}}\right)$ with the correct topology, that is, the one generated by all sets of the form $U=\Pi U_{v}=U_{\infty} \times \Pi U_{p}$, where $U_{v}$ is open in $G L_{2}\left(\mathbb{Q}_{v}\right)$ for all places $v$, and $U_{p}=G L_{2}\left(\mathbb{Z}_{p}\right)$ for almost all $p$.
(a) Show that $K=O_{2}(\mathbb{R}) \times \prod G L_{2}\left(\mathbb{Z}_{p}\right)$ is a maximal compact subgroup of $G L_{2}\left(\mathbb{A}_{\mathbb{Q}}\right)$.
(b) Let $D_{\infty}$ be a fundamental domain for $G L_{2}(\mathbb{Z}) \backslash G L_{2}(\mathbb{R})$. Show that $D_{\infty} \times \prod G L_{2}\left(\mathbb{Z}_{p}\right)$ is a fundamental domain for $G L_{2}(\mathbb{Q}) \backslash G L_{2}\left(\mathbb{A}_{\mathbb{Q}}\right)$.
(c) Show that $S L_{2}(\mathbb{R}) \cdot S L_{2}(\mathbb{Q})$ is dense in $S L_{2}\left(\mathbb{A}_{\mathbb{Q}}\right)$ (hint: show that it can approximate elements of the form $\left(\begin{array}{ll}1 & u \\ 0 & 1\end{array}\right)$ and $\left(\begin{array}{ll}1 & 0 \\ u & 1\end{array}\right)$ for $u \in \mathbb{A}_{\mathbb{Q}}$, and that such elements generate $\left.S L_{2}\left(\mathbb{A}_{\mathbb{Q}}\right)\right)$.
(d) Show that

$$
G L_{2}(\mathbb{R}) \cdot G L_{2}(\mathbb{Q})
$$

is not dense in $G L_{2}\left(\mathbb{A}_{\mathbb{Q}}\right)$, but that

$$
G L_{2}(\mathbb{R}) \cdot G L_{2}(\mathbb{Q}) \cdot Z\left(G L_{2}\left(\mathbb{A}_{\mathbb{Q}}\right)\right)
$$

is dense in $G L_{2}\left(\mathbb{A}_{\mathbb{Q}}\right)$.

