Automorphic Forms - Home Assignment 7

Joseph Bernstein

January 24, 2013

Our primary goal in this exercise is to explicitly compute the L-function $L(\chi, s)$ for the global field \mathbb{Q} , and to find its functional equation.

Question 1

We first need to do some (rather trivial) Fourier transforms on *p*-adic numbers. Recall that the *p*-adic exponent $e_p : \mathbb{Q}_p^+ \to \mathbb{C}^{\times}$ is given by:

$$e_p(x) = \exp(-2\pi i\{x\}),$$

where $\{x\}$ is the fractional part of x, that is, a rational number $\{x\} \in \mathbb{Q}$ such that $x - \{x\} \in \mathbb{Z}_p$. Let $f \in S(\mathbb{Q}_p)$ be any Schwartz function (locally constant and compactly supported function). Define the Fourier transform $F\{f\}$ of f to be the integral

$$F\{f\}(y) = \int_{\mathbb{Q}_p} f(x)e_p(-xy)\mathrm{d}x,$$

where dx is the standard Haar measure on \mathbb{Q}_p , that is, the unique measure satisfying $\mu(1+p^n\mathbb{Z}_p)=p^{-n}$ (in particular, the set \mathbb{Z}_p has volume 1). We also denote (for a set $A \subseteq \mathbb{Q}_p$):

$$\mathbf{1}_A(x) = \begin{cases} 1 & \text{if } x \in A, \\ 0 & \text{otherwise.} \end{cases}$$

(a) Show that

$$F\{\mathbf{1}_{\mathbb{Z}_p}\} = \mathbf{1}_{\mathbb{Z}_p}$$

(b) Show that

$$F\{\mathbf{1}_{p^n\mathbb{Z}_p}\}=p^{-n}\mathbf{1}_{p^{-n}\mathbb{Z}_p}.$$

(c) Show that

$$F\{\mathbf{1}_{a+p^n\mathbb{Z}_p}\}(y) = e_p(-ay)p^{-n}\mathbf{1}_{p^{-n}\mathbb{Z}_p}$$

Question 2

Now, for the interesting part. Let $\chi : \mathbb{Q}_p^{\times} \to \mathbb{C}^{\times}$ be a smooth (that is, locally constant) multiplicative character. Recall that

$$\mathcal{E}_{\chi,s}(\phi) = Z_p(\chi,\phi,s) = \int_{\mathbb{Q}_p} \phi(x)\chi(x)|x|^s \mathrm{d}^{\times}x$$

(a) Recall the definition of $\gamma_p(\chi, s)$, given by $F(\mathcal{E}_{\chi,s}) = \gamma_p(\chi, s) \mathcal{E}_{\chi^{-1}, 1-s}$. By applying both sides to the test function $\phi = \mathbf{1}_{\mathbb{Z}_p}$, show that when χ is unramified, we have

$$\gamma_p(\chi, s) = \frac{1 - \chi(p)^{-1} p^{s-1}}{1 - \chi(p) p^{-s}}.$$

(b) When χ is ramified, define its *conductor* N to be the least integer such that $\chi|_{1+p^N\mathbb{Z}_p} = 1$. That is, we have that χ is constant and equal to $\chi(1) = 1$ on the neighborhood $1 + p^N\mathbb{Z}_p$ of 1, and N is the least such number. Using the test function $\phi = \mathbf{1}_{1+p^N\mathbb{Z}_p}$, show that for χ ramified,

$$Z_p(\chi^{-1}, \phi, 1 - s) = \frac{p}{p - 1} p^{-N},$$

$$Z_p(\chi, F\{\phi\}, s) = \frac{p}{p - 1} p^{-N} \frac{p^{Ns}}{\chi(p^N)} \frac{1}{p^N} \sum_{\substack{j=0\\(j,p)=1}}^{p^{N-1}} e^{\frac{2\pi i j}{p^N}} \chi(j).$$

Conclude that,

$$\gamma_p(\chi, s) = \frac{p^{Ns}}{\chi(p^N)} \frac{1}{p^N} \sum_{\substack{j=0\\(j,p)=1}}^{p^N-1} e^{\frac{2\pi i j}{p^N}} \chi(j)$$

(c) Recall that we defined the local L-function to be $L_p(\chi, s) = (1 - \chi(p)p^{-s})^{-1}$ when χ is unramified, and that we defined $L_p(\chi, s) = 1$ when χ is ramified. Finally, recall that we had:

$$\frac{Z_p(\chi, F\{\phi\}, s)}{L_p(\chi, s)} = \varepsilon_p(\chi, s) \frac{Z_p(\chi^{-1}, \phi, 1-s)}{L_p(\chi^{-1}, 1-s)}.$$

Deduce that

$$\varepsilon_p(\chi, s) = \begin{cases} 1 & \text{if } \chi \text{ is unramified,} \\ \frac{p^{Ns}}{\chi(p^N)} \frac{1}{p^N} \sum_{\substack{j=0\\(j,p)=1}}^{p^N-1} e^{\frac{2\pi i j}{p^N}} \chi(j) & \text{if } \chi \text{ is ramified.} \end{cases}$$

Question 3

Our goal now is to compute the L-function at ∞ . So, let $\chi : \mathbb{R}^{\times} \to \mathbb{C}^{\times}$ be some smooth multiplicative character. Let $\chi(r) = |r|^{\nu} \operatorname{sign}(r)^{\delta}$, where $\delta = 0, 1$. When $\delta = 0$, we say that χ is *unramified*, and if $\delta = 1$, we say that χ is *ramified*.

Define

$$\mathcal{E}_{\chi,s}(\phi) = Z_{\infty}(\chi,\phi,s) = \int_{\mathbb{R}} \phi(x)\chi(x)|x|^{s} \mathrm{d}^{\times}x,$$

where $d^{\times}x = \frac{dx}{|x|}$.

- (a) Show that for any Schwartz function $\phi \in S(\mathbb{R})$, the function $Z_{\infty}(\chi, \phi, s)$ converges absolutely for $\operatorname{Re}(s + \nu) > 0$.
- (b) We would like to show that $Z_{\infty}(\chi, \phi, s)$ has meromorphic continuation in s, and can only have specific poles. Show that if $\phi = \phi_0 + \phi_1$, where ϕ_1 is supported away from 0 (so that $\phi_1(x) = 0$ for |x| sufficiently small), then the poles and meromorphic continuation properties of $Z_{\infty}(\chi, \phi, s)$ depend only on ϕ_0 .
- (c) Suppose that ϕ is analytic in some neighborhood of 0 (that is, it has a Taylor series at 0 converging to itself in some neighborhood).

Show that if $\delta = 0$, then $Z_{\infty}(\chi, \phi, s)$ can only have poles at

$$s + \nu = 0, -2, -4, -6, \dots,$$

with residues

$$\phi(0), \frac{\phi^{(2)}(0)}{2!}, \frac{\phi^{(4)}(0)}{4!}, \frac{\phi^{(6)}(0)}{6!}, \dots$$

respectively.

Show that if $\delta = 1$, then $Z_{\infty}(\chi, \phi, s)$ can only have poles at

$$s + \nu = -1, -3, -5, \dots,$$

with residues

$$\phi'(0), \frac{\phi^{(3)}(0)}{3!}, \frac{\phi^{(5)}(0)}{5!}, \dots$$

respectively.

- (d) Use the fact that analytic around 0 functions are dense among Schwartz functions to show that the above pole structure applies to any Schwartz function.
- (e) We now know that if we choose some Schwartz function ϕ such that none of its derivatives at 0 are zero (and if χ is unramified, we also need that $\phi(0) \neq 0$), then the quotient

$$\frac{Z_{\infty}(\chi,\psi,s)}{Z_{\infty}(\chi,\phi,s)}$$

will be holomorphic for any other Schwartz function ψ . This gives us the greatest common divisor of all local zeta functions, but it is only defined up to multiplication by a holomorphic function. So, we must simply make a choice. A particularly convenient choice is $\phi(x) = \exp(-\pi x^2)x^{\delta}$.

Show that for this choice of ϕ , we have

$$L_{\infty}(\chi,s) = Z_{\infty}(\chi,\phi,s) = \pi^{-(s+\nu+\delta)/2} \Gamma\left(\frac{s+\nu+\delta}{2}\right).$$

Question 4

The last ingredient we need is the computation of the local root number at infinity $\varepsilon_{\infty}(\chi, s)$, defined by

$$\frac{Z_{\infty}(\chi, F\{\phi\}, s)}{L_{\infty}(\chi, s)} = \varepsilon_{\infty}(\chi, s) \frac{Z_{\infty}(\chi^{-1}, \phi, 1-s)}{L_{\infty}(\chi^{-1}, 1-s)}$$

Recall that the Fourier transform at infinity is given by

$$F\{\phi\}(y) = \int_{\mathbb{R}} \phi(x) e^{-2\pi i x y} \mathrm{d}x.$$

(a) Suppose that χ is unramified (so $\delta = 0$). Compute that $F\{\phi\} = \phi$, and deduce that in this case,

$$\gamma(\chi,s) = \frac{Z_{\infty}(\chi,F\{\phi\},s)}{Z_{\infty}(\chi^{-1},\phi,1-s)} = \frac{L_{\infty}(\chi,s)}{L_{\infty}(\chi^{-1},1-s)} = \frac{\pi^{-(s+\nu)/2}\Gamma(\frac{s+\nu}{2})}{\pi^{-(1-s-\nu)/2}\Gamma(\frac{1-s-\nu}{2})}.$$

Colliculate that if χ is unramified, then $\varepsilon_{\infty}(\chi, s) = 1$.

(b) Suppose that χ is ramified (so $\delta = 1$). Compute that $F\{\phi\} = \frac{1}{i}\phi$, and deduce that in this case,

$$\gamma(\chi,s) = \frac{Z_{\infty}(\chi,F\{\phi\},s)}{Z_{\infty}(\chi^{-1},\phi,1-s)} = \frac{1}{i} \frac{L_{\infty}(\chi,s)}{L_{\infty}(\chi^{-1},1-s)} = \frac{1}{i} \frac{\pi^{-(s+\nu+1)/2} \Gamma\left(\frac{s+\nu+1}{2}\right)}{\pi^{-(2-s-\nu)/2} \Gamma\left(\frac{2-s-\nu}{2}\right)}.$$

Conclude that if χ is ramified, then $\varepsilon_{\infty}(\chi, s) = i^{-1}$.

Question 5

Let us wrap everything up. Let $\chi : \mathbb{A}_{\mathbb{Q}}^{\times} / \mathbb{Q}^{\times} \to \mathbb{C}^{\times}$ be a grossencharacter. Let $\chi = \prod \chi_v$ be its decomposition over primes. Then we have that

$$L(\chi, s) = \prod L_v(\chi_v, s)$$

satisfies

$$L(\chi^{-1}, 1-s) = \varepsilon(\chi, s)L(\chi, s) = \left(\prod \varepsilon_v(\chi_v, s)\right)L(\chi, s).$$

So, we wish to compute the product of the local root numbers $\prod \varepsilon_v(\chi_v, s)$, which were calculated above. We denote $\chi_{\infty} = |\cdot|^{\nu} \operatorname{sign}(\cdot)^{\delta}$.

Let

$$S = \{ \text{finite primes } p \mid \chi \text{ is ramified at } p \}.$$

(a) For any Dirichlet character $\rho : \mathbb{Z}/N\mathbb{Z} \to \mathbb{C}^{\times}$, define the Gauss sum,

$$G(\rho) = \frac{1}{N} \sum_{\substack{j=0\\(j,N)=1}}^{N-1} e^{\frac{2\pi i j}{N}} \rho(j).$$

Show that if N, N' are coprime, and $\rho' : \mathbb{Z}/N'\mathbb{Z} \to \mathbb{C}^{\times}$ is also a Dirichlet character, then

$$G(\rho\rho') = \rho(N')\rho'(N)G(\rho)G(\rho').$$

(b) We denote the conductor of χ_p by N_p , and we let $N = \prod_{p \in S} p^{N_p}$. Also denote

$$\tilde{\chi}(j) = \begin{cases} \prod_{p \in S} \chi_p^{-1}(j) & \text{if } (j, N) = 1, \\ 0 & \text{otherwise.} \end{cases}$$

Show that $\tilde{\chi}$ is a primitive Dirichlet character modulo N. Also show that:

$$\prod_{p \in S} \left(\frac{1}{\chi_p(p^{N_p})} \sum_{\substack{j=0\\(j,p)=1}}^{p^{N_p}-1} e^{\frac{2\pi i j}{p^{N_p}}} \chi_p(j) \right) = \frac{1}{\prod_{p \in S} \chi_p(N)} G(\tilde{\chi}^{-1}).$$

(c) Show that $\chi(N) = \chi_{\infty}(N) \prod_{p \in S} \chi_p(N)$. Conclude that since χ is a grossencharacter, then this product is equal to 1. Α

lso show that if
$$p \notin S$$
, then $\chi_p(p) = \chi_{\infty}^{-1} \tilde{\chi}(p) = \tilde{\chi}(p) p^{-\nu}$.

(d) Finally, summarize everything and show that if we let

$$L(\chi, s) = \pi^{-(s+\nu+\delta)/2} \Gamma\left(\frac{s+\nu+\delta}{2}\right) \prod_{p \notin S} (1 - \tilde{\chi}(p)p^{-(s+\nu)})^{-1}$$

(where $\chi_{\infty} = |\cdot|^{\nu} \operatorname{sign}(\cdot)^{\delta}$, as above) then

$$L(\chi^{-1}, 1-s) = \frac{1}{i^{\delta}} N^{(s+\nu)} G(\tilde{\chi}^{-1}) L(\chi, s).$$

(e) In particular, let $\chi = 1$ be the trivial character, with N = 1, $\nu = \delta = 0$, $S = \emptyset$. Show that in this case, if we let

$$L(1,s) = \pi^{-s/2} \Gamma\left(\frac{s}{2}\right) \prod_{p} (1-p^{-s})^{-1} = \pi^{-s/2} \Gamma\left(\frac{s}{2}\right) \zeta(s),$$

(where $\zeta(s)$ is the Riemann zeta function) then

$$L(1,s) = L(1,1-s).$$

(Note that we have been implicitly assuming that $N \neq 1$ when multiplying the Gauss sums above. Verify that everything is still valid when N = 1.)