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1. Definition of Cohomology

Let G be a group, A = Z[G] its integral group ring. A (left) G-module is
the same thing as a (left) A-module. By G-module we shall always mean
left G-module. Note that if 4 is a left G-module we can define a right
G-module structure on A by puttinga.g = g~ '.a.

If A, B are G-modules, the group of all abelian group homomorphisms
A = B is denoted by Hom (4, B), and the group of all G-module homo-
morphisms by Homg (4, B). Hom (4, B) has a G-module structure defined
as follows: if ¢ e Hom (4, B), g.¢ is the mapping a— g.¢(g~'a) (a e A).

For any G-module A4, the subset of elements of 4 invariant under the
action of G is denoted by 4%. - 4% is an abelian group which depends func-
torially on 4. It is the largest submodule of 4 on which G acts trivially.
If A, B are G-modules then

Homg (4, B) = (Hom(4, B))®; 1.
in particular,
Homyg (Z, A) = (Hom (Z, A))° = AS,
regarding Z as a G-module on which G acts trivially. Since the functor Hom
is left-exact, it follows that A€ is a left-exact covariant functor of 4, i.e. if

0-A-B-C-0 (1.2)
is an exact sequence of G-modules, then
0— A%~ B¢~ C¢

is an exact sequence of abelian groups.
94
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If X is any abelian group we can form the G-module Hom (A, X).
A G-module of this type is said to be co-induced.

By a cohomological extension of the functor A we mean a sequence of
functors HY%G,A4) (g=0,1,...), with H°G, 4) = A®, together with
connecting (or boundary) homomorphisms

3 : HY(G,C) » H* (G, A)
defined functorially for exact sequences (1.2), such that
(i) the sequence

]
. = HY(G, A) » HYG, B) » HY(G,C) » HT* (G, 4) > . .. (1.3)
1s exact; and
(ii) HYG,A) =0forall g = 1if 4 is co-induced.

THEOREM 1. There exists one and, up to canonical equivalence, only one
cohomological extension of the functor A°.

The groups HYG, A), uniquely determined by Theorem 1, are called the
cohomology groups of the G-module A.

The existence part of Theorem 1 is established by the following con-
struction. Choose a resolution P of the G-module Z (G acting trivially on Z)
by free G-modules:

o> P >Py,—-Z-0
and form the complex K = Homg (P, A), i.e.
0 - Homg(Py, A) » Homg (P, A)— ...
Let HYK) (¢ = 0) denote the gth cohomology group of this complex.
Then HYG, A) = H%K) satisfies the conditions for a cohomological
extension of the functor 4°. For by a basic theorem of homological algebra,
the HYG, A) so defined satisfy the exactness property (1.3); also
H°(G, 4) = H°(K) = Homg (Z, A) = A%; finally, if 4 is co-induced, say
A = Hom (A, X) where X is an abelian group, then for any G-module B
we have
Homg (B, A) ~ Hom (B, X)

(the isomorphism being as follows: if ¢: B — A4 is a G-homomorphism,
then ¢ corresponds to the map B — X defined by b~ ¢(b)(1), where 1 is
the identity element of ). Hence the complex K is now

0 - Hom (P, X) - Hom(P,, X)— ...

which is exact at every place after the first, because the P, are free as abelian
groups; and therefore HYG, A) = O for allg > 1.

To prove the uniqueness of the cohomology groups we consider, for each
G-module 4, the G-module 4* = Hom (A, 4). There is a natural injection
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A — A* which maps a € 4 to ¢,, where ¢, is defined by ¢,(g) = ga. Hence
we have an exact sequence of G-modules

05A-A*> A4 -0 (1.4)
where A" = A*/A; since A* is co-induced, it follows from (1.3) that
5:HYG,A") - H' (G, A) (1.5)
is an isomorphism for all ¢ = 1, and that
HY(G, A) = Coker (H%(G, A*) - H°(G, A")). (1.6)

The HYG, A) can therefore be constructed inductively from H°, and so
are unique up to canonical equivalence. This procedure could also be used
as an inductive definition of the HY.

Remark. 1t follows from the unigqueness that the H%(G, A) are independent
of the resolution P of Z used to construct them. So we may take any con-
venient choice of P.

2, The Standard Complex
As a particular choice for the resolution P we can take P; = Z[G'*!],
i.e. P, is the free Z-module with basis Gx ... x G ((i+1) factors), G acting
on each basis element as follows:

5(gosG1s- - -:9) = (590,59 15- - -»591)-
The homomorphism d: P; - P;_, is given by the well-known formula

d(gm- . ':gi) = ZO(_]-)j(go" -3 9j-109j+15- - -’gi)r (2-1)
]=

and the mapping ¢: P, — Z is that which sends each generator (g,) to

1 eZ. (To show that the resulting sequence
d d z

..o PPy Z-0 (2.2)
is exact, choose an element s € G and define &: P, » P,,, by the formula

h(go,.-.s9) =(5,90:915- - -» 90)-
It is immediately checked that dh+hd = 1 and that dd = 0, from which
exactness follows.)
An element of K’ = Homg (P;, A) is then a function f: G'*? — A such
that ’
J(590:5915- - -»59) = s o, G15- - > 9)-
Such a function is determined by its values at elements of G'*! of the form
(1,91, 9192:---,9192- .- g9 if we put
(g1, 9) =f1,41,9192,- - .91 -4)
the boundary is given by the formula '
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(do)(g1s- -5 Gi+1) ]
= gl'(p(ng- . ')gi+1) + _Zl(_l)j(p(gl" . '!gjgj+1!‘ . '!gi+1)+
Jj=

+(—1)"o(gy,....0). (23)

This shows that a 1-cocycle is a crossed homomorphism, 1.e. a map G — A4
satisfying '

©(gg') = g.9(g")+¢o(g)

and ¢ is a coboundary if there exists a € 4 such that ¢(g) = ga—a. In
particular, if G acts trivially on A4 then

HY(G, A) = Hom (G, A). (2.4)

From (2.3) we see also that a 2-cocycle is a function ¢ : Gx G — A such
that '

9190(92,93)—©(g192.93)+0(g1,9293)—¢(g1,92) = 0.

Such functions (called factor systems) arise in the problem of group exten-
sions, and H*(G, A) describes the possible extensions E of G by A4, i.e. exact
sequences 1 - 4 - F - G — 1, where A4 is an abelian normal subgroup
of E, and G operates on 4 by inner automorphisms. If E is such an extension,
choose a section ¢ : G — E (a system of coset representatives). Then we have

0(g1).0(g2) = ¢(91,92)9(g,92)

for some ¢(g,, g,) € A. The function ¢ is a 2-cocycle of G with values in 4;
if we change the section g, we alter ¢ by a coboundary, so that the class
of ¢ in H%(G, A) depends only on the extension. Conversely, every element
of H%(G, A) arises from an extension of G by 4 in this way.

For later use, we give an explicit description of the connecting homo-
morphism §: H%(G, C) - H'(G, A) in the exact sequence (1.3). Let
ce H%G, C) = C%, and lift c up to b € B. Then db is the function s > sb—b;
the image of shb—b in C is zero, hence sb—be A and therefore db is a
1-cocycle of G with values in 4. If we change b by the addition of an
element of 4, we change db by a coboundary, hence the class of db in H!(G, A)
depends only on ¢, and is the image of ¢ under §.

3. Homology

If 4, B are G-modules, 4 ® B denotes their tensor product over Z, and
A @ B their tensor product over A. A4 ® B has a natural G-module
structure, defined by g(a ® b) = (ga) ® (gb).

Let I; be the kernel of the homomorphism A — Z which maps each
seGtoleZ. I;is an ideal of A, generated by all s—1 (se G). From the
exact sequence

0-2I;2A-2Z-50 3.1
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and the right-exactness of ® it follows that, for any G-module 4,
ZR;AxAlI;A.

The G-module 4/I; A is denoted by A;. It is the largest quotient module
of A on which G acts trivially. Clearly 4; is a right-exact functor of 4.
For any two G-modules 4, B we have

A®gB = (4® B)g. (3.2)
A G-module of the form A ® X, where X is any abelian group, is said

to be induced. By interchanging right and left, induced and co-induced,
we define a homological extension of the functor A;.

THEOREM 2. There exists a unique homological extension of the functor Ag

The homology group H,(G, 4) given by Theorem 2 may be constructed
from the standard complex P of § 2 by taking

H(G,4) = H(P ®gA).
Uniqueness follows by using the exact sequence
0—-A"5A,2A-0 (3.3)

where 4, = A ® A. The details are exactly similar to those of the proof
of Theorem 1.

The connecting homomorphism & : H,(G, C) - Hy(G, A) may be described
explicitly as follows. A 1-cycle of G with values in C is a function f: G —» C
such that f(s) = O for almost all s € G and such thatdf = . (s~ ' —1) f(s) =0.

seG
For each se G lift f(s) to f(s) e B (if f(s) = 0, choose f(s) = 0). Then
df has zero image in C, hence is an element of 4. The class of df in Hy(G, A4)
is then the image under ¢ of the class of f.

ProrosiTion 1. H, (G, Z) =~ G/G’, where G' is the commutator subgroup
of G.
Proof. From the exact sequence (3.1) and the fact that A is an induced
G-module, the connecting homomorphism
6: H,(G,Z)~ Hy(G,Ig) = Ig/I%

is an isomorphism. On the other hand, the map s+ s—1 induces an
isomorphism of G/G’ onto I/IZ.

4, Change of Groups

Let G’ be a subgroup of G. If A’ is a G'-module, we can form the G-module
A = Homg- (A, A°): A is really a right G-module, but we turn it into a
left G-module as described in § 1 (if ¢ € 4, then g.¢ is the homomorphism
g — o(g'g™1)). Then we have

Jrelyp
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PROPOSITION 2 (Shapiro’s Lemma).
HYG,A)=H%G',A") forallq > 0.
Proof. If P is a free A-resolution of Z it is also a free A’-resolution, and
Homg (P, A) ~ Homyg. (P, A').
The analogous result holds for homology, with Hom replaced by ®.
Note that Prop. 2 may be regarded as a generalization of property (ii) of

the cohomology groups (§ 1): if G' = (1), then A’ = Z and A is a co-induced
module, and the HY(G’, A’) are zero for g > 1.

If f: G' > G is a homomorphism of groups, it induces a homomorphism
P’ — P of the standard complexes, hence a homomorphism
f*:HY(G, 4)» H(G', 4)
for any G-module 4. (We regard A as a G’-module via f) In particular,
taking G’ = H to be a subgroup of G, and f to be the embedding H — G,
we have restriction homomorphisms
Res : H(G, A) - HYH, A).
If H is a normal subgroup of G we consider f: G - G/H. For any G-module
A we have the G/H-module A" and hence a homomorphism
HYG/H, A") -» H%G, A"). Composing this with the homomorphism
induced by A" — A we obtain the inflation homomorphisms
Inf : H(G/H, A) » HYG, A).
Similarly, for homology, a homomorphism f:G" — G gives rise to a
homomorphism
f* : Hq(G': A) - Hq(Gs A)’
in particular, taking G’ = H to be a subgroup of G, and f: H —» G the
embedding, we have the corestriction homomorphisms
Cor: H(H, A) - H/(G, A).

Consider the inner automorphism s+ tst~* of G. This turns 4 into a
new G-module, denoted by A4', and gives a homomorphism

H(G, A) - HYG, A"). 4.1)
Now a > t ~'a defines an isomorphism A* — A and hence induces
H%G,A)— HYG, A). 4.2)

PROPOSITION 3. The composition of (4.1) and (4.2) is the identity map
of HY(G, A).

The proof employs a standard technique, that of dimension-shifting: we
verify the result for g = 0 and then proceed by induction on g, using (1.5)
to shift the dimension downwards.
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For ¢ = 0, we have H(G, A4') = (4")° = 1. A%, and (4.1) is just multi-
plication by r. Since (4.2) is multiplication by ¢!, the composition is the
identity.

Now assume thatg > 0 and that the result is true forg — 1. Corresponding
to the exact sequence (1.4) we have an exact sequence

0= A" > (A" - (4) —~0.

Since (A*)' is G-isomorphic to A*, it is a co-induced module, hence we
have functorial isomorphisms

HYG,A) = H"Y(G,(4)) @=2)
and

HY(G, A") =~ Coker (H°(G, (4*)") » H%(G, (4")")).
Now apply the inductive hypothesis.

5. The Restriction—inﬂation Sequence

PROPOSITION 4. Let H be a normal subgroup of G, and let A be a G-module.
Then the sequence

Inf Res
00— HI(G/H,AH) — H’(G, A)—> HI(H, A)
is exact.

The proof is by direct verification on cocycles.

(1) Exactness at H(G/H, AY). Let f: G/H - A" be a 1-cocycle, then
f induces f: G —» G/H - A™ - A4, which is a 1-cocycle, and the class of
is the inflation of the class of f. Hence if f is a coboundary, there exists
ae A such that f(s) = sa—a (se€ G). But f is constant on the cosets of
Hin G, hence sa—a = sta—a for all te H, i.e. ta = a for all t e H. Hence
a e A¥ and therefore f'is a coboundary.

(2 ResoInf=0. If ¢:G—> A is a l-cocycle, then the class of
qo|H : H —» A is the restriction of the class of ¢. But if ¢ = f, it is clear
that f|H is constant and equal to f(1) = 0.

(3) Exactness at H'(G, A). Let ¢ : G — A be a 1-cocycle whose restriction
to H is a coboundary; then there exists a e 4 such that ¢(t) = ta—a for
all e H. Subtracting from ¢ the coboundary s+ sa—a, we are reduced
to the case where ¢|H = 0. The formula

p(st) = ¢(s) + 5.0(1)

then shows (taking ¢ € H) that ¢ is constant on the cosets of H in G, and
then (taking s € H, t € G) that the image of ¢ is contained in 4. Hence ¢
is the inflation of a 1-cocycle G/H — A, and the proof is complete,
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PROPOSITION 5. Let q > 1, and suppose that H(H, A) = 0 for 1 <i<q—1.

Then the sequence
Inf Res

0 - HYG/H, A") - HYG, A) - HY(H, A)
is exact.
This is another example of dimension-shifting: we reduce to the case
q = 1, which is Proposition 4. Suppose then that g > 1 and that the result
is true for g— 1. In the exact sequence (1.4), the G-module A* is co-induced
as an H-module (since A = Z[G] is a free Z[H ]-module), hence

Hi(H,A") ~ H*\(H, A) =0 for1<i<q—2.
Also, since H!(H, A) = 0, the sequence
OéAH—P(A*)H—-)(A')H—?O

is exact, and (4*)¥ is co-induced as a G/H-module (because (4*)¥ ~
Hom (Z[G/H], A)). Hence in the diagram

0— H* Y(G/H,(4")") » H*"XG, A') » H*" {(H, A")

K, ls ls

0—- HYG/H,A") - HYG,A) — HYH,A)
the three vertical arrows are isomorphisms, the diagram is commutative,
and by the inductive assumption applied to A’, the top line is exact. Hence
so is the bottom line.

COROLLARY. Under the hypotheses of Prop. 5,
HYG/H,A%) ~ H(G,4), 1<i<q—1.

6. The Tate Groups

From now on we assume that G is finite, and we denote by N the element

Y s of A. For any G-module 4, multiplication by N defines an endomor-
seG
phism N: A — A, and clearly

IcAs Ker(N), Im(N)c A
Hence N induces a homomorphism
N*:Hy(G, A) - H°(G A)
and we define
AyG,A) =Ker(N*), A%G, A) = Coker (N*) = A5/N(A).
Since G is finite, we can define a mapping Hom (A, X) - A @ X (where
X is any abelian group) by the rule

@2, s ® 0s),

seCG

and it is immediately verified that this is a G-module isomorphism. Hence
for a finite group the notions of induced and co-induced modules coincide.
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PROPOSITION 6. If A is an induced G-module, then Hy(G, A) = H%(G, 4)=0.

Proof. Let A = A ® X, X an abelian group. Since A is Z-free, every

element of A is uniquely of the form Y s ® x,. If this element is G-invariant,
5eG

then Y gs @ x, = Y. s ® x, for all ge G, from which it follows that all

the x, are equal. Hence such an element is of the form N.(1 ® x) and
therefore lies in N(4). Hence H°(G, A) = 0.
Similarly, if N.}.s® x, =0, we find that } x, =0, and therefore

Ys®@x,=3 (s— 13(1 ® x,)eI;A. Hence Hy(G, A) = 0.
Now we define the Tate cohomology groups A%G, A) for all integers g by
AYG, A) = HYG,4) forg=>1
A7Y(G, 4) = A(G, 4)
A%G,4)=H,_,(G,A) forq>2.
THEOREM 3. For every exact sequence of G-modules
0+A—-B->C->0
we have an exact sequence

... - A%G, A) » AYG, B) -» A%G, C) i ATYYG, A~ ...

Proof. We have to splice together the homology and cohomology sequences.
Consider the diagram

3
... > H{(G,C) = Hy(G,A) - Hy(G,B) » Hy(G,C)» O

! v ing e, !

0 — H%G,A) - H%G,B)- H%G,C)—» H'(G,A)— ...
where N¥ is the homomorphism N* relative to 4, and so on. It is clear that
the inner two squares are commutative, and for the outer two squares
commutativity follows immediately from the explicit descriptions of the
connecting homomorphism § given in §§ 2 and 3.

We define § : H,(G, C) » A%G, A) as follows. If c € Hy(G, C)=Ker (NZ),
lift ¢ to be Hy(G, B), then N%(b) e H%G, B) has zero image in H%(G, C)
and therefore comes from an element ae H%G, A), whose image in
A, A) is independent of the choice of &; this element of A°(G, 4) we
define to be (c). The definitions of the other maps in the sequence

H(G,C)— A(G, 4) - A(G,B) - H,(G,C)

-i A°(G, A) - A°G, B) » A%G, C) » H'(G, A)

are the obvious ones, and the verification that the whole sequence is exact
is a straightforward piece of diagram-chasing.
The Tate groups can be considered as the cohomology groups of a
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complex constructed out of a complete resolution of G. Let P denote a
G-resolution of Z by finitely-generated free G-modules (for example, the
standard resolution of §2), and let P* = Hom (P, Z) be its dual, so that

we have exact sequences

2
..-""’Pl"_’Po'—’Z—’O
0-Z-»P5—>Pf— ...
(the dual sequence is exact because each P; is Z-free). PuttingP_, = Py _,
and splicing the two sequences together we get a doubly-infinite exact
sequence

L: ... >P,>Py—»P_ P ,—>....

The Tate groups are then the cohomology groups H¥(Homg (L, A)) for
any G-module A4, This assertion is clear if ¢ > 1. If ¢ < —2 we use the
following fact: if C is a finitely generated free G-module, let C* = Hom(C, Z)
be its dual; then the mapping o:C ® A - Hom (C*, A) defined as
follows:

o{c ® a) maps fe C*to f(c).a
is a G-module isomorphism. Hence the composition
N® o

1:CQeA=(C® A)¢—(CR® A - (Hom(C*, A))° = Hom;(C*, A)
is an isomorphism (N* is an isomorphism because C @ A i1s an induced
G-module). From this it follows that Homg (P_,, 4) = P,_{ ®¢ A, and
hence that H ~%(Homg (L, 4)) = H,_,(G, 4) forq = 2.

Finally, we have to consider the cases ¢ = 0, 1. The mapping

Homg(P_,, 4A) » Homg (P, A) (6.1)

& gk

is induced by the composition P, - Z — P_,. If we identify Homg; (P_,, A)
with P, ®; A by means of the isomorphism 7, the mapping (6.1) becomes
a mapping from P, ®; A to Homg (Py, 4), and from the definition of
it is not difficult to see that this mapping factorizes into

N#

Po ®GA_’AG_)AG—’ HOII]G(PO,A) (6.2)
where the extreme arrows are the mappings induced by ¢&. From this it
follows that HYHomg (L, A)) = A%G, A) forq = 0, 1.

Remark. Since any G-module can be expressed either as a sub-module
or as a quotient module of an induced module, it follows from Prop. 6 and
Theorem 3 that the Tate groups H? can be “shifted”” both up and down.

If H is a subgroup of G, the restriction homomorphism
Res : HY(G, A) -» H(H, A)
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has been defined for all ¢ > 0. It is therefore defined for the Tate groups
A9, g =1, and commutes with the connecting homomorphism 4. By
dimension-shifting it then gets extended to all A7 (use the exact sequence
(3.3) and the fact that A, is induced as an H-module). Similarly, the
corestriction, which was defined in the first place for H, (i.e. A lLqg=1)
gets extended by dimension-shifting to all A7 (use (1.4) likewise).

PROPOSITION 7. Let H be a subgroup of G, and let A be a G-module. Then
(i) Res: Hy(G, A) - Hy(H, A) is induced by Ngy: Ag — Ay, where

Ngn(a) = Z 5i 'a
i

and (s,) is a system of coset representatives of G/H,
(i) Cor: A°(H, A) - H%(G, A) is induced by Ngy: A" — A%, where

Ngpla) = ; S;a.

We shall prove (i), and leave (ii) to the reader. First of all, since
5: A%G, A) - HYG, 4') is induced by 6 : H%(G, 4) - H'(G, A), and since
Res: H%(G, A) - H°(H, A) is the embedding 4 - 4™ and is compatible
with 8, it follows that Res: H°(G, 4) —» H°(H, A4) is induced by A% —» A,
Now let v: A,(G, A) - Hy(H, A) be the map induced by N§;y. We have
to check that the diagram

Ay(G, A) i A°G, A)

vl 5 lRes
A (H,4) - A%H, A"

is commutative. Let ae 4 be a representative of @ e Hy(G, 4), so that
Ng(a) = 0. Liftato b € A,, then N;(b) has zero image in 4 and is G-invariant,
hence belongs to (4")¢ = (4')". The class of N4(b) mod. Ny(4’) is Res o 8(d).
On the other hand, v(a@) is the class mod. Iy 4 of Ng (@), which lifts to
N¢u(b), and & o ¥(a) is represented by Ny o N&u(b) = Ng(b).

Note: For g =—2 and A = Z we have H %G, Z) = H/(G, Z) ~ G/G';
Res: G/G' — H/H' is classically called the fransfer and can be defined as
follows. G/G’ is dual to Hom (G, C*), hence the transfer will be dual to a
homomorphism

Hom (H, C*) - Hom (G, C*).
This homomorphism is given by
prdet(iyp)/det(i,1),

where i,p is the representation of G induced by p, and det denotes the
corresponding one-dimensional representation obtained by taking deter-
minants (Hom (G, C*) is here written multiplicatively).
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ProrosiTION 8. If (G: H) = n, then
Cor . Res = n.
Proof. For AP this follows from Prop. 7(ii): Res is induced by the embed-
ding 4% —» A%, and Cor by Ngyg: A" - A% and Ngyu(a) = na for all
ae A%. The general case then follows by dimension-shifting.

COROLLARY 1. If G has order n, all the groups H(G, A) are annihilated
by n.

Proof. Take H = (1) in Prop. 8, and use the fact that A9(H, A) = 0
for all q.

COROLLARY 2. If A is a finitely-generated G-module, all the groups
BYG, A) are finite.

Proof. The calculation of the H%G, A) from the standard complete
resolution L shows that they are finitely generated abelian groups; since
by Cor. 1 they are killed by n = Card (G), they are therefore finite.

COROLLARY 3. Let S be a Sylow p-subgroup of G. Then
Res : 4G, A) - A4S, A)
is a monomorphism on the p-primary component of H(G, A).

Proof. Let Card (G) = p®.m where m is prime to p. Let x belong to the
p-primary component of H%G, A), and suppose that Res(x) = 0. Then
mx = Cor , Res(x) =0
by Prop. 8, since m = (G:§). On the other hand, we have p“x = 0 by

Cor. 1; since (p% m) = 1, it follows that x = 0.

COROLLARY 4. If an element x of AYG, A) restricts to zero in H(S, A)
for all Sylow subgroups S of G, then x = 0.

7. Cup-products
THEOREM 4. Let G be a finite group. Then there exists one and only one
Jamily of homomorphisms

A?(G, A) ® A%G,B) - A**4(G, A ® B)
(denoted by (a ® b) — a.b), defined for all integers p,q and all G-modules
A, B, such that:

(1) These homomorphisms are functorial in A and B;
(if) For p = q = 0 they are induced by the natural product
A°® BY - (4 ® B)%;

(i) If 0 > A —» A" - A" = 0 is an exact sequence of G-modules, and if
0 A®RB—- A ® B— A"® B— 0 is exact, then for a”eH"(G, A")
and b € H%G, B) we have

(6a”).b = &(a".b) (e A**** (G, A ® B));
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(iv) If 0+ B— B’ — B" — 0 is an exact sequence of G-modules, and if
0> AQRB>A®B - A® B" — 0 is exact, then for a e A%(G, A)
and b" € H%G, B”) we have

a.(8b") = (—1)?6(a.b") (e A**1*1(G,A ® B)).

Let (P,),.z be a complete resolution for G, as in §6. The proof of
existence depends on constructing G-module homomorphisms

Ppq: Ppig— P, ® P,
for all pairs of integers p, g, satisfying the following two conditions:
Ppgod=(@®1) 0 @pi1,+H (-1’1 ®d) 6 ¢p,g41; (7.1)
(t®8) o @o0=2¢, (7.2)
where ¢: Py, — Z is defined by ¢(g) = 1 forall ge G.
Once the ¢,, have been defined, we proceed as follows. Let

feHomg (P, 4), geHomg (P, B) be cochains, and define the product
cochain f° ge Homg (P,:, A ® B) by

f'g=(f®g) Oq’p,q'
Then it follows immediately from (7.1) that

d(f.-9=@f).g+(=1)*f.(dg). (7.3)
Hence if £, g are cocycles, so is f. g, and the cohomology class of f. g depends
only on the classes of f and g: in other words, we have a homomorphism

A7(G, A) ® A%G, B) -» A**%(G, A ® B).

Clearly condition (i) is satisfied, and (ii) is a consequence of (7.2). Consider
(1ii). We have an exact sequence
0 - Homg (P,, A) - Homg (P,, A")—~ Homg (P,, A") = 0.

Let «” € Homg (P,, A") be a representative cocycle of the class a”, and lift
«” back to o’ € Homg (P,, 4’); da’ has zero image in Homg (P, 44, A") and
therefore lies in Homg (P, 4, 4). The class of do’ in APTY(G, A) is §(").
Hence if f € Homg (P,, B) is a cocycle in the class b, then «”.f represents
the class a".b; d(«'.B) represents 8(a”.b); and (do’').fB represents (da”).b.
But (since dff =0) we have d(a'.f) = (d¢’).f from (7.3); hence
d(a”.b) = (6a").b. The proof of (iv) is similar.

Thus it remains to define the ¢, ,, which we shall do for the standard com-
plete resolution (P, = Z[G**'] if ¢ = 0; P_, = dual of P,_, if ¢ > I).
Ifqg > 1, P_, = P,* | has a basis (as Z-module) consisting of all (g%, 93
where (g7,...,9;) maps (gy,...,9,)€P,_y to 1€Z, and every other
basis element of P,_; to 0. In terms of this basis of P_,, d: P_, = P_,_;
1s given by

q

d(gt,. . ..99) =2 2 (=1@9%,-.-,98 5%, g% 1 -2 97)

seGi=0
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and d: P, = P_, by d(gy) = Y, (s*).

se@G

We define ¢, ,: Py, = P, @ P, as follows:
(D)ifp>0andqg >0,
(Pp,q(gos- . 'sgp+q) = (gos- . "gp) ®(gp!' . -:gp+q);
(@ ifp>landg>1,
¢~p, —q(gf:- . 'ag:+q) = (QT, . sg:) ® (g:+13' . -sg:+q);
B)ifpz0andg>1,
¢ qop,—p—q(g’lks- . ’g:) = Z (glssla- . -:Sp) @(S:,. . -’St’g:‘v . wg:);
q’—p-q,p(gr" . sg::) = Z (gr, . 'ag::sts' . .,S:) ® (Sp’- . -,Slsgq);
¢p+q.—q(901- . "gp) = Z (907- . ':gpssl" . "Sq)®(s:;" . -,ST);
@—q.p+q(90v . "gp) = Z (ST,- . .,S::)@(Sq,. -351,90>- - °:gp)'
(In the sums on the right-hand side, the s; run independently through G.)
The verification that the ¢, , satisfy (7.1) is tedious, but entirely straight-
forward.

This completes the existence part of the proof of Theorem 4. The unique-
ness is proved by starting with (ii) and shifting dimensions by (iii) and (iv):
the point is that the exact sequence (3.3), namely

00A"5A, 5450,

splits over Z, as the Z-homomorphism 4 — 4, = A ® A defined by
a1 ® a shows; hence the result of tensoring it with any G-module B is
still exact, and 4,  B=A ® A ® B = (4 ® B),. Similarly for the exact
sequence (1.4).
Note the following properties of the cup-product, which are easily proved
by dimension-shifting:
PROPOSITION 9.
(D) (a.b).c = a.(b.c) (identifying (A ® B) @ Cwith A ® (B ® C)).
(i) a.b = (=1)tmedimby g (identifying A ® B with B ® A).
(iii) Res (a.b) = Res (a).Res ().
(iv) Cor (a.Res (b)) = Cor (a).b.
As an example, let us prove (iv). Here H is a subgroup of G, a € H?(H, A),
b e HYG, B), so that both sides of (iv) are elements of A?+%G, A @ B).
If p=¢g =0, ais represented by say « e 4, and by Prop. 7(ii) Cor (a)
is represented by Ng/pu(x) = ). s;x € A%; b is represented by f e B, hence

Cor (a).b is represented by
NG/H(a) ®pF = (Z 5;:0) @ p = Z s{a® p) = NG/H(OC ® B).
On the other hand, a.Res (b) is represented by « @ fe (4 ® B)Y, hence
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Cor (a.Res (b)) by Ngp(x ® f). This establishes (iv) for p = ¢ = 0. Now
use dimension-shifting as in the proof of the uniqueness of the cup-products
and the fact that both Cor and Res commute with the connecting homo-
morphisms relative to exact sequences of the types (3.3) and (1.4).

We shall later have to consider cup-products of a slightly more general
type. Let A, B, C be G-modules, ¢: A ® B — C a G-homomorphism. If
we compose the cup-product with the cohomology homomorphism ¢*
induced by ¢, we have mappings

A7(G, 4) ® A%G, B)~» A**%(G, C);
explicitly, a ® b+ @*(a.b). @*(a.b) is the cup-product of a, b relative to ¢.

8. Cyclic Groups; Herbrand Quotient

If G is a cyclic group of order n, and s is a generator of G, we can define a
particularly simple complete resolution K for G. Each K; is isomorphic
to A, and d: K;,, — K, is multiplication by T'= s—1 if i is even (resp. by
N if i is odd). The kernel of T is A® = N.A = image of N, and the image
of T is I = kernel of N. Hence for any G-module 4 the complex
Homyg, (K, A) is
N T N T
A A A—Ae— ..,

and therefore
A%*(G, A) = A°G, A) = A°[NA,
HZQ“(G, A) = Ho(Gs A) = yA[IGA,
where yA4 is the kernel of N: 4 — A.
In particular, H*(G, Z) = Z°/NZ = Z/[nZ is cyclic of order n.
THEOREM 5. Cup-product by a generator of H*(G,Z) induces an iso-
morphism
AYG, A) -» A1*(G, A)
Jor all integers q and all G-modules A.
Proof. The exact sequences

0-I;—>A->Z-0, (8.1)
N T
0-Z->A-1,-0, 8.2)

give rise to isomorphisms

A°%G,7) -i HY(G,I,) i H*G,2).

Since both (8.1), (8.2) split over Z, they remain exact when tensored with 4,
and we are therefore reduced to showing that cup-product by a generator
of %G, Z) induces an automorphism of H%G, 4). By dimension-shifting
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again, we reduce to the case g = 0. Since H°(G, Z) = Z/nZ, a generator
b of H°(G, Z) is represented by an integer § prime to », and cup-product
with & is multiplication by . Now f is prime to », hence there is an integer y
such that 8y = 1 (mod. n); H%G, A) is killed by n, hence multiplication
by B is an automorphism of A°(G, A).

Let hq(/ﬁ denote the order of H%G, A) (g = 0, 1) whenever this is finite,
If both are finite we define the Herbrand quotient

h(A) = ho(A4)[h1(4).

ProrosiTioN 10. Let 0 > A > B— C— 0 be an exact sequence of
G-modules (G a cyclic group). Then if two of the three Herbrand quotients
h(A), h(B), h(C) are defined, so is the third and we have

h(B) = h(A).h(C).

Proof. In view of the periodicity of the 9, the cohomology exact sequence
1s an exact hexagon:

H°(4) - H%B)
A N
H(C) H°(C)
x ¥
H'(B) + H'(4)
where H°(4) means A°(G, A), and so on. Suppose for example that H°(4),
H'Y(A4), H°(B), H(B) are finite. Let M, be the image of H%4) in H°(B),
and so on in clockwise order round the hexagon. Then the sequence
0> M, - H%C) - M; - 0 is exact, and M,, M; are finite groups (M,
because it is a homomorphic image of H°(B), M, because it is a subgroup
of H'(A4)). Hence H°(C) is finite, and similarly H(C) is finite. The orders of

the groups H9(A),..., HY(C) are respectively mgm,, m;m,,..., msmg
(m; = order of M), hence h(B) = h(A4).h(C).

PrROPOSITION 11. If A is a finite G-module, then h(A) = 1.
Proof. Consider the exact sequences
T
0+A A4 A;-0,

N®*

0 HY(A) » Ag— A® - H%(A) - 0.
The first one shows that A% and 4 have the same order, and then the second
one shows that H°(4) and H'(A4) have the same order.

COROLLARY. Let A, B be G-modules, f: A - B a G-homomorphism with
finite kernel and cokernel. Then if either of h(A), h(B) is defined, so is the
other, and they are equal.

LS
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Proof. Suppose for example that h(4) is defined. From the exact
sequences

0-Ker(f)»4—-f(4)—0
0—f(4)—» B- Coker(f)—-0

it follows from Prop. 10 and 11 that A( f(A)) is defined and equal to A(A4),
then that #(B) is defined and equal to A(f(A4)).

PROPOSITION 12. Let E be a finite-dimensional real representation space
of G, and let L, L' be two lattices of E which span E and are invariant under C
Then if either of h(L), h(L') is defined, so is the other, and they are equal.

For the proof of Prop. 12 we need the following lemma:

LEMMA. Let G be a finite group and let M, M’ be two finite-dimensional
Q[G)-modules such that My = M ®¢ R and Mg = M’ ®¢ R are isomorphic
as R[G)-modules. Then M, M’ are isomorphic as Q[G}-modules.

Proof. Let K be any field, L any extension field of K, 4 a K-algebra. If
V is any K-vector space let V', denote the L-vector space V @ x L. Let M, M’
be A-modules which are finite-dimensional as K-vector spaces. An A-homo-
morphism ¢: M — M’ induces an A;-homomorphism ¢ & 1: M, — Mj,
and ¢ — ¢ ® 1 gives rise to an isomorphism (of vector spaces over L)

(Hom (M, M’)), ~ Hom,, (M, M,). (8.3)

In the case in point, take K = Q, L = R, A = Q[G], so that 4; = R[G].
The hypotheses of the lemma imply that M and M’ have the same dimension
over Q, hence by choosing bases of M and M’ we can speak of the determinant
of an element of Homgys (M, M'), or of Homgg (Mg, Mg). (It will of
course depend on the bases chosen.)

From (8.3) it follows that if {; are a Q-basis of Homg¢, (M, M), they
are also an R-basis of Homg g, (Mg, Myg). Since My, My are R[G]-isomorphic,
there exist a; € R such that det (3_ ¢;£;) 3 0. Hence the polynomial

F(t) = det(z tiéi) € Q[tl" sy tm],
where f; are independent indeterminates over Q, is not identically zero,
since F(a) # 0. Since Q is infinite, there exist b; € Q such that F(b) # 0,
and then ) b;¢;is a Q[G}-isomorphism of M onto M’.

For the proof of Prop. 12, let M =L ® Q, M' =L ® Q. Then M,
and My are both R[G]-isomorphic to E. Hence by the lemma there is a
Q[Gl-isomorphism ¢: L ® Q —» L’ ® Q. L is mapped injectively by ¢ to
a lattice contained in (1/N)L’ for some positive integer N. Hence f = N.¢
maps L injectively into L’; since L, L' are both free abelian groups of the
same (finite) rank, Coker (f) is finite. The result now follows from the
.Corollary to Prop. 11.
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9. Cohomological Triviality

A G-module A4 is cohomologically trivial if, for every subgroup H of G,
A%H, A) = 0 for all integers g. For example, an induced module is
cohomologically trivial.

Lemma 1. Let p be a prime number, G a p-group and A a G-module such
that pA = 0. Then the following three conditions are equivalent:

(1) 4 =0;

(i) H°G, A) = 0;

(iif) Hy(G, A) = 0.

Proof. Clearly (i) implies (ii} and (iii).

(i1) = (1): Suppose 4 # 0, let x be a non-zero element of 4. Then the
submodule B generated by x is finite, of order a power of p. Consider the
G-orbits of the elements of B; they are all of p-power order (since the order
of G is a power of p), and there is at least one fixed point, namely 0. Hence
there are at least p fixed points, so that H%(G, 4) = 4% % 0.

(iiiy = (i). Let A" = Hom (4, F,) be the dual of A4, considered as a
vector-space over the field F, of p elements. Then

HO(G3 A’) = (A’)G = HomG (A’ Fp)
is the dual of Hy(G, 4). Hence H%(G, A’) = 0, so that 4’ = 0 and therefore
A=0.
LEMMA 2. With the same hypotheses as in Lemma 1, suppose that
H\(G, A) = 0. Then A is a free module over F [G] = AJpA.

Proof. Since pA = 0, we have p. Hy(G, A) = 0 and therefore Hy(G, A)
is a vector space over F,. Take a basis ¢, of this space and lift each e, to
a,eA. Let A’ be the submodule of 4 generated by the a,, and let
A" = AfA’. Then we have an exact sequence

H, (G, A") > H, (G, A) —» H, (G, 4”) = 0

in which by construction « is an isomorphism. Hence Hy(G, 4”) = 0 and
therefore A" = 0 by Lemma 1, so that the a, generate 4 as a G-module.
Hence they define a G-epimorphism ¢:L — 4, where L is a free
F,[G]-module. By construction, ¢ induces an isomorphism

B: Hy(G, L) - Hy(G, 4).
Let R = Ker (¢). Then since H{(G, 4) = 0, the sequence

B
0 — Ho(G,R) > Ho(G, L) » Hy(G, A) - 0

is exact; since B is an isomorphism, Hy(G, R) = 0 and therefore R = 0
by Lemma 1. Hence ¢ is an isomorphism.
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THEOREM 6. Let G be a p-group and let A be a G-module such that pA = 0.
Then the following conditions are equivalent:

(i) A is a free F [G)-module,

(ii) A is an induced module;

(iii) A is cohomologically trivial,

(iv) A%G, A) = 0 for some integer q.

Proof. Clearly (i) = (ii) = (iit) = (iv).

(iv) = (). By dimension-shifting we construct a module B such that
pB = 0 and A'*"(G, A) = A"~ %G, B) for all r. Hence H,(G, B) = 0 and
therefore (Lemma 2) B is free over F,[G]; hence

H %G, A) = A 74G,B)=0
and therefore (Lemma 2 again) A4 is free over F,[G].

THEOREM 7. Let G be a p-group and A a G-module without p-torsion.
Then the following conditions are equivalent:

(1) A is cohomologically trivial,
(i) AUG, A) = HT (G, A) = O for some integer q;
(iii) A/pA is a free F,[G]-module.
Proof. (i) = (ii) is clear.
(i) = (iii)}: From the exact sequence

)
00A—>A— A/pA—-0

we have an exact sequence HYG, A) = H%G, A/pA) - H** (G, A), hence
H %G, A/p4) = 0. Hence, by Theorem 6, A/pA is free over F,[G].
~(iii) = (i): From the same exact sequence it follows that

A%H, A) 4 A%H, 4)

is an isomorphism for all integers g and all subgroups H of G. But HY(H, A)
is a p-group (Prop. 8, Cor. 1), hence H%(H, A) = 0.

COROLLARY. Let A be a G-module which is Z-free and satisfies the equivalent
conditions of Theorem 1. Then, for any torsion-free G-module B, the G-module
N = Hom (A4, B) is cohomologically trivial.

Proof. Since A is Z-free, the exact sequence

1 4
0—-B—->B-B/pB—0
gives an exact sequence

P
0— N-> N—-Hom(4, B/pB) - 0,

so that N has no p-torsion and N/pN ~ Hom (A4/pA, B/pB). Since A/pA
is a free F [G]-module, it is induced, hence is the direct sum of the
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s.4" (se G), where A’ is a subgroup of 4/p4. Hence N/pN is the direct
sum of the subgroup s. Hom (A4’, B/pB) and is therefore induced. Therefore
N is cohomologically trivial by Theorems 6 and 7.

A G-module A is projective if Homg (4, ) is an exact functor, or equiva-
lently if A4 is a direct summand of a free G-module. A projective G-module
is cohomologically trivial.

THEOREM 8. Let G be a finite group, A a G-module which is Z-free, G, a
Sylow p-subgroup of G. Then the following are equivalent:

(i) For each prime p, the G,-module A satisfies the equivalent conditions
of Theorem 7,
(1) A is a projective G-module.

Proof. (ii) = (i) is clear.
(i) = (ii): Choose an exact sequence 0 =+ @ - F -+ 4 — 0, where F is
a free G-module. Since A is Z-free, this gives an exact sequence

0 - Hom (4, Q) - Hom (4, F) - Hom (4, A) - 0

By the Corollary to Theorem 7, Hom (4, Q) is cohomologically trivial as
a G,-module for each p, hence H'(G, Hom (4, Q)) = 0 by Prop. 8, Cor. 4.
Bearing in mind that H%(G, Hom (4, Q)) = (Hom (4, 0))° = Homg (4, 0),
and so on, it follows that Homg (4, F) - Homg (4, A) is surjective, hence
the identity map of A extends to a G-homomorphism 4 — F. Consequently
A is a direct summand of F and is therefore projective.

THEOREM 9. Let A be any G-module. Then the following are equivalent:

(i) For each prime p, H UG,, A) = 0 for two consecutive values of g (which
may depend on p);
(1) A is cohomologically trivial;
(ii1) There is an exact sequence 0 — By - By - A — 0 in which B, and
B, are projective G-modules.

Proof. (ii) = (i) is clear; so is (iii) = (ii), since a projective G-module is
cohomologically trivial.
(1) = (iii): Choose an exact sequence of G-modules
0-B, B, A4A-0,

with B, a free G-module. Then H%G,, By) ~ H* (G, A) for all g4 and
all p, hence A %G, By) = 0 for two consecutive values of g. Also By is
Z-free (because B, is); hence, by Theorem 8, B, is projective.

10. Tate’s Theorem

THEOREM 10. Let G be a finite group, B and C two G-modules and f: B - C
a G-homomorphism. For each prime p, let G, be a Sylow p-subgroup of G,
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and suppose that there exists an integer n, such that
f¥:8%G,, B)~ A%G,C)
is surjective for q = n,, bijective for ¢ = n,+1 and injective for ¢ = n,+2.
Then for any subgroup H of G and any integer g,
f¥:A%H,B)~ A%H,C)
is an isomorphism.

Proof. Let B* = Hom (A, B) and let i: B — B* be the injection (defined
by i(b)(g9) = g.b). Then (f,i): B> C @ B* is injective, so that we have
an exact sequence

0-B->C®B*->D-0.
Since B* is cohomologically trivial, the cohomology of C @ B* is the
same as that of C. Hence the cohomology exact sequence and the hypotheses
of the theorem imply that H%G,, D) =0 for ¢ =n, and ¢ = n,+1. It
follows from Theorem 9 that D is cohomologically trivial, whence the
result.

THEOREM 11. Let A, B, C be three G-modules and ¢: A ® B—> C a
G-homomorphism. Let q be a fixed integer and a a given element of HYG, A).
Assume that for each prime p there exists an integer n, such that the map
A G,, B) — A"*%G,, C) induced by cup-product with Resgc, (a) (relative
to @) is surjective for n = n,, bijective for n = n,+1 and injective for
n = n,+2. Then, for all subgroups H of G and all integers n, the cup-product
with Resg,y (@) induces an isomorphism

A"(H,B)— A"*Y(H, C).
(Explicitly, this mapping is b+ @y (Resgg(a).b).)

Proof. The case g = 0 is essentially Theorem 10. We have ae B°(G, A):
choose a € A% representing a (then « also represents Resg g (@) for every
subgroup H of G). Define f: B —» C by f(f) = ¢(a ® B); fis a G-homo-
morphism, since « is G-invariant. We claim that, for every b e H"(H, B),

@*(Resgy (a). b) = f(b). (10.1)
Indeed, this is clear for n = 0 (from the definition of f), and the general

case then follows by dimension-shifting. To shift downwards, for example,
assume (10.1) true for n+1, and consider the commutative diagram

0-B -B,—»-B—-0
rler] s (10.2)
0-C'->C,—»C-0
where B, = A® B, C, = A ® C, and the rows are exact. B,, C, are
induced modules and therefore cohomologically trivial, hence the con-
necting homomorphisms § are isomorphisms, and the diagram
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3
A"(H,B) - A"*'(H, B)
* Lo
A%H,C)—» A"*Y(H,C")
is commutative. Moreover, the rows of (10.2) split over Z, hence (10.2)
remains exact (and commutative) when tensored with 4 (over Z). Let
":A® B — C' be the homomorphism induced by ¢: 4 ® B — C.
Then using the inductive hypothesis and the compatibility of cup-products
with connecting homomorphisms, we have

8o f¥(b) =f" o 8(b) = ¢"*(Resgyy (a).8(b))
= ¢"* o §(Resg/p (@).b) = § . p*(Resg g (a). b).
Since § is an isomorphism, (10.1) is proved.
Now f satisfies the hypotheses of Theorem 10, hence f£,* is an isomorphism.
This establishes Theorem 11 for the case ¢ = 0.

The general case now follows by another piece of dimension-shifting. To
shift downwards from g+ 1 to g, for example, consider the exact sequence

0-A4"2A4,-+A-0
where 4, = A ® A; this gives rise to isomorphisms 8: H4(H, A) - A (H, 4").
Let u = Resg,y (@) € HY(H, A); then u' = §(u) = Resgy (3(a)).  Also
p:A® B - Cinduces ¢': 4’ ® B— C’. Consider the diagram

u. %

A"H,B)—» A""YH,A®B) — A"*YH,C)

N u. @ %k la

A(H, B)~ A" 4+ 1(H, A' ©B) » A"***1(H, C);
it is commutative, because

8o (u.b) =™ o 8u.b) = 0"*(S(u).b) = o' (' . b);

by the inductive hypothesis, the bottom line is an isomorphism, and & is
an isomorphism; hence the top line is an isomorphism.

THEOREM 12 (Tate). Let A be a G-module, ac H*(G, A). For each prime
p let G, be a Sylow p-subgroup of G, and assume that

(i) H'(G, 4) = 0;

(i) H 2(Gl,', A) is generated by Resg; (a) and has order equal to that of G,.
Then for all subgroups H of G and all integers n, cup-product with Resg,y (a)
induces an isomorphism

A"(H,Z) - A"**(H, A).

Proof. Take B=17Z,C = 4,9 = 2,n, =—1in Theorem 11. Forn =—1
the surjectivity follows from (i). For n =0, A °(G,, Z) is cyclic of order
equal to the order of G,, so the bijectivity follows from (iii). For n = 1, the

injectivity follows from the fact that H'(G,Z) = Hom (G,, Z) = 0. Thus
all the hypotheses of Theorem 11 are satisfied.



