Automorphic Forms - Home Assignment 7

Joseph Bernstein

January 24, 2013

Our primary goal in this exercise is to explicitly compute the L-function $L(\chi, s)$ for the global field \mathbb{Q}, and to find its functional equation.

Question 1

We first need to do some (rather trivial) Fourier transforms on p-adic numbers. Recall that the p-adic exponent $e_{p}: \mathbb{Q}_{p}^{+} \rightarrow \mathbb{C}^{\times}$is given by:

$$
e_{p}(x)=\exp (-2 \pi i\{x\}),
$$

where $\{x\}$ is the fractional part of x, that is, a rational number $\{x\} \in \mathbb{Q}$ such that $x-\{x\} \in$ \mathbb{Z}_{p}. Let $f \in S\left(\mathbb{Q}_{p}\right)$ be any Schwartz function (locally constant and compactly supported function). Define the Fourier transform $F\{f\}$ of f to be the integral

$$
F\{f\}(y)=\int_{\mathbb{Q}_{p}} f(x) e_{p}(-x y) \mathrm{d} x,
$$

where $\mathrm{d} x$ is the standard Haar measure on \mathbb{Q}_{p}, that is, the unique measure satisfying $\mu\left(1+p^{n} \mathbb{Z}_{p}\right)=p^{-n}\left(\right.$ in particular, the set \mathbb{Z}_{p} has volume 1$)$.
We also denote (for a set $A \subseteq \mathbb{Q}_{p}$):

$$
\mathbf{1}_{A}(x)= \begin{cases}1 & \text { if } x \in A \\ 0 & \text { otherwise } .\end{cases}
$$

(a) Show that

$$
F\left\{\mathbf{1}_{\mathbb{Z}_{p}}\right\}=\mathbf{1}_{\mathbb{Z}_{p}} .
$$

(b) Show that

$$
F\left\{\mathbf{1}_{p^{n} \mathbb{Z}_{p}}\right\}=p^{-n} \mathbf{1}_{p^{-n} \mathbb{Z}_{p}} .
$$

(c) Show that

$$
F\left\{\mathbf{1}_{a+p^{n} \mathbb{Z}_{p}}\right\}(y)=e_{p}(-a y) p^{-n} \mathbf{1}_{p^{-n} \mathbb{Z}_{p}} .
$$

Question 2

Now, for the interesting part. Let $\chi: \mathbb{Q}_{p}^{\times} \rightarrow \mathbb{C}^{\times}$be a smooth (that is, locally constant) multiplicative character. Recall that

$$
\mathcal{E}_{\chi, s}(\phi)=Z_{p}(\chi, \phi, s)=\int_{\mathbb{Q}_{p}} \phi(x) \chi(x)|x|^{s} \mathrm{~d}^{\times} x .
$$

(a) Recall the definition of $\gamma_{p}(\chi, s)$, given by $F\left(\mathcal{E}_{\chi, s}\right)=\gamma_{p}(\chi, s) \mathcal{E}_{\chi^{-1,1-s}}$. By applying both sides to the test function $\phi=\mathbf{1}_{\mathbb{Z}_{p}}$, show that when χ is unramified, we have

$$
\gamma_{p}(\chi, s)=\frac{1-\chi(p)^{-1} p^{s-1}}{1-\chi(p) p^{-s}}
$$

(b) When χ is ramified, define its conductor N to be the least integer such that $\left.\chi\right|_{1+p^{N} \mathbb{Z}_{p}}=$ 1. That is, we have that χ is constant and equal to $\chi(1)=1$ on the neighborhood $1+p^{N} \mathbb{Z}_{p}$ of 1 , and N is the least such number. Using the test function $\phi=\mathbf{1}_{1+p^{N} \mathbb{Z}_{p}}$, show that for χ ramified,

$$
\begin{aligned}
Z_{p}\left(\chi^{-1}, \phi, 1-s\right) & =\frac{p}{p-1} p^{-N}, \\
Z_{p}(\chi, F\{\phi\}, s) & =\frac{p}{p-1} p^{-N} \frac{p^{N s}}{\chi\left(p^{N}\right)} \frac{1}{p^{N}} \sum_{\substack{j=0 \\
(j, p)=1}}^{p^{N}-1} e^{\frac{2 \pi i j}{p^{N}}} \chi(j) .
\end{aligned}
$$

Conclude that,

$$
\gamma_{p}(\chi, s)=\frac{p^{N s}}{\chi\left(p^{N}\right)} \frac{1}{p^{N}} \sum_{\substack{j=0 \\(j, p)=1}}^{p^{N}-1} e^{\frac{2 \pi i j}{p^{N}}} \chi(j) .
$$

(c) Recall that we defined the local L-function to be $L_{p}(\chi, s)=\left(1-\chi(p) p^{-s}\right)^{-1}$ when χ is unramified, and that we defined $L_{p}(\chi, s)=1$ when χ is ramified. Finally, recall that we had:

$$
\frac{Z_{p}(\chi, F\{\phi\}, s)}{L_{p}(\chi, s)}=\varepsilon_{p}(\chi, s) \frac{Z_{p}\left(\chi^{-1}, \phi, 1-s\right)}{L_{p}\left(\chi^{-1}, 1-s\right)} .
$$

Deduce that

$$
\varepsilon_{p}(\chi, s)=\left\{\begin{array}{l}
1 \text { if } \chi \text { is unramified, } \\
\frac{p^{N s}}{\chi\left(p^{N}\right)} \frac{1}{p^{N}} \sum_{\substack{j=0 \\
(j, p)=1}}^{p^{N}-1} e^{\frac{2 \pi i j}{p^{N}}} \chi(j) \quad \text { if } \chi \text { is ramified. } .
\end{array}\right.
$$

Question 3

Our goal now is to compute the L-function at ∞. So, let $\chi: \mathbb{R}^{\times} \rightarrow \mathbb{C}^{\times}$be some smooth multiplicative character. Let $\chi(r)=|r|^{\nu} \operatorname{sign}(r)^{\delta}$, where $\delta=0,1$. When $\delta=0$, we say that χ is unramified, and if $\delta=1$, we say that χ is ramified.
Define

$$
\mathcal{E}_{\chi, s}(\phi)=Z_{\infty}(\chi, \phi, s)=\int_{\mathbb{R}} \phi(x) \chi(x)|x|^{s} \mathrm{~d}^{\times} x,
$$

where $\mathrm{d}^{\times} x=\frac{\mathrm{d} x}{|x|}$.
(a) Show that for any Schwartz function $\phi \in S(\mathbb{R})$, the function $Z_{\infty}(\chi, \phi, s)$ converges absolutely for $\operatorname{Re}(s+\nu)>0$.
(b) We would like to show that $Z_{\infty}(\chi, \phi, s)$ has meromorphic continuation in s, and can only have specific poles. Show that if $\phi=\phi_{0}+\phi_{1}$, where ϕ_{1} is supported away from 0 (so that $\phi_{1}(x)=0$ for $|x|$ sufficiently small), then the poles and meromorphic continuation properties of $Z_{\infty}(\chi, \phi, s)$ depend only on ϕ_{0}.
(c) Suppose that ϕ is analytic in some neighborhood of 0 (that is, it has a Taylor series at 0 converging to itself in some neighborhood).
Show that if $\delta=0$, then $Z_{\infty}(\chi, \phi, s)$ can only have poles at

$$
s+\nu=0,-2,-4,-6, \ldots,
$$

with residues

$$
\phi(0), \frac{\phi^{(2)}(0)}{2!}, \frac{\phi^{(4)}(0)}{4!}, \frac{\phi^{(6)}(0)}{6!}, \ldots
$$

respectively.
Show that if $\delta=1$, then $Z_{\infty}(\chi, \phi, s)$ can only have poles at

$$
s+\nu=-1,-3,-5, \ldots
$$

with residues

$$
\phi^{\prime}(0), \frac{\phi^{(3)}(0)}{3!}, \frac{\phi^{(5)}(0)}{5!}, \ldots
$$

respectively.
(d) Use the fact that anayltic around 0 functions are dense among Schwartz functions to show that the above pole structure applies to any Schwartz function.
(e) We now know that if we choose some Schwartz function ϕ such that none of its derivatives at 0 are zero (and if χ is unramified, we also need that $\phi(0) \neq 0$), then the quotient

$$
\frac{Z_{\infty}(\chi, \psi, s)}{Z_{\infty}(\chi, \phi, s)}
$$

will be holomorphic for any other Schwartz function ψ. This gives us the greatest common divisor of all local zeta functions, but it is only defined up to multiplication by a holomorphic function. So, we must simply make a choice. A particularly convenient choice is $\phi(x)=\exp \left(-\pi x^{2}\right) x^{\delta}$.
Show that for this choice of ϕ, we have

$$
L_{\infty}(\chi, s)=Z_{\infty}(\chi, \phi, s)=\pi^{-(s+\nu+\delta) / 2} \Gamma\left(\frac{s+\nu+\delta}{2}\right)
$$

Question 4

The last ingredient we need is the computation of the local root number at infinity $\varepsilon_{\infty}(\chi, s)$, defined by

$$
\frac{Z_{\infty}(\chi, F\{\phi\}, s)}{L_{\infty}(\chi, s)}=\varepsilon_{\infty}(\chi, s) \frac{Z_{\infty}\left(\chi^{-1}, \phi, 1-s\right)}{L_{\infty}\left(\chi^{-1}, 1-s\right)}
$$

Recall that the Fourier transform at infinity is given by

$$
F\{\phi\}(y)=\int_{\mathbb{R}} \phi(x) e^{-2 \pi i x y} \mathrm{~d} x
$$

(a) Suppose that χ is unramified (so $\delta=0$). Compute that $F\{\phi\}=\phi$, and deduce that in this case,

$$
\gamma(\chi, s)=\frac{Z_{\infty}(\chi, F\{\phi\}, s)}{Z_{\infty}\left(\chi^{-1}, \phi, 1-s\right)}=\frac{L_{\infty}(\chi, s)}{L_{\infty}\left(\chi^{-1}, 1-s\right)}=\frac{\pi^{-(s+\nu) / 2} \Gamma\left(\frac{s+\nu}{2}\right)}{\pi^{-(1-s-\nu) / 2} \Gamma\left(\frac{1-s-\nu}{2}\right)}
$$

Colnclude that if χ is unramified, then $\varepsilon_{\infty}(\chi, s)=1$.
(b) Suppose that χ is ramified (so $\delta=1$). Compute that $F\{\phi\}=\frac{1}{i} \phi$, and deduce that in this case,

$$
\gamma(\chi, s)=\frac{Z_{\infty}(\chi, F\{\phi\}, s)}{Z_{\infty}\left(\chi^{-1}, \phi, 1-s\right)}=\frac{1}{i} \frac{L_{\infty}(\chi, s)}{L_{\infty}\left(\chi^{-1}, 1-s\right)}=\frac{1}{i} \frac{\pi^{-(s+\nu+1) / 2} \Gamma\left(\frac{s+\nu+1}{2}\right)}{\pi^{-(2-s-\nu) / 2} \Gamma\left(\frac{2-s-\nu}{2}\right)}
$$

Conclude that if χ is ramified, then $\varepsilon_{\infty}(\chi, s)=i^{-1}$.

Question 5

Let us wrap everything up. Let $\chi: \mathbb{A}_{\mathbb{Q}}^{\times} / \mathbb{Q}^{\times} \rightarrow \mathbb{C}^{\times}$be a grossencharacter. Let $\chi=\prod \chi_{v}$ be its decomposition over primes. Then we have that

$$
L(\chi, s)=\prod L_{v}\left(\chi_{v}, s\right)
$$

satisfies

$$
L\left(\chi^{-1}, 1-s\right)=\varepsilon(\chi, s) L(\chi, s)=\left(\prod \varepsilon_{v}\left(\chi_{v}, s\right)\right) L(\chi, s)
$$

So, we wish to compute the product of the local root numbers $\prod \varepsilon_{v}\left(\chi_{v}, s\right)$, which were calculated above. We denote $\chi_{\infty}=|\cdot|^{\nu} \operatorname{sign}(\cdot)^{\delta}$.
Let

$$
S=\{\text { finite primes } p \mid \chi \text { is ramified at } p\}
$$

(a) For any Dirichlet character $\rho: \mathbb{Z} / N \mathbb{Z} \rightarrow \mathbb{C}^{\times}$, define the Gauss sum,

$$
G(\rho)=\frac{1}{N} \sum_{\substack{j=0 \\(j, N)=1}}^{N-1} e^{\frac{2 \pi i j}{N}} \rho(j)
$$

Show that if N, N^{\prime} are coprime, and $\rho^{\prime}: \mathbb{Z} / N^{\prime} \mathbb{Z} \rightarrow \mathbb{C}^{\times}$is also a Dirichlet character, then

$$
G\left(\rho \rho^{\prime}\right)=\rho\left(N^{\prime}\right) \rho^{\prime}(N) G(\rho) G\left(\rho^{\prime}\right)
$$

(b) We denote the conductor of χ_{p} by N_{p}, and we let $N=\prod_{p \in S} p^{N_{p}}$. Also denote

$$
\tilde{\chi}(j)=\left\{\begin{array}{l}
\prod_{p \in S} \chi_{p}^{-1}(j) \quad \text { if }(j, N)=1 \\
0 \quad \text { otherwise }
\end{array}\right.
$$

Show that $\tilde{\chi}$ is a primitive Dirichlet character modulo N.
Also show that:

$$
\prod_{p \in S}\left(\frac{1}{\chi_{p}\left(p^{N_{p}}\right)} \sum_{\substack{j=0 \\(j, p)=1}}^{p^{N_{p}}-1} e^{\frac{2 \pi i j}{p^{N_{p}}}} \chi_{p}(j)\right)=\frac{1}{\prod_{p \in S} \chi_{p}(N)} G\left(\tilde{\chi}^{-1}\right)
$$

(c) Show that $\chi(N)=\chi_{\infty}(N) \prod_{p \in S} \chi_{p}(N)$. Conclude that since χ is a grossencharacter, then this product is equal to 1 .
Also show that if $p \notin S$, then $\chi_{p}(p)=\chi_{\infty}^{-1} \tilde{\chi}(p)=\tilde{\chi}(p) p^{-\nu}$.
(d) Finally, summarize everything and show that if we let

$$
L(\chi, s)=\pi^{-(s+\nu+\delta) / 2} \Gamma\left(\frac{s+\nu+\delta}{2}\right) \prod_{p \notin S}\left(1-\tilde{\chi}(p) p^{-(s+\nu)}\right)^{-1}
$$

(where $\chi_{\infty}=|\cdot|^{\nu} \operatorname{sign}(\cdot)^{\delta}$, as above) then

$$
L\left(\chi^{-1}, 1-s\right)=\frac{1}{i^{\delta}} N^{(s+\nu)} G\left(\tilde{\chi}^{-1}\right) L(\chi, s)
$$

(e) In particular, let $\chi=1$ be the trivial character, with $N=1, \nu=\delta=0, S=\emptyset$. Show that in this case, if we let

$$
L(1, s)=\pi^{-s / 2} \Gamma\left(\frac{s}{2}\right) \prod_{p}\left(1-p^{-s}\right)^{-1}=\pi^{-s / 2} \Gamma\left(\frac{s}{2}\right) \zeta(s),
$$

(where $\zeta(s)$ is the Riemann zeta function) then

$$
L(1, s)=L(1,1-s) .
$$

(Note that we have been implicitly assuming that $N \neq 1$ when multiplying the Gauss sums above. Verify that everything is still valid when $N=1$.)

