§5. Nonabelian cohomology

In what follows, G denotes a profinite group.

5.1 Definition of H® and of H!

A G-set E is a discrete topological space on which G acts continuously; as in the
case of G-modules, this amounts to saying that E = |JEY, for U running over
the set of open subgroups of G (we denote by EV the subset of E of elements
fixed under U). If s € G and z € E, the image s(z) of £ under s will often
be denoted by *z [but never z°, to avoid the ugly formula z(*t) = (2t)®)]. If E
and E’ are two G-sets, a morphism of E to E' is a map f : E — E’ which
commutes with the action of G; if we wish to be explicit about G, we will write
“G-morphism”. The G-sets form a category.

A G-group A is a group in the above-mentioned category; this amounts to
saying that it is a G-set, with a group structure invariant under G (i.e. *(zy) =
*z°y). When A is commutative, one recovers the notion of a G-module, used in
the previous sections.

If E is a G-set, we put H°(G,E) = EC, the set of elements of E fixed
under G. If E is a G-group, H°(G, E) is a group.

If A is a G-group, one calls 1-cocycle (or simply cocycle) of G in A a map
s — ag of G to A which is continuous and such that:

ast = as’a; (s,t € G).

The set of these cocycles will be denoted Z1(G, A). Two cocycles a and a’ are
said to be cohomologous if there exists b € A such that a/, = b~la,*b. This is
an equivalence relation in Z1(G, A), and the quotient set is denoted H'(G, A).
This is the “first cohomology set of G in A”; it has a distinguished element
(called the “neutral element” even though there is in general no composition law
on H!(G, A)): the class of the unit cocycle; we denote it by either 0 or 1. One
checks that .
H'(G, A) = lim H'(G/U, A"),

for U running over the set of open normal subgroups of G; moreover, the maps
HY(G/U,AY) — H'(G, A) are injective.

The cohomology sets H%(G, A) and H!(G, A) are functorial in A, and coin-
cide with the cohomology groups of dimensions 0 and 1 when A is commutative.
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Remarks.
1) One would like also to define H%(G, A), H3(G, A), ... I will not attempt
to do so; the interested reader may consult Dedecker [38], [39] and Giraud [54].

2) The nonabelian H! are pointed sets; the notion of an exact sequence
therefore makes sense (the image of a map is equal to the inverse image of the
neutral element); however, such an exact sequence gives no information about the
equivalence relation defined by a map; this defect (particularly obvious in [145],
p. 131-134), can be remedied thanks to the notion of twisting, to be developed
in §5.3.

Ezercises.

1) Let A be a G-group, and let A - G be the semidirect product of G by A
(defined in such a way that sas~! = %a for a € A and s € G).

A cocycle a = (a;) € Z'(G, A) defines a continuous lifting

fo:G— A-G

by fa(s) = as - s, and conversely. Show that the liftings f, and f,+ associated to
the cocycles a and a’ are conjugate by an element of A if and only if a and a’
are cohomologous.

2) Let G = 2; denote by o the canonical generator of G.

(a) If E is a G-set, o defines a permutation of F all of whose orbits are finite;
conversely, such a permutation defines a G-set structure.

(b) Let A be a G-group. Let (a;) be a cocycle of G in A, and let a = a,.
Show that there exists n > 1 such that ¢™(a) = a and that a-o(a)---o™ !(a)
is of finite order. Conversely, every a € A for which there exists such an n
corresponds to one and only one cocycle. If a and a’ are two such elements, the
corresponding cocycles are cohomologous if and only if there exists b € A such
that a’ = b=1.a-0(b).

(c) How does the above need modifying when one replaces Z by Z,?

5.2 Principal homogeneous spaces over A — a new

definition of H'(G, A)

Let A be a G-group, and let E be a G-set. One says that A acts on the left on
E (in a manner compatible with the action of G) if it acts on E in the usual
sense and if *(a-z) = *a-°z for a € A, z € F (this amounts to saying that the
canonical map of A X E to F is a G-morphism). This is also written 4F as a
reminder that A acts on the left (there is an obvious similar notation for right
actions).

A principal homogeneous space (or torsor) over A is a non-empty G-set P,
on which A acts on the right (in a manner compatible with G) so as to make
of it an “affine space” over A (i.e. for each pair z,y € P, there exists a unique
a € A such that y = x - a). The notion of an isomorphism between two such
spaces is defined in an obvious way.
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Proposition 33. Let A be a G-group. There is a bijection between the set of
classes of principal homogeneous spaces over A and the set H'(G, A).

Let P(A) be the first set. One defines a map
A: P(A) — HY(G, A)

in the following way:

If P € P(A), we choose a point z € P. If s € G, one has °z € P, there-
fore there exists a; € A such that *x = z-az. One checks that s — a; is a
cocycle. Substituting z - b for z changes this cocycle into s — b=1a,%b, which is
cohomologous to it. One may thus define A by taking A\(P) as the class of a,.

Vice versa, one defines u : H'(G, A) — P(A) as follows:

If a, € Z1(G, A), denote by P, the group A on which G acts by the following
“twisted” formula:

Y =ag’T.
If one lets A act on the right on P, by translations, one obtains a principal
homogeneous space. Two cohomologous cocycles give two isomorphic spaces.
This defines the map u, and one checks easily that Aoy =1and poA =1.

Remark.

The principal spaces considered above are right principal spaces. One may
similarly define the notion of a left principal space; we leave to the reader the
task of defining a bijection between the two notions.

5.3 Twisting

Let A be a G-group, and let P be a principal homogeneous space over A. Let F'
be a G-set on which A acts on the left (compatibly with G). On P x F, consider
the equivalence relation which identifies an element (p, f) with the elements
(p-a,a"1f), a € A. This relation is compatible with the action of G, and the
quotient is a G-set, denoted PxAF, or pF. An element of P x4 F can be written
in the form p-f, p € P, f € F, and one has (pa) f = p(af), which explains the
notation. Remark that, for all p € P, the map f — p- f is a bijection of F
onto pF’; for this reason, one says that pF' is obtained from F by twisting it
using P.

The twisting process can also be defined from the cocycle point of view. If
(as) € ZY(G, A), denote by ,F the set F on which G acts by the formula

Yf=a,-°f.
One says that ,F' is obtained by twisting F' using the cocycle as.
The connection between these points of view is easy to make: if p € P, we

have seen that p defines a cocycle a, by the formula °p = p-a;. The map f — p-f
defined above is an isomorphism of the G-set o F' with the G-set pF'; indeed one

has
pPf=p-as’f =" f=°(p-f) .
This shows in particular that , F' is isomorphic to F' if a and b are cohomologous.



48 1.§5 Nonabelian cohomology

Remark.

Note that there is, in general, no canonical isomorphism between ,F and
»F', and that consequently it is impossible to identify these two sets, as one
would be tempted to do. In particular, the notation ,F, with o € H(G, A),
is dangerous (even if sometimes convenient...). Of course, the same difficulty
occurs in Topology, in the theory of fiber spaces (which we are mimicking).

The twisting operation enjoys a number of elementary properties:

(a) oF is functorial in F' (for A-morphisms F — F').

(b) We have o(F x F') = ,F x ,F'.

(c) If a G-group B acts on the right on F' (so that it commutes with the
action of A), B also acts on ,F.

(d) If F has a G-group structure invariant under A, the same structure on
oF is also a G-group structure.

Examples.

1) Take for F' the group A, acting on itself by left translations. Since right
translations commute with left translations, property (c) above shows that A
acts on the right on ,F, and one obtains thus a principal homogeneous space
over A (namely the space denoted by , P in the previous subsection).

In the notation P x AF, this can be written:

Px4A=P,

a cancellation formula analogous to E®4 A = E.

2) Again take for F the group A, acting this time by inner automorphisms.
Since this action preserves the group structure of A, property (d) shows that ,A
is a G-group [one could twist any normal subgroup of A in the same way]. By
definition, , A has the same underlying group as A, and the action of G on ,A
is given by the formula

Ve = ay’z-a;! (s€G, z€A).

Proposition 34. Let F' be a G-set where A acts on the left (compatibly
with G), and let a be a cocycle of G in A. Then the twisted group ,A acts
on F, compatibly with G.

One needs to check that the map (a,z) — ax of A X oF an ,F is a
G-morphism. This is a simple computation.

Corollary. If P is a principal homogeneous space over A, the group pA acts on
the left on P, and makes P into a principal left-homogeneous space over pA.

The fact that pA acts on P is a special case of prop. 34 (or can be seen
directly, if one wishes). It is clear that this makes P into a principal left-
homogeneous space over pA.
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Remark.

If A and A’ are two G-groups, one defines the notion of an (A, A’)-principal
space in an obvious way: it is a principal (left) A-space, and a principal (right)
A’-space, with the actions of A and A’ commuting. If P is such a space, the
above corollary shows that A may be identified with pA’. If Q is an (A’, A”)-
principal space (A” being some other G-group), the space Po@Q = P X A'Q has
a canonical structure of an (A’, A”)-principal space. In this way one obtains a
composition law (not everywhere defined) on the set of “biprincipal” spaces.

Proposition 35. Let P be a right principal homogeneous space for a G-group A,
and let A’ = pA be the corresponding group. If one associates to each principal
(right)-homogeneous space Q over A’ the composition Q o P, one obtains a bi-
jection of H'(G, A") onto H'(G, A) that takes the neutral element of H(G, A’)
into the class of P in H'(G, A).

[More briefly: if one twists a group A by a cocycle of A itself, one gets a
group A’ which has the same cohomology as A in dimension 1.]

Define the opposite P of P as follows: it is an (4, A’)-principal space, identical
to P as a G-set, with the group A acting on the left by a-p = p-a!, and the
group A’ on the right by p-a’ = a’ “Lp. By associating with each principal right
A-space R the composition R o P, we obtain the inverse map of that given by
Q@ — @ o P. The proposition follows.

Proposition 35 bis. Leta € Z1(G, A), and let A’ = ,A. To each cocycle a’, in
A’ let us associate a), - a,; this gives a cocycle of G in A, whence a bijection

te: Z1(G,A") — Z}(G,A) .
By taking quotients, t, defines a bijection
7. : HY(G, A") — H(G, A)
mapping the neutral element of H'(G, A’) into the class a of a.

This is essentially a translation of prop. 35 in terms of cocycles. It may also
be proved by direct computation.

Remarks.
1) When A is abelian, we have A’ = A and 7, is simply the translation by the
class a of a.

2) Propositions 35 and 35 bis, elementary as they are, are nonetheless useful.
As we shall see, they give a method to determine the equivalence relations which
occur in various “cohomology exact sequences”.

Exercise.

Let A be a G-group. Let E(A) be the set of classes of (A, A)-principal spaces.
Show that the composition makes E(A) into a group, and that this group acts
on HY(G, A). If A is abelian, E(A) is the semi-direct product of Aut(A) by the
group H'(G, A). In the general case, show that E(A) contains the quotient of
Aut(A) by the inner automorphisms defined by the elements of A®. How may
one define E(A) using cocycles?
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5.4 The cohomology exact sequence associated to a
subgroup

Let A and B be two G-groups, and let u : A — B be a G-homomorphism. This
homomorphism defines a map

v: HY(G,A) — H'(G,B) .

Let a € HY(G, A). We wish to describe the fiber of o for v, that is the set
v~!(v(a)). Choose a representative cocycle a for c, and let b be its image in B.
If one puts A’ = ; A, B’ =B, it is clear that u defines a homomorphism

u:A— B,

hence a map v’ : H}(G, A') — H(G, B).
We also have the following commutative diagram (where the letters 7, and
7p denote the bijections defined in 5.3):

HY(G,A) = HY(G,B)
] g
HY(G,4) 2 HY(G,B) .

Since 7, transforms the neutral element of H(G, B’) into v(a), we see that 7,
is a bijection of the kernel of v’ onto to the fiber v—!(v(a)) of . In other words,
twisting allows one to transform each fiber of v into a kernel — and these kernels
themselves may occur in exact sequences (cf. [145], loc. cit.).

Let us apply this principle to the simplest possible case, that in which A is
a subgroup of B.

Consider the homogeneous space B/A of left A-classes of B; it is a G-set, and
H°(G, B/A) is well-defined. Moreover, if x € H°(G, B/A), the inverse image X
of z in B is a principal (right-)homogeneous A-space; its class in H!(G, A) will
be denoted by §(z). The coboundary thus defined has the following property:

Proposition 36. The sequence of pointed sets:
1 — H%(G, A) —» H(G, B) —» H°(G, B/A) > H'(G, A) — H'(G, B)
18 exact.

It is easy to translate the definition of d into cocycle terms; if ¢ € (B/A)%,
choose b € B which projects onto ¢, and set a;, = b~1-%b; this is a cocycle whose
class is d(c). Its definition shows that it is cohomologous to 0 in B, and that
each cocycle of G in A which is cohomologous to 0 in B is of this form. The
proposition follows.

Corollary 1. The kernel of H(G, A) — H(G, B) may be identified with the
quotient space of (B/A)C by the action of the group BC.
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The identification is made via §; we need to check that §(c) = §(c’) if and
only if there exists b € B such that bc = ¢/; this is easy.

Corollary 2. Let a € H'(G, A), and let a be a cocycle representing a. The
elements of H'(G, A) with the same image as a in H(G, B) are in one-to-one
correspondence with the elements of the quotient of H°(G, . B/, A) by the action
of the group H°(G, . B).

This follows from corollary 1 by twisting, as has been explained above.

Corollary 3. In order that H!(G, A) be countable (resp. finite, resp. reduced to
one element), it is necessary and sufficient that the same be true of its image in
HY(G, B), and of all the quotients (,B/,A)¢/(aB)C, for a € Z1(G, A).

This follows from corollary 2.

One can also describe the image of H'(G, A) in H'(G, B) explicitly [just as
if H'(G, B/A) made sense]:

Proposition 37. Let 3 € H(G,B) and let b € Z'(G, B) be a representative
for B. In order that (3 belong to the image of H'(G, A), it is necessary and
sufficient that the space »(B/A), obtained by twisting B/A by b, have a point
fized under G. "
[Combined with cor. 2 to prop. 36, this shows that the set of elements

in H(G, A) with image 8 is in one-to-one correspondence with the quotient
H°(G,y(B/A))/H"(G,+B).]

In order that 3 belong to the image of H'(G, A), it is necessary and sufficient
that there exist b € B such that b=1b,°b belong to A for all s € G. If ¢ denotes
the image of b in B/A, this means that ¢ = b,-®c, i.e. that c € H%(G,(B/A)),
QED.

Remark.
Prop. 37 is an analogue of the classical theorem of Ehresmann: in order that
the structural group A of a principal fiber bundle may be reduced to a given

subgroup B, it is necessary and sufficient that the associated fiber space with
fiber A/B have a section.

5.5 Cohomology exact sequence associated to a normal
subgroup

Assume A normal in B, and set C = B/A,; here, C is a G-group.
Proposition 38. The sequence of pointed sets:

0 — A% — B% — % %, HY(G, A) — HY(G,B) — H(G,C)

is exact.
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The verification is immediate (cf. [145], p. 133).

The fibers of the map H!(G, A) — H(G, B) were described in §5.4. However,
the fact that A is normal in B simplifies that description. Note first:

The group CC acts naturally (on the right) on H'(G, A). Indeed, let ¢ € CC,
and let X(c) be its inverse image in B; the G-set X(c) has, in a natural way,
the structure of a principal (A, A)-space; if P is principal for A, the product
P o X(c) is also principal for A; it is the transform of P by c. [Translation into
cocycle terms: lift c to b € B; then °b = b- z,, with z, € A; to each cocycle a,
of G in A, one associates the cocycle b~ labz, = b~1a,*b; its cohomology class
is the image under ¢ of that of (a,).]

Proposition 39. (i) If c € CC, then §(c) = 1-c, where 1 represents the neutral
element of H'(G, A).

(ii) Two elements of H'(G, A) have the same image in H (G, B) if and only
if they are in the same C®-orbit.

(iii) Let a € ZY(G,A), let o be its image in H (G, A), and let ¢ € CC.
For a - ¢ = a, it is necessary and sufficient that c belong to the image of the
homomorphism H°(G,,B) — H%(G,C).

[We denote by ,B the group obtained by twisting B with the cocycle a —
with A acting on B by inner automorphisms.]

The equation d(c) = 1-c is a consequence of the definition of §. On the other
hand, if two cocycles a, and a/, of A are cohomologous in B, there exists b € B
such that o}, = b~la,*b; if c is the image of b in C, one has *c = ¢, whence ¢ € CeC,
and it is clear that c maps the class of a, into that of a). The converse is trivial,
which proves (ii). Finally, if b € B is a lift of ¢, and if a - ¢ = «, there exists
z € A such that a, = 7167 1a,*b*z; this can also be written bz = a,°(bz)a] !,
i.e. br € H°(G, ,B). Hence (iii).

Corollary 1. The kernel of H'(G,B) — H(G,C) may be identified with the
quotient of H'(G, A) by the action of the group CC.

This is clear.

Corollary 2. Let 3 € HY (G, B), and let b be a cocycle representing 3. The
elements of H'(G, B) with the same image as 8 in H (G, C) correspond bijec-
tively with the elements of the quotient of H(G,,A) by the action of the group
H%G,C).

[The group B acts on itself by inner automorphisms, and leaves A stable;
this allows the twisting of the exact sequence 1 - A — B — C — 1 by the
cocycle b.]

This follows from cor. 1 by twisting, as was explained in the previous section.

Remark.

Proposition 35 shows that H!(G, , B) may be identified with H(G, B), and
similarly H'(G,,C) may be identified with H'(G,C). In contrast, H'(G, ,A)
bears, in general, no relation to H'(G, A).
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Corollary 3. In order that H'(G, B) be countable (resp. finite, resp. reduced to
a single element), it is necessary and sufficient that the same be true for its image
in HY(G,C), and for all the quotients H'(G,,A)/(sC)€, for b € Z'(G, B).

This follows from cor. 2.

Exercise.

Show that, if one associates to each ¢ € CC the class of the principal (4, A)-
space X (c), one obtains a homomorphism of C€ into the group E(A) defined in
the exercise in §5.3.

5.6 The case of an abelian normal subgroup

Assume A is abelian and normal in B. Keep the notation of the preceding section.
Write H'(G, A) additively, since it is now an abelian group. If @ € H(G, A),
and ¢ € CC, denote by a° the image of a by c, defined as above. Let us make
this operation more explicit.

To this end, we note that the obvious homomorphism C¢ — Aut(A) makes
C€ act (on the left) on the group H!(G, A); the image of a by c (for this new
action) will be denoted ¢ .

Proposition 40. We have o = c™!-a + §(c) for o € H(G, A) and c € CC.

This is a simple computation: if we lift ¢ to b € B, we have °b = b-z,, and
the class of z, is d(c). On the other hand, if a, is a cocycle in the class «, we can
take as a representative of a¢ the cocycle b~ la,®b, and to represent ¢~ !-a the
cocycle b~la,b. We have b=1a,°b = b~la,b - x,, from which the formula follows.

Corollary 1. We have §(c’c) = d(c) +c~1 - §(c').
Write a©'¢ = (a® )°. Expanding this gives the formula we want.

Corollary 2. If A is in the center of B, § : C¢ — HY(G, A) is a homomor-
phism, and o = a + §(c).

This is obvious.

Now we shall make use of the group H?(G, A). A priori, one would like to
define a coboundary: H(G,C) — H?(G, A). In this form, this is not possible
unless A is contained in the center of B (cf. §5.7). However, one does have a
partial result, namely the following:

Let c € Z}(G,C) be a cocycle for G in C. Since A is abelian, C acts on A,
and the twisted group A is well defined. We shall associate to ¢ a cohomology
class A(c) € H%(G, .A). To do this, we lift c, to a continuous map s — b, of G
into B, and we define:

Qg t = bssbtba_tl .
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This 2-cochain is a cocycle with values in .A. Indeed, if we take into account the
way G acts on A, we see that this amounts to the identity:

s -1 -1
gt - bs a’t,ubs "Qs,tu gty = 1, (s,t,u € G)’

ie.
bet*by "0y ! - bs®be*bu b, by - bs®brubiyy, - st *thy by =1,

which is true (all the terms cancel out).
On the other hand, if we replace the lift b; by the lift alb,, the cocycle a,+
is replaced by the cocycle aj ; - as ¢, with

_ -1
a, ;= (0a")ss = @} - bs° apb;l-al,” ;

this can be checked by a similar (and simpler) computation. Thus, the equiva-
lence class of the cocycle a, ; is well defined; we denote it A(c).

Proposition 41. In order that the cohomology class of ¢ belongs to the image
of HY(G, B) in HY(G,C), it is necessary and sufficient that A(c) vanish.

This is clearly necessary. Conversely, if A(c) = 0, the above shows that we
may choose bs so that bs“’btbs‘t1 =1, and b, is a cocycle for G in B with image
equal to c. Whence the proposition.

Corollary. If H*(G, . A) = 0 for all c € ZY(G,C), the map
HY(G,B) — H'(G,0)
18 surjective.

Ezercises.
1) Rederive prop. 40 using the exercise in §5.5 and the fact that E(A) is the
semi-direct product of Aut(Apwith H!(G, A).

2) Let ¢c and ¢ € Z'(G,C) be two cohomologous cocycles. Compare A(c)
and A(c).

5.7 The case of a central subgroup

We assume now that A is contained in the center of B. If a = (a,) is a cocycle for
G in A, and b = (b,) is a cocycle for G in B, it is easy to see that a-b = (a, - bs)
is a cocycle for G in B. Moreover, the class of a - b depends only on the classes
of a and of b. Hence the abelian group H'(G, A) acts on the set H'(G, B).

Proposition 42. Two elements of H'(G, B) have the same image in H'(G, C)
if and only if they are in the same H'(G, A)-orbit.
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The proof is immediate.

Now let c € Z'(G,C). Since C acts trivially on A, the twisted group .A used
in §5.6 may be identified with A, and the element A(c) belongs to H%(G, A).
An easy computation (cf. [145], p. 132) shows that A(c) = A(¢') if ¢ and ¢’ are
cohomologous. This defines a map A : H}(G,C) — H?(G, A). Putting together
prop. 38 and 41, we obtain:

Proposition 43. The sequence

1— A¢ — BG , C€¢

°, HY(G, A) — HY(G,B) — HY(G,C) 2 H*(G, A)
18 exact.

As usual, this sequence only gives us information about the kernel of
HYG,C) - H?%*(G, A), and not on the corresponding equivalence relation. To
obtain that, we must twist the groups under consideration. More precisely, ob-
serve that C acts on B by automorphisms and that these automorphisms are
trivial on A. If ¢ = (¢;) is a cocycle for G in C, we may twist the exact sequence
1—- A— B — C — 1 with ¢, and we obtain the new exact sequence

1—A— B—.C—1.

This gives a new coboundary operator A, : H(G, .C) — H?(G, A). Since we
also have a canonical bijection 7, : H(G,.C) —» H*(G,C), we can use it to
compare A and A.. The result is the following:

Proposition 44. We have A o 1.(Y') = A(Y) + A(y), where v € H(G,C)
denotes the equivalence class of ¢, and 4 belongs to H(G, .C).

Let ¢ be a cocycle representing 7’. Choose as above a cochain b, (resp. b,)
in B (resp. in .B) as a lift of ¢, (resp. c}). We may represent A(y) by the cocycle

agt = bssbtbs_tl )
and A.(vy’) by the cocycle
0y, = by - by*bb7 b,

On the other hand 7.(7’) can be represented by c,c,, which we may lift to b’b,.
Thus we may represent A o 7.(7’) by the cocycle

"oy 3118 -1 -1
Qg = bsbs ’ bt b - st bst .
Since a,  is in the center of B, we may write:

! o spp—1 ; —1
gt~ As,t = bsbs biby “aseby -

Replacing a,; by its value and simplifying, we see that we find ay ;; the propo-

sition follows.
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Corollary. The elements of H'(G, C) having the same image as v under A cor-
respond bijectively with the elements of the quotient of H'(G, .B) by the action
of H(G, A).

Indeed, the bijection 7! transforms these elements into those of the kernel
of

A HI(G’,CC) —_— Hz(G,A) ,

and prop. 42 and 43 show that this kernel may be identified with the quotient
of HY(G, .B) by the action of H!(G, A).

Remarks.
1) Here again it is, in general, false that H'(G, .B) is in bijective correspon-
dence with H!(G, B).

2) We leave to the reader the task of stating the criteria for denumerability,
finiteness, etc., which follow from the corollary.

Ezxercise.

Since C€ acts on B by inner automorphisms, it also acts on H!(G, B). Let
us denote this action by

(c,B) = cxB (ceC® Be H'(G,B)).

Show that:
cxB=60)""-8,

where d(c) is the image of cin H!(G, A), cf. §5.4, and where the product 6(c)~!-8
is relative to the action of H'(G, A) on H!(G, B).

5.8 Complements

We leave to the reader the task of treating the following topics:

a) Group extensions

Let H be a closed normal subgroup in G, and let A be a G-group. The group
G/H acts on A¥, which means that H'(G/H, A™) is well-defined. On the other
hand, if (ay) € Z'(H, A) and s € G, we can define the transform s(a) of the
cocycle a = (ap) by the formula:

s(a)n = s(as-1hs) -

By passing to the quotient, the group G acts on H!(H, A), and one checks that
H acts trivially. Thus G/H acts on H'(H, A), just as in the abelian case. We
have the exact sequence:

1 — H'(G/H,A") — HY(G,A) — H'(H, )",
and the map H(G/H, A?) — H!(G, A) is injective.
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b) Induction

Let H be a closed subgroup of G, and let A be an H-group. Let A* = MH(A)
be the group of continuous maps a* : G — A such that a*(*z) = Pa*(z) for
h € H and z € G. We let G act on A* by the formula (9a*)(z) = a*(zg). We

obtain in this way a G-group A* and one has canonical bijections

H°(G,A*) = H°(H,A) and HY(G,A*)=H'(H,A).

5.9 A property of groups with cohomological
dimension <1

The following result could have been given in §3.4:

Proposition 45. Let I be a set of prime numbers, and assume that cdp(G) < 1
for every p € I. Then the group G has the lifting property for the ertensions
1—- P —> E— W — 1, where the order of E is finite, and the order of P is
only divisible by prime numbers belonging to I.

We use induction on the order of P, the case Card(P) = 1 being trivial.
Assume therefore Card(P) > 1, and let p be a prime divisor of Card(P). By
hypothesis, we have p € I. Let R be a Sylow p-subgroup in P. There are two
cases:

a) R is normal in P. Then it is the only Sylow p-subgroup in P, and it is
normal in E. We have the extensions:

l1—R—F—E/R—1

1—P/R—E/R— W —1.

Since Card(P/R) < Card(P), the induction hypothesis shows that the given
homomorphism f : G — W lifts to g : G — E/R. On the other hand, since R

is a p-group, prop. 16 in §3.4 shows that g lifts to h : G — E. We have thus
lifted f.

b) R is not normal in P. Let E’ be the normalizer of R in E, and let P’ be
the normalizer of R in P. We have P’ = E' N P. Also, the image of E’ in W is
equal to all of W. Indeed, if z € E, it is clear that z Rz~ is a Sylow p-subgroup
of P, and the conjugacy of Sylow subgroups implies the existence of y € Pv such
that z Rz™! = y Ry~!. Thus we have y~'z € E’, which shows that E = P F’,
from which our assertion follows. We thus get the extension:

1— P —E ——W—1.

Since Card(P’) < Card(P), the induction hypothesis shows that the morphism
f:G — W lifts to h : G — E’, and because E’ is a subgroup of E, this finishes
the proof.
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Corollary 1. Every extension of G by a profinite group P whose order is not
divisible by the primes belonging to I splits.

The case where P is finite follows directly from the proposition and from
lemma 2 in §1.2. The general case is handled by “Zornification”, as in §3.4 (see
also exerc. 3).

Remark.

The above corollary gives the fact that a group extension of a finite group
A by a finite group B splits when the orders of A and of B are prime to each
other (cf. Zassenhaus, [189], Chap. IV, §7).

A profinite group G is said to be projective (in the category of profinite
groups) if it has the lifting property for every extension; this amounts to saying
that, for any surjective morphism f : G’ — G, where G’ is profinite, there exists
a morphism 7 : G — G’ such that for = 1.

Corollary 2. If G is a profinite group, the following properties are equivalent:
(i) G is projective.
(ii) cd(G) < 1.
(iii) For any prime number p, the Sylow p-subgroups of G are free pro-p-
groups.

The equivalence (ii) < (iii) has already been proved. The implication (i) =
(ii) is clear (cf. prop. 16). The implication (ii) = (i) follows from cor. 1, applied
to the case where I is the set of all prime numbers.

Ezamples of projective groups: (a) the completion of a free (discrete) group
in the topology induced by subgroups of finite index; (b) a direct product Hp Fp,
where each F), is a free pro-p-group.

Proposition 46. With the same hypotheses as in prop. 45, let
1—A—B—C—1

be an exact sequence of G-groups. Assume that A is finite, and that each prime
divisor of the order of A belongs to I. The canonical map H'(G, B) — H(G,C)
18 surjective.

Let (cs) be a cocycle for G with values in C. If 7 denotes the homomorphism
B — C, let E be the set of pairs (b, s), with b € B, s € G, such that n(b) = c,.
We put on E the following composition law (cf. exerc. 1 in §5.1):

(b,s)-(b',s") = (b-°V,ss) .

The fact that ¢ = ¢s - *csr shows that 7(b- °d’) = cssr, which means that the
above definition is legitimate. One checks that E, with this composition law and
the topology induced by that of the product B x G, is a compact group. The
obvious morphisms A — E and E — G, make of E an extension of G by A.
By cor..1 to prop. 45, this extension splits. Therefore there exists a continuous
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section s — e, which is a morphism of G into E. If we write e; € E in the form
(bs, s), the fact that s — e, is a morphism shows that b, is a cocycle for G in B
which is a lift of the given cocycle c,;. The proposition follows.

Corollary. Let1 - A — B — C — 1 be an exact sequence of G-groups. If A is
finite, and if cd(G) < 1, the canonical map H (G, B) — H(G,C) is surjective.

This is the special case where I is the set of all prime numbers.

Ezercises.

1) Let 1 = A — B — C — 1 be an exact sequence of G-groups, with A
a finite abelian group. The method used in the proof of prop. 46 associates to
each ¢c € Z1(G,C) an extension E, of G by A. Show that the action of G on A
resulting from this extension is that of .4, and that the image of E, in H%(G, .A)
is the element A(c) defined in §5.6.

2) Let A be a finite G-group, with order prime to the order of G. Show that
H'(G,A) = 0. [Reduce to the finite case, where the result is known: it is a
consequence of the Feit-Thompson theorem which says that groups of odd order
are solvable.|

3) Let 1 - P — E — G — 1 be an extension of profinite groups, where G
and P satisfy the hypotheses of cor. 1 to prop. 45. Let E’ be a closed subgroup
of E which projects onto G, and which is minimal for this property (cf. §1.2,
exerc. 2); let P’ = PN E’. Show that P’ = 1. [Otherwise, there would exist an
open subgroup P” of P, normal in E’, with P” # P’. Applying prop. 45 to the
extension 1 — P'/P" — E'/P"” — G — 1, one would get a lifting of G into
E'/P", and therefore a closed subgroup E” of E’, projecting onto G, such that
E" N P'" = P"; this would contradict the minimality of E’.] Deduce from this
another proof of cor. 1 to prop. 45.

4) (a) Let P be a profinite group. Show the equivalence of the following
properties:

(i) P is a projective limit of finite nilpotent groups.

(ii) P is a direct product of pro-p-groups.

(iii) For any prime p, P has only one Sylow p-subgroup.

Such a group is called pronilpotent.

(b) Let f : G — P be a surjective morphism of profinite groups. Assume
that P is pronilpotent. Show that there exists a pronilpotent subgroup P’ of G
such that f(P') = P. [Write P as a quotient of a product F = [1, Fp, where the
F, are free pro-p-groups, and lift F — G to F — G by cor. 2 of prop. 45.]

When P and G are finite groups, one recovers a known result, (cf. Huppert
(74], I11.3.10.)

5) Show that a closed subgroup of a projective group is projective.



