Automorphic Forms - Home Assignment 8

Joseph Bernstein

January 25, 2013

Our goal in this exercise will be to illustrate the Langlands correspondence by considering a specific example.

Question 1

Let $K=\mathbb{Q}$, and L be the splitting field of the polynomial $x^{3}+x+1=0$. We will denote its roots by $\alpha, \beta, \gamma \in L$. We will be working with this example throughout this assignment. First of all, let us begin by doing some Galois theory!
(a) Show that $\beta^{2}+\alpha \beta+\left(\alpha^{2}+1\right)=0$, and $\gamma=-\alpha-\beta$. From now on, we will consider L to be the explicit splitting field $\mathbb{Q}[\alpha, \beta, \gamma] /<\alpha^{3}+\alpha+1, \beta^{2}+\alpha \beta+\left(\alpha^{2}+1\right), \alpha+\beta+\gamma>$.
(b) Show that $L=\mathbb{Q}[\alpha, \beta]=\mathbb{Q}[\alpha, \sqrt{\Delta}]$, where $\Delta=-31$ is the discriminant of the polynomial $x^{3}+x+1$. Conclude that L / K is Galois with Galois $\operatorname{group} G=\operatorname{Gal}(L / K)=S_{3}$.

Question 2

Our current goal is to realize the behavior of the Artin L-function corresponding to a specific non-trivial Galois representation ρ.
Let L, K as above, and let $\rho: G=\operatorname{Gal}(L / K)=S_{3}$ be the unique 2-dimensional irreducible representation of S_{3}. Explicitly, it is given by considering S_{3} as the group generated by a 120°-rotation and a reflection:

$$
\begin{aligned}
&\left(\begin{array}{ll}
1 & 2
\end{array}\right) \mapsto\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \\
&\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right) \mapsto\left(\begin{array}{cc}
-1 / 2 & -\sqrt{3} / 2 \\
\sqrt{3} / 2 & -1 / 2
\end{array}\right) .
\end{aligned}
$$

Let us determine the behavior of the corresponding Artin L-function.
(a) Case ??: let p be a prime such that the polynomial $x^{3}+x+1$ is irreducible in $\mathbb{Z} / p \mathbb{Z}$. Show that the Frobenius element $F r_{p}$ must act as a cycle on the roots of $x^{3}+x+1$ in L, and deduce that the local L-function is:

$$
L_{p}(\rho, s)=\operatorname{det}\left(1-p^{-s} \rho\left(F r_{p}\right)\right)^{-1}=\left(1+p^{-s}+p^{-2 s}\right)^{-1}
$$

(b) Case ??: let p be a prime such that the polynomial $x^{3}+x+1$ is completely reducible in $\mathbb{Z} / p \mathbb{Z}$ (that is, has 3 distinct roots). Show that the Frobenius element $F r_{p}$ must not affect any of the roots of $x^{3}+x+1$ in L. Deduce that the local L-function is:

$$
L_{p}(\rho, s)=\operatorname{det}\left(1-p^{-s} \rho\left(F r_{p}\right)\right)^{-1}=\left(1-2 p^{-s}+p^{-2 s}\right)^{-1} .
$$

(c) Case ??: let p be a prime such that the polynomial $x^{3}+x+1$ has exactly one root in $\mathbb{Z} / p \mathbb{Z}$. Show that the Frobenius element $F r_{p}$ must act as a transposition on two of the roots of $x^{3}+x+1$ in L, and deduce that the local L-function is:

$$
L_{p}(\rho, s)=\operatorname{det}\left(1-p^{-s} \rho\left(F r_{p}\right)\right)^{-1}=\left(1-p^{-2 s}\right)^{-1} .
$$

(d) Case ??: let $p=31$. Show that the polynomial $x^{3}+x+1$ has decomposition $(x-$ $3)(x+17)^{2}$ in $\mathbb{Z} / 31 \mathbb{Z}$. Show that the inertia subgroup I in this case consists of a single transposition, and conclude that ρ is ramified at 31 . Show that in this case, the Frobenius element $F r_{31}$ acts trivially on L. Deduce that the local L-function is:

$$
L_{31}(\rho, s)=\operatorname{det}\left(1-\left.31^{-s} \rho\left(F r_{31}\right)\right|_{V^{I}}\right)^{-1}=\left(1-31^{-s}\right)^{-1}
$$

where $V \cong \mathbb{C}^{2}$ is the space on which ρ acts, and V^{I} is the subspace invariant under the action of the inertia subgroup.

Question 3

Our current goal is to compute by hand the first few terms of the Artin L-function corresponding to the above Galois representation ρ, and to show that the above list of cases is exhaustive.
(a) Show that case ?? occurs if and only if $\Delta=-31$ has no square root in $\mathbb{Z} / p \mathbb{Z}$.
(b) Conclude by quadratic reciprocity that case ?? occurs if and only if p has no square root modulo 31. Equivalently, show that case ?? occurs iff

$$
p \equiv 3,6,11,12,13,15,17,21,22,23,24,26,27,29,30 \quad(\bmod 31)
$$

(c) Show that at least one of the cases ??, ??, ?? and ?? must occur. That is, ρ is ramified only at $p=31$.

Remark 1. The following is a computer-generated list of the first few primes, and the cases to which they belong:

prime	case	$L_{p}(\rho, s)$
$p=2$	$? ?$	$\left(1+2^{-s}+2^{-2 s}\right)^{-1}$
$p=3$	$? ?$	$\left(1-3^{-2 s}\right)^{-1}$
$p=5$	$? ?$	$\left(1+5^{-s}+5^{-2 s}\right)^{-1}$
$p=7$	$? ?$	$\left(1+7^{-s}+7^{-2 s}\right)^{-1}$
$p=11$	$? ?$	$\left(1-11^{-2 s}\right)^{-1}$
$p=13$	$? ?$	$\left(1-13^{-2 s}\right)^{-1}$
$p=17$	$? ?$	$\left(1-17^{-2 s}\right)^{-1}$
$p=19$	$? ?$	$\left(1+19^{-s}+19^{-2 s}\right)^{-1}$
$p=23$	$? ?$	$\left(1-23^{-2 s}\right)^{-1}$
$p=29$	$? ?$	$\left(1-29^{-2 s}\right)^{-1}$
$p=31$	$? ?$	$\left(1-31^{-s}\right)^{-1}$
$p=37$	$? ?$	$\left(1-37^{-2 s}\right)^{-1}$
$p=41$	$? ?$	$\left(1+41^{-s}+41^{-2 s}\right)^{-1}$
$p=43$	$? ?$	$\left(1-43^{-2 s}\right)^{-1}$
$p=47$	$? ?$	$\left(1-2 \cdot 47^{-s}+47^{-2 s}\right)^{-1}$
$p=53$	$? ?$	$\left(1-53^{-2 s}\right)^{-1}$
$p=59$	$? ?$	$\left(1+59^{-s}+59^{-2 s}\right)^{-1}$
$p=61$	$? ?$	$\left(1-61^{-2 s}\right)^{-1}$
$p=67$	$? ?$	$\left(1-2 \cdot 67^{-s}+67^{-2 s}\right)^{-1}$
$p=71$	$? ?$	$\left(1+71^{-s}+71^{-2 s}\right)^{-1}$

Question 4

Now that we have an L-function, what can we say about the corresponding automorphic representation? We will assume throughout this question that there exists some irreducible
automorphic representation (π, V) of $G L_{2}$ such that we have an equality of L-functions (up to terms at ∞):

$$
L(\pi, s)=\prod_{p} L_{p}(\pi, s)=L(\rho, s)=\prod_{p} L_{p}(\rho, s)
$$

Note that we are assuming that the above equation holds exactly, with the product over all finite primes, including 31.
(a) Prove (via some very general anayltic nonsense) that $L_{p}(\rho, s)=L_{p}(\pi, s)$ for all finite primes p.
(b) Let $z: \mathbb{A}_{\mathbb{Q}}^{\times} \rightarrow Z\left(G L_{2}\left(\mathbb{A}_{\mathbb{Q}}\right)\right)$ be defined by $z(r)=\left(\begin{array}{cc}r & 0 \\ 0 & r\end{array}\right)$. Use Schur's lemma to show that there is some grossencharacter $\omega_{\pi}: \mathbb{A}_{\mathbb{Q}}^{\times} / \mathbb{Q}^{\times} \rightarrow \mathbb{C}^{\times}$such that

$$
\pi(z(r)) \cdot f=\omega_{\pi}(r) f
$$

for all $r \in \mathbb{A}_{\mathbb{Q}}^{\times}$and $f \in V$. This ω_{π} is called the central character of π.
(c) Show that for all finite primes $p \neq 31$, we have that the local character $\omega_{\pi, p}: \mathbb{Q}_{p}^{\times} \rightarrow \mathbb{C}^{\times}$ is unramified and satisfies

$$
\omega_{\pi, p}(p)=\left(\frac{p}{31}\right)= \begin{cases}1 & \text { if } p \text { has a square root modulo } 31 \\ -1 & \text { if } p \text { has no square root modulo } 31\end{cases}
$$

which is also known as the Legendre symbol.
(d) Use the fact that ω_{π} is a grossencharacter to deduce that:

$$
\omega_{\pi, 31}\left(a \cdot 31^{n}\right)=\left(\frac{a}{31}\right),
$$

for all $n \in \mathbb{Z}, a \in \mathbb{Z}_{31}$, and that

$$
\omega_{\pi, \infty}(x)=\operatorname{sign} x
$$

for all $x \in \mathbb{R}^{\times}$.
Remark 2. Note that in fact, in addition to determining the central character of π, we can also determine the level of the classical modular form to which it corresponds. Indeed, we have seen that π is only ramified at 31 and ∞ (the fact that it is ramified at ∞ follows from the fact that its central character is ramified at ∞).
Furthermore, we note that the L-function at 31 is not equal to 1 , it is not quadratic, and π_{31} has a ramified central character. It is possible to see that this only happens if π_{31} is a principal series representation, induced from an unramified character χ_{1} and a ramified character χ_{2} such that $\chi_{1}(31)=1$ is the coefficient of -31^{-s} in the L-function. Since $\chi_{1} \chi_{2}=\omega_{\pi, 31}$, we also know χ_{2}. The explicit definition of the principal series representation can then be played to show that π_{31} always has a $K_{0,1}(31)$-fixed vector, where

$$
K_{0,1}(31)=\left\{A \in G L_{2}\left(\mathbb{Z}_{p}\right) \left\lvert\, A \equiv\left(\begin{array}{ll}
* & * \\
0 & 1
\end{array}\right) \quad(\bmod 31)\right.\right\}
$$

Thus, we see that the automorphic representation π contains an automorphic form f invariant to

$$
\left\{A \in G L_{2}\left(\mathbb{A}_{\text {fin }}\right) \left\lvert\, A_{31} \equiv\left(\begin{array}{cc}
* & * \\
0 & 1
\end{array}\right) \quad(\bmod 31)\right.\right\}
$$

In particular, f corresponds to a classical form of level 31 , and character $\chi(a)=\left(\frac{a}{31}\right)$.

