Automorphic Forms - Home Assignment 6

Joseph Bernstein

December 29, 2012

The primary topic of this exercise is the adeles and their properties. Define the *ring of adeles* to be the the subring $\mathbb{A}_{\mathbb{Q}} \subseteq \mathbb{R} \times \prod \mathbb{Q}_p$, defined by:

$$\mathbb{A}_{\mathbb{Q}} = \{ (a_{\infty}, a_2, a_3, a_5, a_7, a_{11}, \dots) \in \mathbb{R} \times \prod \mathbb{Q}_p \mid a_p \in \mathbb{Z}_p \text{ for almost all } p \}.$$

It is sometimes convenient to simply write $\prod \mathbb{Q}_v$ instead of $\mathbb{R} \times \prod \mathbb{Q}_p$, where v is either a prime or infinity. It is customary to refer to v as a *place*, and say that $v = \infty$ is the *infinite place*, and v = p for any prime p is a *finite place*. Finally, we let $\mathbb{Q}_{\infty} = \mathbb{R}$.

We denote by \mathbb{A}_{fin} the subring of inite adeles $\mathbb{A}_{\text{fin}} = \{(0, a_2, a_3, a_5, \dots) \in \mathbb{A}_{\mathbb{Q}}\}.$

Question 1

Define the topology on $\mathbb{A}_{\mathbb{Q}}$ to be the minimal topology containing all open sets of the form

$$U = U_{\infty} \times \prod U_p = \prod U_v,$$

where $U_p = \mathbb{Z}_p$ for almost all primes p.

- (a) Prove that addition and multiplication in $\mathbb{A}_{\mathbb{Q}}$ are continuous with respect to this topology.
- (b) Show that the set $\mathbb{Z} = \prod \mathbb{Z}_p \subseteq \mathbb{A}_{\text{fin}}$ is compact with the subspace topology inherited from $\mathbb{A}_{\mathbb{Q}}$.
- (c) Conclude that $[0,1] \times \hat{\mathbb{Z}} \subseteq \mathbb{A}_{\mathbb{O}}$ is also compact.
- (d) Define the embedding $i_{\text{diag}} : \mathbb{Q} \to \mathbb{A}_{\mathbb{Q}}$ by $i_{\text{diag}}(q) = (q, q, q, q, ...)$ for all $q \in \mathbb{Q}$. That is, $i_{\text{diag}}(q)_v = q$ for all places v. Show that the set $[0, 1) \times \prod \mathbb{Z}_p$ is a fundamental domain for the action of Q on $\mathbb{A}_{\mathbb{Q}}$ via addition, and conclude that $\mathbb{A}_{\mathbb{Q}}/\mathbb{Q}$ is compact.
- (e) Show that $U = (-1/2, 1/2) \times \prod \mathbb{Z}_p$ is a neighborhood of the origin $0 \in \mathbb{A}_{\mathbb{Q}}$ such that 0 is the only rational point in it. Conclude that \mathbb{Q} is discrete in $\mathbb{A}_{\mathbb{Q}}$.
- (f) Use the Chinese remainder theorem to show that \mathbb{Q} is dense in \mathbb{A}_{fin} , with respect to the embedding $i_{\text{fin}} : \mathbb{Q} \to \mathbb{A}_{\text{fin}}$ given by $i_{\text{fin}}(q) = (0, q, q, q, \dots)$ for all $q \in \mathbb{Q}$. That is, $i_{\text{fin}}(q)_{\infty} = 0$, $i_{\text{fin}}(q)_p = q$ for all fininte primes p.
- (g) Show that $\mathbb{R} + \mathbb{Q}$ is dense in $\mathbb{A}_{\mathbb{Q}}$. This is known as strong approximation.

Definition 1. Given any function $f : \mathbb{A}_{\mathbb{Q}} \to \mathbb{C}$, we will say that f is smooth if for every $x \in \mathbb{A}_{\mathbb{Q}}$, there is an open neighborhood $U = \prod U_v$ of x such that $f(u) = \hat{f}(u_\infty)$ for all $u \in U$ and some smooth function $\hat{f} : U_\infty \to \mathbb{C}$. Note that since $U_\infty \subseteq \mathbb{R}$, the notion of smoothness for \hat{f} is already defined. Essentially, this means that locally, f(x) is constant in all of its p-adic parameters x_p and smooth in x_∞ .

Question 2

In this question we give a somewhat concrete definition of the isomorphism $\mathbb{A}_{\mathbb{Q}}/\mathbb{Q} \cong \lim \mathbb{R}/N\mathbb{Z}$. We show how to explicitly give an isomorphism

$$\lim_{\to} \operatorname{Func}^{\infty}(\mathbb{R}/N\mathbb{Z}) \to \operatorname{Func}^{\infty}(\mathbb{A}_{\mathbb{Q}}/\mathbb{Q})$$

called the adelic lift, and give as an example the adelic exponent (we let $\operatorname{Func}^{\infty}(X)$ denote the set of smooth functions $f: X \to \mathbb{C}$).

(a) Use the Chinese remainder theorem to define a canonical morphism

$$(\frac{1}{p^m}\mathbb{Z})/(p^n\mathbb{Z}) \to (\frac{1}{p^m}\mathbb{Z})/(N' \cdot p^n\mathbb{Z}),$$

where p is a finite prime and N' is coprime to p. Conclude that there are morphisms

$$\frac{1}{p^m}\mathbb{Z}_p \to \mathbb{R}/N\mathbb{Z}$$

for all natural N. Show that these morphisms are in fact a compatible system of morphisms as N ranges over all natural numbers, and deduce that they induce a map

$$\frac{1}{p^m}\mathbb{Z}_p \to \lim_{\leftarrow} \mathbb{R}/N\mathbb{Z}.$$

Show that these maps too form a compatible system of morphisms as m varies, and conclude that this induces a morphism

$$\pi_p: \mathbb{Q}_p \to \lim \mathbb{R}/N\mathbb{Z}.$$

(b) Show that the canonical map

$$\hat{\mathbb{Z}} = \lim_{\leftarrow} \mathbb{Z}/N\mathbb{Z} \xrightarrow{i} \lim_{\leftarrow} \mathbb{R}/N\mathbb{Z}$$

induced by the inclusion $\mathbb{Z} \subseteq \mathbb{R}$ gives a commutative diagram

(c) Show that the diagram

can be completed to a commutative diagram as indicated.

(d) Consider the morphism $\mathbb{A}_{\mathbb{Q}} = \mathbb{R} \times \mathbb{A}_{\text{fin}} \xrightarrow{\pi} \lim_{\leftarrow} \mathbb{R}/N\mathbb{Z}$ given by

$$\pi = \pi_{\infty} \times (-\pi_{\rm fin}),$$

where $\pi_{\infty} : \mathbb{R} \to \lim_{\leftarrow} \mathbb{R}/N\mathbb{Z}$ is the projection. Show that π induces an isomorphism $\mathbb{A}_{\mathbb{Q}}/\mathbb{Q} \xrightarrow{\sim} \lim_{\leftarrow} \mathbb{R}/N\mathbb{Z}$.

(e) Given a smooth periodic function $f \in \lim_{\to} \operatorname{Func}^{\infty}(\mathbb{R}/N\mathbb{Z})$ of period N, define its *adelic* $\inf_{\to} f \in \operatorname{Func}^{\infty}(\mathbb{A}_{\mathbb{Q}}/\mathbb{Q})$ as follows. First, let $N = \prod_{\to} p^{a_p}$ be the prime decomposition of N, with $a_p = 0$ for almost all p. Consider the compact set $K(N) = \prod_{\to} p^{a_p}\mathbb{Z}_p = N\hat{\mathbb{Z}} \subseteq \mathbb{A}_{\operatorname{fin}}$. For any $x \in \mathbb{A}_{\mathbb{Q}}$, use strong approximation to find $r \in \mathbb{R}$, $q \in \mathbb{Q}$ such that $r + q \in x + K(N)$ (note that K(N) is not open in $\mathbb{A}_{\mathbb{Q}}$, but $\mathbb{R} + K(N)$ is open). Define

$$\tilde{f}(x) = f(r).$$

Check that \tilde{f} is well defined, smooth and invariant to translation by \mathbb{Q} (that is, $\tilde{f} \in \operatorname{Func}^{\infty}(\mathbb{A}_{\mathbb{Q}}/\mathbb{Q})$).

Remark 2. In the adelic language, a function invariant to translation by \mathbb{Q} is often called *periodic*.

(f) Show that the map $f \mapsto \tilde{f}$ has an inverse given by

$$f(r) = \tilde{f}((r, 0, 0, 0, \dots)) = \tilde{f} \circ i_{\infty}(r),$$

where $i_{\infty} : \mathbb{R} \to \mathbb{A}_{\mathbb{Q}}$ is the embedding at infinity.

- (g) As an example, consider the function $e(r) = \exp(2\pi i r) \in \operatorname{Func}^{\infty}(\mathbb{R}/\mathbb{Z})$. Explicitly compute the function \tilde{e} to show that
 - $\tilde{e}(k) = 1$ for all $k \in K(1) = \hat{\mathbb{Z}} = \prod \mathbb{Z}_p$.
 - \tilde{e} is multiplicative, that is, $\tilde{e}(x+y) = \tilde{e}(x) \cdot \tilde{e}(y)$ for all $x, y \in \mathbb{A}_{\mathbb{Q}}$.
 - There are unique functions $e_v : \mathbb{Q}_v \to \mathbb{C}$ for every place v such that

$$\tilde{e}(x) = \prod e_v(x_v) = e_\infty(x_\infty) \cdot e_2(x_2) \cdot e_3(x_3) \cdot e_5(x_5) \cdots,$$

for all $x \in \mathbb{A}_{\mathbb{Q}}$, where $x = (x_{\infty}, x_2, x_3, x_5, \dots)$.

- $e_{\infty}(x_{\infty})$ is smooth, and the functions e_p are locally constant for all finite primes p, and all such functions are multiplicative.
- Finally, if $x_{\infty} \in \mathbb{R}$ then

$$e_{\infty}(x_{\infty}) = \exp(2\pi i x_{\infty}).$$

Also, if $x_p \in \mathbb{Q}_p$, then

$$e_p(x_p) = \exp(-2\pi i \{x_p\}),$$

where $\{x_p\}$ is the fractional part of x_p (that is, $\{x_p\}$ is some rational number such that $\{x_p\} \equiv x_p \pmod{\mathbb{Z}_p}$).

Question 3

We now define another important object of study, the group of *ideles*,

$$\begin{aligned} \mathbb{A}_{\mathbb{Q}}^{\times} &= GL_1(\mathbb{A}_{\mathbb{Q}}) = \\ \left\{ (x_{\infty}, x_2, x_3, x_5, x_7 \dots) \mid x_{\infty} \in \mathbb{R}^{\times}, \, x_p \in \mathbb{Q}_p^{\times} \text{ for all } p, \text{ and } x_p \in \mathbb{Z}_p^{\times} \text{ for almost all } p \right\}. \end{aligned}$$

We would now like to define a topology on $\mathbb{A}_{\mathbb{Q}}^{\times}$. However, the naive topology given by the subspace topology induced on the ideles from the adeles via the embedding $i : \mathbb{A}_{\mathbb{Q}}^{\times} \to \mathbb{A}_{\mathbb{Q}}$ is, as we will see, inadequate. Let us refer to this topology by $\mathcal{T}_{\text{naive}}$.

As we will see below, the correct topology on $\mathbb{A}_{\mathbb{Q}}^{\times}$ is the topology induced from the embedding $(i, i^{-1}) : \mathbb{A}_{\mathbb{Q}}^{\times} \to \mathbb{A}_{\mathbb{Q}} \times \mathbb{A}_{\mathbb{Q}}$, where $i^{-1}(x) = i(x)^{-1}$ is the inverse of i, and the topology on $\mathbb{A}_{\mathbb{Q}} \times \mathbb{A}_{\mathbb{Q}}$ is the usual product topology. Let us refer to this topology on $\mathbb{A}_{\mathbb{Q}}^{\times}$ as \mathcal{T} .

- (a) Show that the topology \mathcal{T} is generated by all sets of the form: $U = \prod U_v = U_\infty \times \prod U_p$, where U_v is open in \mathbb{Q}_v^{\times} for all places v, and $U_p = \mathbb{Z}_p^{\times}$ for almost all p.
- (b) Show that $\mathcal{T}_{naive} \subsetneq \mathcal{T}$.
- (c) Show that $\{-1,1\} \times \prod \mathbb{Z}_p^{\times}$ is a maximal compact subgroup of $\mathbb{A}_{\mathbb{O}}^{\times}$.
- (d) Show that $(0, \infty) \times \prod \mathbb{Z}_p^{\times}$ is a fundamental domain for the multiplicative action of \mathbb{Q}^{\times} on the ideles via the embedding $i_{\text{diag}} : \mathbb{Q}^{\times} \to \mathbb{A}_{\mathbb{Q}}^{\times}$ (verify that the image of \mathbb{Q}^{\times} is indeed in $\mathbb{A}_{\mathbb{Q}}^{\times}$!).
- (e) Show that $\mathbb{R} \cdot \mathbb{Q}$ is not dense in the ideles (hint: show that if $i_{\text{fin}}(q) \in \prod \mathbb{Z}_p^{\times}$, then $q = \pm 1$). Therefore, strong approximation does not hold on the ideles.

Question 4

In a similar manner to our treatment of $\mathbb{A}_{\mathbb{Q}}^{\times} = GL_1(\mathbb{A}_{\mathbb{Q}})$, let us consider $GL_2(\mathbb{A}_{\mathbb{Q}})$ with the correct topology, that is, the one generated by all sets of the form $U = \prod U_v = U_\infty \times \prod U_p$, where U_v is open in $GL_2(\mathbb{Q}_v)$ for all places v, and $U_p = GL_2(\mathbb{Z}_p)$ for almost all p.

- (a) Show that $K = O_2(\mathbb{R}) \times \prod GL_2(\mathbb{Z}_p)$ is a maximal compact subgroup of $GL_2(\mathbb{A}_Q)$.
- (b) Let D_{∞} be a fundamental domain for $GL_2(\mathbb{Z})\backslash GL_2(\mathbb{R})$. Show that $D_{\infty} \times \prod GL_2(\mathbb{Z}_p)$ is a fundamental domain for $GL_2(\mathbb{Q})\backslash GL_2(\mathbb{A}_{\mathbb{Q}})$.
- (c) Show that $SL_2(\mathbb{R}) \cdot SL_2(\mathbb{Q})$ is dense in $SL_2(\mathbb{A}_{\mathbb{Q}})$ (hint: show that it can approximate elements of the form $\begin{pmatrix} 1 & u \\ 0 & 1 \end{pmatrix}$ and $\begin{pmatrix} 1 & 0 \\ u & 1 \end{pmatrix}$ for $u \in \mathbb{A}_{\mathbb{Q}}$, and that such elements generate $SL_2(\mathbb{A}_{\mathbb{Q}})$).
- (d) Show that

$$GL_2(\mathbb{R}) \cdot GL_2(\mathbb{Q})$$

is not dense in $GL_2(\mathbb{A}_{\mathbb{Q}})$, but that

$$GL_2(\mathbb{R}) \cdot GL_2(\mathbb{Q}) \cdot Z(GL_2(\mathbb{A}_{\mathbb{Q}}))$$

is dense in $GL_2(\mathbb{A}_{\mathbb{Q}})$.