THE HODGE GROUP AND ENDO MORPHISM ALGEBRA
OF AN ABELIAN VARIETY

MIKHAIL BOROVOI

Abstract. This is an English translation of the author’s 1981 note in
Russian, published in a Yaroslavl collection. We prove that if an Abelian
variety over \(\mathbb{C} \) has no nontrivial endomorphisms, then its Hodge group
is \(\mathbb{Q} \)-simple.

In this note we prove that if an Abelian variety \(A \) over \(\mathbb{C} \) has no nontrivial
endomorphisms, then its Hodge group \(Hg_A \) is a \(\mathbb{Q} \)-simple algebraic group.
Actually a slightly more general result is obtained. The note was inspired by
Tankeev’s paper [1]. The author is very grateful to Yu.G. Zarhin for useful
discussions.

Let \(A \) be an Abelian variety over \(\mathbb{C} \). Set \(V = H_1(A, \mathbb{Q}) \). Denote by \(T^1 \)
the compact one-dimensional torus over \(\mathbb{R} \): \(T^1 = \{ z \in \mathbb{C} : |z| = 1 \} \). Denote
by \(\varphi : T^1 \to \text{GL}(V) \) the homomorphism defining the complex structure
in \(V = H_1(A, \mathbb{R}) \). By definition, the Hodge group \(Hg_A \) is the smallest
algebraic subgroup \(H \subset \text{GL}(V) \) defined over \(\mathbb{Q} \) such that \(H_R \supset \text{im} \varphi \). Denote
by \(\text{End}_A \) the ring of endomorphisms of \(A \), and set \(\text{End}^0 A = \text{End}_A \otimes_{\mathbb{Z}} \mathbb{Q} \).

Theorem. Let \(A \) be a polarized Abelian variety. Let \(F \) denote the center of
\(\text{End}^0 A \), and let \(F_0 \) denote the subalgebra of fixed points in \(F \) of the Rosati
involution induced by the polarization. Set \(G = Hg_A \) and denote by \(r \) the
number of factors in the decomposition of the commutator subgroup \(G' = (G,G) \)
of \(G \) into an almost direct product of \(\mathbb{Q} \)-simple groups. Then \(r \leq \dim \mathbb{Q} F_0 \).

Corollary 1. If \(F = \mathbb{Q} \) (in particular, if \(\text{End}^0 A = \mathbb{Q} \)), then \(Hg_A \) is a
\(\mathbb{Q} \)-simple group.

Before proving the Theorem and deducing Corollary 1, we describe the
necessary properties of the Hodge group.

Proposition (see [2]). Let \(A \) be an Abelian variety over \(\mathbb{C} \). Then
(a) The Hodge group \(G = Hg_A \) is a connected reductive group.
(b) The centralizer \(K \) of \(\text{im} \varphi \) in \(G_R \) is a maximal compact subgroup of \(G_R \).
(c) \(G'_R \) is a group of Hermitian type (i.e., its symmetric space admits a
structure of a Hermitian symmetric space).

M.V. Borovoi, The Hodge group and the algebra of endomorphisms of an Abelian
variety (Russian). In: “Problems in Group Theory and Homological Algebra”, pp. 124–
The algebra $\text{End}^\circ A$ is the centralizer of $\text{Hg} A$ in $\text{End} V$.

For any polarization P of A, the Hodge group $\text{Hg} A$ respects the corresponding nondegenerate skew-symmetric form ψ_P on the space V.

Deduction of Corollary 1 from the Theorem. Denote by C the center of G. From assertion (d) of the Proposition, it follows that $C \subset F^*$. Hence, under the hypotheses of the corollary we have $C \subset \mathbb{Q}^*$. From assertion (b) of the Proposition it follows that $C_\mathbb{R}$ is a compact group, hence, C is a finite group and $G = G'$. By virtue of the Theorem, $r = 1$ and G is a \mathbb{Q}-simple group.

Lemma 1. Let H be a normal subgroup of G defined over \mathbb{Q} such that the \mathbb{R}-group $H_\mathbb{R}$ is compact. Then $H \subset C$ (where C denotes the center of G).

Proof. By assertion (b) of the Proposition we have $H_\mathbb{R} \subset K$, where K is the centralizer of $\text{im} \varphi$ in $G_\mathbb{R}$. Therefore, $\text{im} \varphi$ is contained in the centralizer (defined over \mathbb{Q}) $Z(H)$ of H in G. Then it follows from the definition of the Hodge group that $G \subset Z(H)$. Hence $H \subset C$. □

Lemma 2. Consider the natural representation ρ of the group $G'_\mathbb{R}$ in the vector space $V_\mathbb{R}$. Denote by r_ρ the number of pairwise nonequivalent summands in the decomposition of ρ into a direct sum of \mathbb{R}-irreducible representations. Then $r_\rho = \dim_\mathbb{Q} F_0$.

Proof. We set $\mathfrak{A} = \text{End}^\circ A \otimes_\mathbb{Q} \mathbb{R}$ and write the decomposition

$$\mathfrak{A} = \mathfrak{A}_1 + \cdots + \mathfrak{A}_r,$$

of the semisimple \mathbb{R}-algebra \mathfrak{A} into a sum of simple \mathbb{R}-algebras. By the assertion (d) of the Proposition we have $r_\rho = r_\mathfrak{A}$. Furthermore, it is known (see [3, Section 21]) that the Rosati involution acts on the center F_i of the algebra \mathfrak{A}_i trivially if $F_i = \mathbb{R}$, and as the complex conjugation if $F_i = \mathbb{C}$. It follows that

$$F_0 \otimes_\mathbb{Q} \mathbb{R} = \mathbb{R} + \cdots + \mathbb{R}$$

($r_\mathfrak{A}$ summands) whence $\dim_\mathbb{Q} F_0 = r_\mathfrak{A}$. Thus $\dim_\mathbb{Q} F_0 = r_\mathfrak{A} = r_\rho$. □

Proof of the theorem. Denote by r_{nc} the number of noncompact groups in the decomposition

$$G'_\mathbb{R} = G_1 \cdot G_2 \cdots \cdot G_N$$

of the group $G'_\mathbb{R}$ in an almost direct product of simple \mathbb{R}-groups. It is known from results of Satake [4, Theorem 2] that for each \mathbb{R}-irreducible representation ρ' in the decomposition of the representation ρ into a direct sum of \mathbb{R}-irreducibles, there exist not more that one noncompact group G_i ($1 \leq i \leq N$) such that the restriction $\rho'|_{G_i}$ is nontrivial. Therefore, $r_{nc} \leq r_\rho$. Taking in account Lemma 2, we obtain that $r_{nc} \leq \dim_\mathbb{Q} F_0$.

Further, since $G'_\mathbb{R}$ is of Hermitian type, we see that all the groups G_1, \ldots, G_N are of Hermitian type as well, and hence they are absolutely simple. Consider the action of the Galois group $\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ on the set of the simple factors G_1, \ldots, G_N. The orbits of the Galois group bijectively correspond to \mathbb{Q}-simple normal subgroups of G'. By Lemma 1 each orbit contains at
least one noncompact group G_i. Thus the number of orbits, i.e., the number r of \mathbb{Q}-simple normal subgroups of G', does not exceed the number r_{nc} of noncompact groups among G_1, \ldots, G_N. We obtain that $r \leq r_{nc} \leq \dim_{\mathbb{Q}} F_0$, which completes the proof of the theorem.

Corollary 2. Assume that $\operatorname{End}^0 A = \mathbb{Q}$. Write the decomposition

$$
\rho_C = \rho_1 \otimes \cdots \otimes \rho_N
$$

of the irreducible representation ρ_C of the semisimple group G_C in the vector space V_C into a tensor product of irreducible representations ρ_i of the universal covering \widetilde{G}_iC ($i = 1, \ldots, N$) of the simple factors G_iC of G_C. Then each of the representations ρ_i respects a nondegenerate skew-symmetric bilinear form, and the number N is odd.

Proof. Indeed, by Corollary 1 the Galois group permutes transitively the groups G_iC and the representations ρ_i. Now Corollary 2 follows from assertion (e) of the Proposition. □

References

Submitted on November 17, 1980.