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Introduction

In this paper we introduce a new functor H1
ab(K,G) from the category of con-

nected reductive groups over a field K of characteristic 0 to abelian groups. We
call H1

ab(K,G) the first abelian Galois cohomology group of G. The abelian group
H1

ab(K,G) is related to the pointed setH1(K,G) by the abelianization map ab1:H1(K,G)→
H1

ab(K,G). When K is a local field or a number field, the map ab1 is surjective. We
use the map ab1 to give a functorial, almost explicit description of the set H1(K,G)
when K is a number field.

We describe the contents in more detail. For a reductive group G over a field K
of characteristic 0, let Gss denote the derived group of G (it is semisimple) and let
Gsc denote the universal covering group of G (it is simply connected). Following
Deligne we consider the composition

ρ:Gsc → Gss ↪→ G.

Let K̄ be an algebraic closure of K. We write Ḡ for GK̄ . In Section 1 we define
the algebraic fundamental group π1(Ḡ) as follows. Let T ⊂ G be a maximal torus
defined over K. We write T (sc) for ρ−1(T ) and set

π1(Ḡ) = X∗(T̄ )/ρ∗X∗(T̄ (sc))

where X∗ denotes the cocharacter group. The group π1(Ḡ) is a finitely generated
abelian group endowed with a Gal(K̄/K)-action. If K = C then π1(Ḡ) is just
the usual topological fundamental group πtop

1 (G(C)). For any K our algebraic
fundamental group is related to the invariant Z(Ĝ) of Kottwitz [Ko2], where Ĝ is
a connected dual Langlands group for G and Z(Ĝ) is its center. Namely, π1(Ḡ) is
the character group of the C-group Z(Ĝ).

In Section 2 we define the abelian Galois cohomology groups

Hi
ab(K,G) := Hi(K,T (sc) → T ) (i ≥ −1).

Here Hi denotes the Galois hypercohomology of the complex

0→
−1

T (sc) →
0

T → 0

of tori, where −1 and 0 above the letters denote the degrees. We show that the
abelian groups Hi

ab(K,G) depend only on π1(Ḡ).
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In the third section we construct the abelianization map

ab1 = ab1
G:H1(K,G)→ H1

ab(K,G)

with kernel ρ∗H1(K,Gsc). Observe that in the case of a semisimple group G we
have

G = Gsc/ ker ρ, H1
ab(K,G) = H2(K, ker ρ)

(where ker ρ is a finite abelian group), and ab1 in this case is the connecting homo-
morphism δ:H1(K,G)→ H2(K, ker ρ). We construct also a homomorphism

ab0:G(K) = H0(K,G)→ H0
ab(K,G)

with kernel ρ(Gsc(K)). When K is a local field, the map ab1 was earlier constructed
by Kottwitz [Ko3] and the homomorphism ab0 was earlier constructed by Langlands
[La1] (see also [Bo], 10.2).

Our construction of the abelianization maps ab1 and ab0 differs from those of
Kottwitz and Langlands. It is based on the non-abelian hypercohomology theory of
groups with coefficients in crossed modules. This theory was initiated by Dedecker
[Ded] and developed by the author [Brv5] to be used in the present paper and by
Breen [Brn] in a very general setting. In the beginning of Section 3 we state the
main facts about crossed modules and their hypercohomology.

In Section 4 we compute explicitly the groups H1
ab(K,G) for a local field K in

terms of π1(Ḡ). We write Γ for Gal(K̄/K) and M for π1(Ḡ). Then

H1
ab(K,G) =

{
H−1(Γ,M) if K = R

(MΓ)tors if K is non-archimedian,

where (MΓ)tors denotes the torsion subgroup of the group of coinvariants MΓ. For
a number field K we compute Hi

ab(K,G) for i ≥ 3 and compute it in a sense for
i = 2. For i = 1 we compute the group

X1
ab(K,G) := ker[H1

ab(K,G)→
∏
v

H1
ab(Kv, G)]

in terms of π1(Ḡ). All these results are of abelian nature and generalize the Tate-
Nakayama duality theory for tori. The results concerning the case i = 1 are essen-
tially due to Kottwitz.

In Section 5 we prove that ifK is a local or a number field, then the abelianization
map ab1 is surjective. For local fields this is very close to a result of Kottwitz [Ko3].
This surjectivity means, in particular, that for a local non-archimedian field K

H1(K,G) ' (MΓ)tors

([Ko2], 6.4.1). In this case the map ab1 is not only surjective but also injective.

We use the surjectivity of ab1 over local and number fields to investigate the
usual, non-abelian Galois cohomology H1(K,G) when K is a number field.
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Theorem 5.11. For any finite subset Ξ ⊂ H1(K,G) there exists a K-torus j:T ↪→
G such that Ξ ⊂ j∗H1(K,T ).

In other words, for a number field K all the H1(K,G) comes from tori.
Further, we compute H1(K,G) in terms of H1

ab(K,G) and the real cohomology:

Theorem 5.12. The commutative diagram with surjective arrows

H1(K,G) ab1

−−−−→ H1
ab(K,G)

loc∞

y y
Π
∞
H1(Kv, G) −−−−→ Π

∞
H1

ab(Kv, G)

identifies H1(K,G) with the fiber product of H1
ab(K,G) and Π

∞
H1(Kv, G) over Π

∞
(Kv, G).

This result generalizes a theorem of Sansuc [Sa].
From Theorem 5.12 we obtain

Theorem 5.13. The restriction of ab1 to the Shafarevich-Tate kernel defines a
bijection X1(K,G)→X1

ab(K,G).

Thus we see again after Voskresenskii [Vo1], Sansuc [Sa] and Kottwitz [Ko2], that
X(G) has a natural structure of an abelian group. Combining this bijection with
the results of Section 4, we can compute X(G) in terms of π1(Ḡ). The obtained
formula is equivalent to a formula of Kottwitz [Ko2].

Remark 0.1. The results of this paper can be easily adapted to the case of any,
not necessarily reductive, connected K-group. Let Gu denote the unipotent radical
of G. We set Gred = G/Gu; this is a reductive group. We set

π1(Ḡ) = π1(Ḡred), H1
ab(K,G) = H1

ab(K,Gred)

and so on. With this notation almost all the results of the paper remain true for
all connected K-groups.

Remark 0.2. In the case of a semisimple group G all the results of this paper were
already known (cf. [Sa]). On the other hand, for local fields our results are just a
more functorial reformulation of results of Kottwitz [Ko2], [Ko3]. The contribution
of the present paper is that we construct the abelian Galois cohomology and the
abelianization map for any reductive group over an arbitrary field of characteristic
0. This enables us to obtain new results concerning usual, non-abelian Galois
cohomology of reductive groups over number fields.

Remark 0.3. Our computations in Section 5 of the Galois cohomology of reduc-
tive groups over number fields are based on the fundamental results on the Galois
cohomology of semisimple groups due to Kneser [Kn1], [Kn2] and Harder [Ha1],
[Ha2].

Remark 0.4. The main results of this paper were exposed by J. S. Milne in Ap-
pendix B to [Mi3].
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Notation

K is a field of characteristic 0, K̄ is an algebraic closure of K. We write Γ for
Gal(K̄/K). For an aglebraic variety Xover K we write X̄ for XK̄ .

When K is a number field, let V = V(K), V∞ and Vf denote the set of all places,
the set of infinite (archimedian) places and the set of finite (non-archimedian) places
of K, respectively. We often write just ∞ for V∞. If v ∈ V, we let Kv denote the
completion of K at v.

We denote by µn the group or roots of unity of order dividing n, and set Ẑ(1) =
lim←− µn.

G is a reductive K-group. By a reductive K-group we always mean a connected
reductive K-group. Let Gss denote the derived group of G. We set Gtor = G/Gss.
We denote by Z the center of G and set Gad = G/Z. Let Gsc denote the universal
covering of the semisimple group Gss. We have the canonical homomorphism

ρ:Gsc → Gss → G.

Let T ⊂ G be a maximal torus (defined over K). We write T (sc) for the maximal
torus ρ−1(T ) ⊂ Gsc.

We let Z(sc) denote the center of Gsc. Then Z(sc) = ρ−1(Z).

Let S be a K-group of multiplicative type, e.g. a torus. We let X∗(S) de-
note the character group Hom(S,Gm) and let X∗(S) denote the cocharacter group
Hom(Gm, S), where Gm is the multiplicative group. We usually consider X∗(S̄)
and X∗(S̄).

For a reductive K-group G and a split maximal K-torus T we let R(G,T ) denote
the root system of G with respect to T . We denote by R∨(G,T ) the system of
coroots. By definition R(G,T ) ⊂ X∗(T ) and R∨(G,T ) ⊂ X∗(T ).

Let L be a torsion free abelian group. We write L∨ for Hom(L,Z).
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Let M be an abelian group. We let Mtors denote the torsion subgroup of M . We
set Mtf = M/Mtors; this is the maximal torsion free quotient of M .

Let ∆ be a group and M a ∆-module. We say that M is a finitely generated
(resp. torsion free) ∆-module if M is finitely generated (resp. torsion free) as an
abelian group.

Let M be a finitely generated ∆-module. By a short torsion free resolution of
M we mean an exact sequence

0→ L−1 → L0 →M → 0

of finitely generated ∆-modules such that L−1 and L0 are torsion free. We write
L· for the complex 0→ L−1 → L0 → 0.

Let M be a ∆-module. We write M∆ and M∆ to denote the subgroup of
invariants and the group of coinvariants of M , respectively. We often consider the
functors (M∆)tors and (M∆)tf.

We often regard a homomorphism α:F → G of groups as a short complex

1→
−1

F →
0

G→ 1

where −1 and 0 over the letters denote the degrees: F is in degree −1 and G is in
degree 0.

A crossed module is a complex of groups F α−→ G endowed with an action of G on
F satisfying certain conditions. We often write just (F → G) for a crossed module.

Let (F → G) be a crossed module of ∆-groups. We write Hi(∆, F → G) or just
Hi(F → G) (i = 1, 0, 1) for the hypercohomology of ∆ with coefficients in F → G
(see Section 3 for definitions).

Let G be an algebraic group. As usual, we write Hi(K,G) to denote the Galois
cohomology Hi(Γ, G(K̄)) where Γ = Gal(K̄/K). We denote by Zi(K,G) the set
of i-cocycles and by Bi(K,G) the set of i-cobords.

If (F → G) is a crossed module of algebraic K-groups, we write Hi(K,F → G)
or just Hi(F → G) for its Galois hypercohomology Hi(Γ, F (K̄)→ G(K̄)).

For any Γ-module M (where Γ = Gal(K̄/K)) we write Hi(K,M) for Hi(Γ,M).
Similarly, if F/K is a Galois extension with the Galois group ∆ and if M is a
∆-module, we write Hi(F/K,M) for Hi(∆,M) and Ĥi(F/K,M) for Ĥi(∆,M),
where Ĥi are the Tate cohomology groups.

If K is a number field, we use the notation loc to denote the localization maps

locv:H1(K,G)→ H1(Kv, G)

loc∞:H1(K,G)→
∏
v∈V∞

H1(Kv, G)

and so on.
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1. The algebraic fundamental group of a reductive group

In this section we define the algebraic fundamental group π1(GK̄) of a reductive
group G defined over a field K of characteristic 0.

1.1 Let G be a (connected) reductive K-group. First suppose that G is split.
Choose a maximal split torus T ⊂ G. Consider the canonical morphism ρ:Gsc → G.
We write T (sc) for ρ−1(T ) ⊂ Gsc. Set

π1(G,T ) = X∗(T )/ρ∗X∗(T (sc)).

It is a finitely generated abelian group.

Lemma 1.2. For two split maximal tori, T, T ′ ⊂ G, the groups π1(G,T ) and
π1(G,T ′) are canonically isomorphic.

Proof: Choose an element g ∈ G(K) such that T ′ = gTg−1. The isomorphism
int(g):T → T ′ induces an isomorphism g∗:π1(G,T ) → π1(G,T ′). We will show
that g∗ does not depend on the choice of g.

Let N denote the normalizer of T in G. It suffices to show that if g ∈ N(K)
then the automorphism g∗ of π1(G,T ) is trivial. The group N(K) acts on T and on
π1(G,T ) through its quotient group W := N(K)/T (K). One knows that the Weyl
group W is generated by the reflections rα corresponding to the roots α ∈ R(G,T ).
It remains to show that for α ∈ R(G,T ) the reflection rα acts on π1(G,T ) trivially.

We have
rα(X) = X − 〈α,X〉α∨

for X ∈ X∗(T ), where a∨ is the corresponding coroot. Since all the coroots come
from X∗(T (sc)), we see that

rα(X) ≡ X mod ρ∗X∗(T (sc)),

thus rα acts on X∗(T )/ρ∗X∗(T (sc)) trivially. The lemma is proved.

Definition 1.3. Let G be a split reductive K-group. Let T ⊂ G be a split max-
imal K-torus. We set π1(G) = π1(G,T ) and call this abelian group the algebraic
fundamental group of G.

By Lemma 1.2 this definition is correct.
1.4. Now let G be any (not necessarily split) reductive K-group. By the algebraic
fundamental group of G we mean π1(Ḡ) (recall that Ḡ = GK̄).

The Galois group Γ = Gal(K̄/K) acts on G and thus on π1(Ḡ). This action can
be described as follows.

Choose a maximal torus T ′ ⊂ Ḡ. For σ ∈ Γ choose an element gσ ∈ G(K̄) such
that gσ · σT ′ · g−1

σ = T ′. Then σ acts on π1(Ḡ, T ′) as the composition

π1(Ḡ, T ′)
σ∗−→ π1(Ḡ, σT ′)

(gσ)∗−−−→ π1(Ḡ, T ′)

In particular, if T ⊂ G is a maximal torus defined over K, then the action of Γ on
π1(Ḡ) is the action on X∗(T̄ )/ρ∗X∗(T̄ (sc)) induced by the action on X∗(T̄ ).

Our algebraic fundamental group is a functor from the category of reductive
K-groups and K-homomorphisms to the category of finitely generated Γ-modules.
The following lemma shows that this functor is in a sense exact.
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Lemma 1.5. Let 1 → G1 → G2 → G3 → 1 be an exact sequence of connected
reductive K-groups. Then the sequence

0→ π1(Ḡ1)→ π1(Ḡ2)→ π1(Ḡ3)→ 0

is exact.

Proof: Left to the reader as an easy exercise.

1.6. Examples.

(1) For a K-torus T we have π1(T̄ ) = X∗(T̄ ).

(2) Suppose Gss to be simply connected. Then the canonical homomorphism
π1(Ḡ)→ π1(Ḡtor) is an isomoprhism, thus π1(Ḡ) = X∗(Ḡtor).

(3) Let G be a semisimple group. Then G = Gsc/ ker ρ, where ker ρ is a finite
abelian K-group. Let T ⊂ G be a maximal torus defined over K. Then T =
T (sc)/ ker ρ. One can easily show that π1(Ḡ) = (ker ρ)(−1) := Hom(Ẑ(1), ker ρ).
Note that π1(Ḡ) and ker ρ are isomorphic as abelian groups, but are in general non-
isomorphic as Γ-modules. E.g. if G = PGLn, then ker ρ = µn, but π1(Ḡ) = Z/nZ.

Corollary 1.7. For any reductive K-group G we have an exact sequence

0→ (ker ρ)(−1)→ π1(Ḡ)→ X∗(Gtor
K̄ )→ 0.

Proof: We consider the canonical exact sequence 1 → Gss → G → Gtor → 1 and
apply Lemma 1.5 and the statements 1.6(1,3).

Now let ψ ∈ Z1(K,Gad) be a cocycle. Consider the twisted form ψG of G. By
definition (ψG)K̄ = GK̄ , but σ ∈ Gal(K̄/K) acts on (ψG)K̄ by g 7→ ψ(σ)·σg·ψ(σ)−1

where g 7→ σg is the action of σ on GK̄ .

Lemma 1.8. Let ψ ∈ Z1(K,Gad) be a cocycle. Then the map π1(GK̄)→ π1((ψG)K̄),
induced by the canonical isomorphism GK̄ → (ψG)K̄ , is an isomorphism of Galois
modules.

Proof: The assertion follows from the description 1.4 of the Galois action on π1(Ḡ).

In the remaining part of this section we prove some comparison results, which
will not be used later.

1.9 Consider the functor Z(Ĝ) of Kottwitz. Here Ĝ is a connected Langlands dual
group for G, and Z(Ĝ) is the center of Ĝ (cf. [Ko2]). By definition Ĝ is a connected
reductive C-group endowed with an algebraic action of Γ = Gal(K̄/K). The group
Z(Ĝ) is an algebraic C-group of multiplicative type; Γ acts on Z(Ĝ) algebraically.
The character group X∗(Z(G)) is a finitely generated Γ-module.

Proposition 1.10. The Γ-modules π1(Ḡ) and X∗(Z(Ĝ)) are canonically isomor-
phic.

Proof: By definition (cf. [Ko2]) there is a maximal torus T̂ ⊂ Ĝ such that X∗(T̂ ) =
X∗(TK̄), where T is a maximal torus of G defined over K. Moreover, R(Ĝ,T̂ ) =
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R∨(GK̄ ,TK̄), where R and R∨ denote the system of roots and the system of co-
roots, respectively. We have Z(Ĝ) = ∩ ker[α∨: T̂ → GmC] where α∨ runs through
R(Ĝ, T̂ ) = R∨(GK̄ , TK̄). Hence

X∗(Z(Ĝ)) = X∗(T̂ )/〈R(Ĝ, T̂ )〉 = X∗(TK̄)/〈R∨〉

where we write R∨ for R∨(Ḡ, T̄ ) and we use 〈 〉 to denote the subgroup of X∗(TK̄)
generated by the set in brackets.

All the coroots α∨ ∈ R∨ ⊂ X∗(T̄ ) come from X∗(T̄ (sc)); moreover the set
R∨ ⊂ ρ∗X∗(T̄ (sc)) generates ρ∗X∗(T̄ (sc)) (cf. [St2], Lemma 25). Thus X∗(Z(Ĝ)) =
X∗(T̄ )/
ρ∗X∗(T̄ (sc)) = π1(Ḡ), which was to be proved.

Remark 1.10.1: Let ϕ:G1 → G2 be a homomorphism of reductive K-groups.
First suppose that ϕ is normal, i.e. ϕ(G1) is normal in G2. Then one can define
a homomoprhism ϕ∗: Ĝ2 → Ĝ1 (cf. [Bo], [Ko2]). But if ϕ is not normal, then
we cannot define ϕ∗. In other words, Ĝ is functorial with respect to normal ho-
momoprhisms only. Proposition 1.9 shows, however, that the center Z(Ĝ) of Ĝ is
functorial with respect to all homomophisms.

Proposition 1.11. Let K̄ be C and let K be either R or C. For a connected
reductive K-group G there is a canonical isomoprhism

π1(G) ∼−→ Hom(πtop
1 (Gm(C)), πtop

1 (G(C)))

where πtop
1 is the usual topological fundamental group.

For brevity we write π1(G(C)) for πtop
1 (G(C)) and π1(G(C))(−1) for Hom(πtop

1 (Gm(C)),
πtop

1 (G(C))).
We recall that in the case K = R the Galois group Γ = Gal(C/R) acts on

π1(G(C)) and (non-trivially) on π1(Gm(C)). Since π1(Gm(C)) is isomoprhic to Z
as a group, but not as a Γ-module, we see that π1(G(C)) and π1(G(C))(−1) are
isomorphic as groups, but in general not as Γ-modules.

In the case K = C we have Γ = 1, and π1(G(C))(−1) is isomorphic to π1(G(C)).
To fix this isomoprhism it suffices to fix an isomorphism π1(C×) ∼−→Z (or a square
root of −1 in C).

Proposition 1.11 justifies the term “algebraic fundamental group”. The proposi-
tion means that π1(Ḡ) is “the topological fundamental group, defined algebraically”.
Proof: First we consider the case of a torus. Let T , T ′ be two K-tori. There is a
canonical map

Hom(T ′C, TC)→ Hom(π1(T ′(C)), π1(T (C)))

This map is Γ-equivariant, and one can easily see that it is an isomoprhism of
groups. Taking Gm for T ′ we obtain the required isomoprhism

π1(T ) = X∗(TC)→ π1(G(C))(−1).

In the general case we define the map π1(G)→ π1(G(C))(−1) as follows. Choose
a maximal torus T ⊂ G defined over K; then π1(Ḡ) = X∗(T̄ )/ρ∗X∗(T̄ (sc)). We
consider the composition

αT :X∗(T̄ )→ π1(T (C))(−1)→ π1(G(C))(−1).
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One can easily check that αT (ρ∗(X∗(T̄ (sc)))) = 0, hence αT induces a homomor-
phism

(αT )∗:π1(Ḡ)→ π1(G(C))(−1)

It is not hard to check that (αT )∗ does not depend on the choice of T .
Now we have the diagram

(1.11.3)
0 −−→ π1(Ḡss) −−→ π1(Ḡ) −−→ π(Ḡtor) −−→ 0y y y
0 −−→ π1(Gss(C))(−1) −−→ π1(G(C))(−1) −−→ π1(Gtor(C))(−1) −−→ 0

The upper row is exact by Proposition 1.5. The lower row comes from the exact
sequence of the fiber bundle G(C) over Gtor(C).

We have already shown that the right vertical row in (1.11.3) is an isomorphism.
The Proposition 1.11 is well known for semisimple groups (cf. e.g. [O-V]), hence
the left vertical arrow is an isomorphism. We conclude that the middle vertical
arrow is an isomorphism.
1.12. Our definition of π1(Ḡ) uses explicitly the group structure of G. We are now
going to show how to define π1(Ḡ) in a more “algebraic-geometrical” way. We make
no further use of this construction here.

Let again K be any field of characteristic 0. Consider the algebraic-geometrical
fundamental group πGr

1 (Ḡ) defined by Grothendieck [Gr] (see also [Mi1]) (we take
1 ∈ G(K̄) as the base point). Set πGr

1 (Ḡ)(−1) = Hom(Ẑ(1), πGr
1 (Ḡ)). Note that

Ẑ(1) = π1(GmK̄). To any regular map m: GmK̄ → GK̄ such that m(1) = 1, we
associate its class m∗ = Cl(m) ∈ πGr

1 (Ḡ)(−1) = Hom(πGr
1 (GmK̄), πGr

1 (GK̄)). Let
πGr

1 (Ḡ)(−1)alg denote the subset of such algebraic classes in πGr
1 (Ḡ)(−1).

Proposition 1.13. (i) πGr
1 (Ḡ)(−1)alg is a subgroup of the abelian group πGr

1 (Ḡ)(−1).

(ii) The map m 7→ Cl(M) induces an isomorphism of Γ-modules π1(Ḡ) ∼−→ πGr
1 (Ḡ)(−1)alg.

(iii) πGr
1 (Ḡ)(−1) is isomorphic (as a Γ-module) to the completion of π1(Ḡ) with re-

spect to the topology defined by the subgroups of finite index.

We omit the proof.

Remark 1.14. LetH be a connectedK-subgroup ofG. Consider the homogeneous
space X = H\G. It has a canonical base point, namely the image of the neutral
element of G. In this case one can similarly define the algebraic fundamental group
π1(X̄) as the set of algebraic classes in

πGr
1 (X̄)(−1) = Hom(πGr

1 (GmK̄), πGr
1 (XK̄)).

One can show that πGr
1 (X̄) is an abelian group and that π1(X̄) = πGr

1 (X̄)(−1)alg
is a subgroup. In the case K̄ = C we have π1(X̄) ' πtop

1 (X(C))(−1).
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2. Abelian Galois cohomology

2.1. Let K be a field of characteristic 0. We write Γ for Gal(K̄/K). Let G be a
(connected) reductive K-group. Choose a maximal torus T ⊂ G (defined over K).
We consider the complex of tori

T · = (
−1

T (sc) ρ−→
0

T )

where T (sc) is in degree −1 and T is in degree 0. We define the abelian Galois
cohomology of G as follows:

Definition 2.2. Hi
ab(K,G) = Hi(K,T ·).

Here Hi means that Galois hypercohomology of the complex T (sc)(K̄) → T (K̄)
of Gal(K̄/K)-modules. We may regard H·ab(K,G) as the hypercohomology of the
double complex

(2.2.1)

0 −−→ T (K̄) −−→ C1(Γ, T (K̄)) −−→ C2(Γ, T (K̄)) −−→ · · ·x x x
0 −−→ T (sc)(K̄) −−→ C1(Γ, T (sc)(K̄)) −−→ C2(Γ, T (sc)(K̄)) −−→ · · ·

where Ci are the usual groups of non-homogeneous continuous cochains. Note that
the bidegree of T (sc)(K̄) is (−1, 0).

We see that the groups Hi
ab(K,G) do not depend on the choice of the algebraic

closure K̄ of K. We are going to show in this section that they neither depend on
the choice of T . Moreover, they depend only on π1(Ḡ).
2.3. Let ∆ be a group, and let (A−1 α−→A0) be a short complex of ∆-modules. A
morphism

ε: (A−1
1

α1−→A0
1) −→ (A−1

2
α2−→A0

2)

of complexes is called a quasi-isomorhism if it induces isomorphisms on cohomology,
i.e. if the induced homomorphisms kerα1 → kerα2 and cokerα1 → cokerα2 are
isomorphisms. It is well known that a quasi-isomorphism ε of complexes of ∆-
modules induces isomorphisms

εi∗: Hi(∆, A−1
1 → A0

1)
∼−→Hi(∆, A−1

2 → A0
2)

on hypercohomology.
Now let ε: (S−1

1 → S0
1) → (S−1

2 → S0
2) be a quasi-isomorphism of complexes

of abelian algebraic K-groups. We see that the induced Galois hypercohomology
homomorphisms

εi∗: Hi(K,S−1
1 → S0

1)→ Hi(K,S−1
2 → S0

2)

are isomorphisms.
2.4. Let G be as above. Following Deligne [Del] we consider the complex (Z(sc) →
Z) of abelian K-groups, where Z is the center of G and Z(sc) is the center of Gsc.
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Lemma 2.4.1. Let F ⊂ G be a maximal torus. Then the embedding (Z(sc) →
Z)→ (T (sc) → T ) of complexes of K-groups is a quasi-isomorphism.

Proof: ker ρ ⊂ Z(sc) and T (sc) ⊃ Z(sc), hence

ker[Z(sc) → Z] = ker[ρ:Gsc → G] = ker[T (sc) → T ]

Set Gtor = G/ρ(Gsc) = coker ρ. Since G = Gss · T = Gss · Z, the maps
coker [T (sc) → T ] → Gtor and coker [Z(sc) → Z] → Gtor are surjective. Since
ρ(T (sc)) = T ∩Gss and ρ(Z(sc)) = Z ∩Gss, these maps are injective. Thus

coker [Z(sc) → Z] = coker [ρ:Gsc → G] = coker [T (sc) → T ],

and we conclude that (Z(sc) → Z)→ (T (sc) → T ) is a quasi-isomorhism, which was
to be proved.

It follows from Lemma 2.4.1 that we have canonical isomorhisms

Hi(Z(sc) → Z) ∼−→Hi(T (sc) → T )

Thus the groups Hi
ab(K,G) = Hi(K,T (sc) → T ) are defined correctly, i.e. do not

depend on the choice of T .
2.5. For a homomorphism β:G1 → G2 we define β∗:Hi

ab(K,G1) → Hi
ab(K,G2).

Let T1 ⊂ G1 be a maximal torus, and let T2 ⊂ G2 be a maximal torus containing
β(T1). The morphism

(T (sc)
1 → T1) −→ (T (sc)

2 → T2)

defines homomorphisms

βi∗:H
i
ab(K,G1) = Hi(T (sc)

1 → T1)→ Hi(T (sc)
2 → T2) = Hi

ab(K,G2).

We must show that the maps βi∗ are defined correctly, i.e. do not depend on the
choice of T1 and T2. For this end we are going to show in this section that the
group Hi

ab(K,G) depends only on the fundamental group π1(Ḡ) and that the maps
βi∗ can be described in terms of the map β∗:π1(Ḡ1)→ π1(Ḡ2).
2.6. The functor Hi.
2.6.1. Let ∆ be a finite group and M a finitely generated ∆-module. One can
easily see that there exists a short torsion free resolution of M , i.e. a short exact
sequence

0→ L−1 → L0 →M → 0

of ∆-modules such that L−1 and L0 are finitely generated and torsion free as abelian
groups.

Let D be a ∆-module. Consider the complex L· = (L−1 → L0) and the complex

L· ⊗
Z
D = (L−1 ⊗D → L0 ⊗D).

Definition 2.6.2. Hi(∆,M,D) = Hi(∆, L· ⊗D).
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We observe that the groups Hi(∆,M,D) are defined correctly. Indeed, the
complex L· is quasi-isomorphic to (1 → M). If we choose two short torsion free
resolutions L·1 → M and L·2 → M , then L·1 and L·2 are canonically isomorphic in
the appropriate derived category. Since L·1 and L·2 are torsion free, the complexes
L·1⊗D and L·2⊗D are also canonically isomorphic in the derived category. It follows
that the groups Hi(∆, L·1⊗D) and Hi(∆, L·2⊗D) are canonically isomorphic, which
was to be proved. Note that in the language of derived categories we have just

Hi(∆,M,D) = Hi(∆,M
L
⊗
Z
D),

where
L
⊗
Z

denotes the left derived functor of the tensor product.

Remark 2.6.3. We can also define the “Tate groups”

Ĥi(∆,M,D) := Ĥi(∆, L· ⊗
Z
D) (i ∈ Z),

where L· → M is a short torsion free resolution. Here Ĥ· denotes the hypercoho-
mology of the double complex Hom(P ·, L·), where P · is a complete resolution for
∆ (see e.g. [A-W]).
2.6.4. If ∆ is a finite group and U is a normal subgroup of ∆, then we have inflation
homomorhisms

Hi(∆/U,MU , DU ) −→ Hi(∆,M,D)

Now let Γ be a pro-finite group and M a finitely generated (over Z) discrete
Γ-module. Let D be a discrete Γ-module. We set

Hi(Γ,M,D) = lim−→
U

Hi(Γ/U,MU , DU ),

where U runs over the open normal subgroups of Γ.
Let L· →M be a short torsion free resolution of M , i.e. an exact sequence

0→ L−1 → L0 →M → 0

of discrete Γ-modules, where L−1 and L0 are finitely generated torsion free abelian
groups. Let Hi(Γ, L· ⊗D) denote the hypercohomology of the double complex

0 −−→ C0(Γ, L0 ⊗D) −−→ C1(Γ, L0 ⊗D) −−→ C2(Γ, L0 ⊗D) −−→ · · ·x x x
0 −−→ C0(Γ, L−1 ⊗D) −−→ C1(Γ, L−1 ⊗D) −−→ C2(Γ, L−1 ⊗D) −−→ · · ·

where Ci(Γ, ·) denotes the groups of continuous non-homogeneous cochains. Since
MU = M for sufficiently small U , we have

Hi(Γ,M,D) = Hi(Γ, L· ⊗
Z
D).

The functor H(Γ,M,D) is a cohomological functor of M in the following sense.
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Proposition 2.6.5. Let

0→M1 →M2 →M3 → 0

be a short exact sequence of finitely generated (over Z) Γ-modules. Then we have
an exact sequence

· · · → Hi(Γ,M1, D)→ Hi(Γ,M2, D)→ Hi(Γ,M3, D)→
(2.6.5.1)

→ Hi+1(Γ,M1, D)→ · · ·

Proof: Easy.

Corollary 2.6.6. Let
0→ L−1 → L0 →M → 0

be a short torsion free resolution of M . Then there is an exact sequence

0→ H−1(Γ,M,D)→ H0(Γ, L−1 ⊗D)→ H0(Γ, L0 ⊗D)→

→ H0(Γ,M,D)→ H1(Γ, L−1 ⊗D)→ · · ·
(2.6.6.1)

2.7. Let Γ again denote the Galois group Gal(K̄/K). Let M be a discrete finitely
generated Γ-module. We are interested in the groups Hi(Γ(K̄/K),M ; K̄×); for
brevity we write just Hi(K,M, K̄×).
2.7.1. Let L· → M be a short torsion free resolution. Consider the complex
T−1 → T 0 ofK-tori such that L· = (L−1 → L0) is the complexX∗(T−1

K̄
)→ X∗(T 0

K̄
)

of cocharacter groups of these tori. By definition

Hi(K,M, K̄×) = Hi(K,L−1 ⊗ K̄× −→ L0 ⊗ K̄×) = Hi(K,T−1 → T 0)

Thus Hi(K,M, K̄×) is the Galois hypercohomology of a complex of tori.

2.7.2. Examples.

(1) If M is torsion free, then we set L−1 = 0, L0 = M , X∗(T 0) = M . Thus
H1(K,M, K̄×) = Hi(K,T 0).

(2) Suppose that M is finite. Choose a resolution L· → M and define the
complex T · = T−1 → T 0 as above. Then the homomorphism T−1(K̄) → T 0(K̄)
is surjective. Set B = ker[T−1 → T 0]; it is a finite abelian K-group. Then the
morphism of complexes

(B(K̄)→ 0)→ (T−1(K̄)→ T 0(K̄))

is a quasi-isomorphism. Hence

Hi(K,M, K̄×) := Hi(K,T−1(K̄)→ T 0(K̄)) = Hi(K,B(K̄)→ 0) = Hi+1(K,B).

Now let G be a connected reductive K-group.
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Proposition 2.8. Hi
ab(K,G) = Hi(K,π1(Ḡ), K̄×)

Proof: Let T ⊂ G be a maximal torus (defined over K). Set L0 = X∗(TK̄), L−1 =
X∗(T (sc)). Then by definition of π1(Ḡ), (L−1 → L0) → π1(Ḡ) is a resolution of
π1(Ḡ). Hence, as it was shown in 2.7.1, Hi(K,π1(Ḡ), K̄×) = Hi(K,T (sc) → T ). By
definition Hi(K,T (sc) → T ) = Hi

ab(K,G). This proves the proposition.
We see from Propositioni 2.8 that the groups Hi

ab(K,G) depend only on the
Galois module π1(Ḡ).

Corollary 2.9. Let ψ ∈ H1(K,Gad) be a cocycle. There are canonical isomorhisms
H1

ab(K,G)→ Hi
ab(K, ψG).

Proof: The assertion follows from Lemma 1.8 and Proposition 2.8.

Proposition 2.10. Let 1→ G1 → G2 → G3 → 1 be an exact sequence of connected
reductive K-groups. Then there is a long abelian cohomology exact sequence

(2.10.1) 0→ H−1
ab (K,G1)→ H−1

ab (K,G2)→ H−1
ab (K,G3)→ H0

ab(K,G1)→ · · ·

Proof: The assertion follows from Lemma 1.5 and Proposition 2.6.5.
The exact sequence (2.10.1) can be defined more explicitly as follows. Let T2 ⊂

G2 be a maximal torus. Let T3 be the image of T2 in G3, and let T1 be the inverse
image of T2 in G1. We have the short exact sequence

0→ (T (sc)
1 → T1)→ (T (sc)

2 → T2)→ (T (sc)
3 → T3)→ 0

of complexes of tori. Then (2.10.1) is the corresponding long hypercohomology
exact sequence.

2.11 Examples.
(1) G is a torus. Then (T (sc) → T ) = (1→ G), and Hi

ab(K,G) = Hi(K,G).
(2) Suppose thatGss is simply connected. By 1.6(2) the homomorphism π1(Ḡ)→

π1(Ḡtor) is an isomorphism, hence Hi
ab(K,G) = Hi(K,Gtor).

(3) Let G be a semisimple group, G = Gsc/ ker ρ. Then ker(T (sc) → T ) = ker ρ,
and by 2.7.2(2) Hi

ab(K,G) = Hi+1(K, ker ρ). Recall that ker ρ is a finite abelian
K-group.

(4) For anyG we haveH−1
ab (K,G) = (ker ρ)(K). This follows from the definition.

Proposition 2.12. Let G be a connected reductive K-group. Let T ⊂ G be a
maximal K-torus. Then there are exact sequences

· · · → Hi+1(K, ker ρ)→ Hi
ab(K,G)→ Hi(K,Gtor)→ Hi+2(K, ker ρ)→ · · ·

(2.12.1)

· · · → Hi(K,T (sc))→ Hi(K,T )→ Hi
ab(K,G)→ Hi+1(K,T (sc))→ · · ·

(2.12.2)

Proof: Consider the short exact sequence

1→ Gss → G→ Gtor → 1

Applying Proposition 2.10 and calculations 2.11(1,3), we obtain (2.12.1). We obtain
(2.12.2) from Proposition 2.8 and Proposition 2.6.5.



ABELIAN GALOIS COHOMOLOGY OF REDUCTIVE GROUPS 15

3. The abelianization maps

In this section we construct the abelianization maps

ab0:G(K) = H0(K,G)→ H0
ab(K,G)

ab1:H1(K,G)→ H1
ab(K,G)

for a connected reductive group G over a field K of characteristic 0. For this end
we need the non-abelian hypercohomology theory. We give here a short review; for
more detail see [Brv5].
3.1. Hypercohomology of complexes of groups.

3.1.1. Let ∆ be a group, and let

1→
−1

F
α−→

0

G→ 1

be a short complex of (in general non-abelian) ∆-groups, where F is in degree −1
and G is in degree 0. For brevity we write F → G for this complex. We define its
−1-hypercohomology group by

H−1(∆, F → G) = (kerα)∆

where ( )∆ denotes the subgroup of invariants.
We define the 0-hypercohomology set H0(∆, F → G) in terms of cocycles. We

write Maps(∆, F ) for the set of the maps ϕ:∆→ F and set

C0 = Maps(∆, F )×G (we regard C0 as a set)

Z0 = {ϕ, g ∈ C0
 ϕ(στ) = ϕ(σ) · σϕ(τ), σg = α(ϕ(σ))−1 · g}

The sets C0 and Z0 are the sets of cochains and cocycles, respectively. The group
F acts on Z0 on the right by

(ϕ, g) ∗ f = (ϕ′, g′), ϕ′(σ) = f−1 · ϕ(σ) · σf, g′ = α(f)−1 · g,

and we set
H0(∆, F → G) = Z0/F.

The set H0 has a neutral element, namely, the class of the cocycle (1, 1) ∈ Z0.
We write H−1(F → G) and H0(F → G) for H−1(∆, F → G) and H0(∆, F → G),

respectively.

3.1.2 Examples.

(1) H0(1→ G) = H0(G).
(2) H0(F → 1) = H1(F ). To Cl(ϕ, 1) ∈ H0(F → 1) we associated Cl(ϕ) ∈

H1(F ).
(3) If α:F → G is injective, then H0(F → G) = H0(cokerα).
(4) If α is surjective, then H0(F → G) = H1(kerα).
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3.1.3. Let ε: (F1 → G1)→ (F2 → G2) be a morphism of complexes of ∆-groups,
i.e. a commutative diagram

F1 −−−−→ F2y y
G1 −−−−→ G2

of groups. We have induced map:

ε
(−1)
∗ : H−1(F1 → G1) −→ H−1(F2 → G2),

ε0∗: H0(F1 → G1) −→ H0(F2 → G2),

where ε(−1)
∗ is a group homomoprhism and ε0∗ is a morphism of pointed sets.

3.2 Crossed modules.

To define 1-hypercohomology we need crossed modules, introduced by J. H. C.
Whitehead [Wh] (see [Bro], [Br-H] for a survey).

Definition 3.2.1. A (left) crossed module is a short complex α:F → G endowed
with a left action G× F → F of G on F , denoted (g, f) 7→ gf , such that

ff ′f−1 = α(f)f ′(3.2.1.1)

α(gf) = g · α(f) · g−1(3.2.1.2)

for any f, f ′ ∈ F , g ∈ G.

We say that a group ∆ acts on a crossed module (F → G) if ∆ acts on F and
G so that

α(σf) = σ(α(f)), σ(gf) =
σg

(σf)

for any f ∈ F , g ∈ G, σ ∈ ∆.

3.2.2 Examples.

(1) An abelian crossed module: F and G are abelian groups, the action of G on
F is trivial.

(2) F is an abelian group (G-module),α is trivial.

(3) F is a normal subgroup of G, α:F ↪→ G is the inclusion, gf = gfg−1.

(4) F → G is any surjective homomoprhism with central kernel.

(5) F → AutF for any group F .

Any crossed module is in a sense a combination of examples 3.2.2(3) and 3.2.2(4).
We have

Lemma 3.2.3. (cf. [Br-H]). Let F α−→G be a crossed module. Then

(i) kerα is central in F ;

(ii) im α is normal in G (hence cokerα is defined);
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(iii) cokerα acts on kerα.

3.2.4. A morphism of crossed modules ε: (F1 → G1) → (F2 → G2) is a morphism
of complexes

F1
εF−−−−→ F2y y

G1 −−−−→
εG

F2

such that the homomorphism εF is εG-equivariant.
3.3. 1-hypercohomology with coefficients in a crossed module.

3.3.1. Let F → G be a crossed module of ∆-groups. We define a group structure
on C0 = C0(∆, F → G) as follows.

Let (ϕ1, g1), (ϕ2, g2) ∈ C0. We set

(ϕ1, g1) · (ϕ2, g2) = (ϕ′, g1g2) where ϕ′(σ) = g1ϕ2(σ) · ϕ1(σ)

One can check that Z0 is a subgroup of C0 with respect to this group structure. In
this way we obtain a group structure on H0(F → G).
3.3.2. Let F → G be a crossed module of ∆-groups. We define the 1-hypercohomology
set H1(F → G) in terms of cocycles. We follow an idea of Dedecker [Ded2].

Let Z1 be the set of pairs (u, ψ), u ∈ Maps(∆ × ∆, F ), ψ ∈ Maps(∆, G), such
that

ψ(στ) = α(u(σ, τ)) · ψ(σ) · σψ(τ)(3.3.2.1)

u(σ, τυ) · ψ(σ)σu(τ, υ) = u(στ, υ) · u(σ, τ)(3.3.2.2)

We define a right action ∗ of the group C0 on the set of 1-cocycles Z1. For
(a, g) ∈ C0 we set

(u, ψ) ∗ (a, g) = (u′, ψ′)

where

ψ′(σ) = g−1 · α(a(σ)) · ψ(σ) · σg

u′(σ, τ) = g−1
[a(στ) · u(σ, τ) · ψ(σ)σa(τ)−1 · a(σ)−1]

We set H1(F → G) = Z1/C0.
The set H1(F → G) has a neutral element, namely, the class of the cocycle

(1, 1) ∈ Z1.
A morphism ε: (F1 → G1) → (F2 → G2) of crossed complexes of ∆-groups

induces a morhism of pointed sets ε1∗: H1(F1 → G1)→ H1(F2 → G2).

Remark 3.3.3. Our notation here slightly differs from that of [Brv5]: in [Brv5]
we write an element of Z1(F → G) in the form (h, ψ) where h(σ, τ) = u(σ, τ)−1.

3.3.4 Examples.
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(1) H1(1 → G) = H1(G). To Cl(1, ψ) ∈ H1(1 → G) we associate Cl(ψ) ∈
H1(G).

(2) H1(F → 1) = H2(F ). To Cl(u, 1) ∈ H1(F → 1) we associate Cl(u) ∈ H2(F ).
Note that in this case F is abelian, and therefore H2(F ) makes sense.

(3) If F α−→G is a crossed module and α is injective, then H1(F → G) =
H1(cokerα).

(4) If α is surjective, then the embedding (kerα → 1) ↪→ (F → G) induces the
canonical bijection H2(kerα) = H1(F → G).

3.4. Hypercohomology exact sequences.

3.4.1. A short exact sequence of complexes of groups

1→ (F1 → G1)→ (F2 → G2)→ (F3 → G3)→ 1

is a commutative diagram

1 −−−−→ F1 −−−−→ F2 −−−−→ F3 −−−−→ 1y y y
1 −−−−→ G1 −−−−→ G2 −−−−→ G3 −−−−→ 1

with exact rows.

Proposition 3.4.2. ([Brv5], [Brn]). Let

1→ (F1 → G1)
i−→(F2 → G2)

j−→(F3 → G3)→ 1

be an exact sequence of complexes of ∆-groups. Assume that (F1 → G1)→ (F2 →
G2) is a morhism of crossed modules with ∆-action and that the subgroup i(F1) ⊂ F2

is G2-invariant.
(i) There is a hypercohomology exact sequence

1→ H−1(F1 → G1)
i∗−→H−1(F2 → G2)

j∗−→H−1(F3 → G3)
(3.4.2.1)

δ−1−→H0(F1 → G1)
i∗−→H0(F2 → G2)

j∗−→H0(F3 → G3)
δ0−→H1(F1 → G1)

i∗−→H1(F2 → G2)

(ii) The group H0(F2 → G2) acts on the set H0(F3 → G3), and δ0 defines a
bijection

(3.4.2.2) H0(F2 → G2)\H0(F3 → G3)
∼−→ ker[H1(F1 → G1)→ H1(F2 → G2)]

(iii) If moreover (F2 → G2)
j−→(F3 → G3) is a morphism of crossed modules,

then the exact sequence (3.4.2.1) can be prolonged by the term
j∗−→H1(F3 → G3),

i.e. the sequence

(3.4.2.3) H1(F1 → G1)
i∗−→H1(F2 → G2)

j∗−→H1(F3 → G3)
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is exact.

The connecting maps δ1 and δ0 are defined as follows.
We identify the crossed module (F1 → G1) with its image in (F2 → G2). Let

f3 ∈ H−1(F3 → G3) = (kerα3)∆. We lift f3 to some element f ∈ F2 and set

ϕ1(σ) = f · σf−1, g1 = α2(f)

Then (ϕ1, g1) ∈ Z0(F1 → G1). We set

δ−1(f3) = Cl(ϕ1, g1) ∈ H0(F1 → G1).

Let ξ3 ∈ H0(F3 → G3), ξ3 = Cl(ϕ3, g3). We lift ϕ3 to some map ϕ:∆→ F2 and
lift g3 to some element g ∈ G2. We set

ψ1(σ) = g−1 · α2(ϕ(σ)) · σg

u1(σ, τ) = g−1
[ϕ(στ) · σϕ(τ)−1 · ϕ(σ)−1]

Then (u1, ψ1) ∈ Z1(F1 → G1). We set

δ0(ξ3) = Cl(u1, ψ1) ∈ H1(F1 → G1)

One can check that the connecting maps δ−1 and δ0 are defined correctly.
The group H0(F2 → G2) acts on the left on H0(F3 → G3) by

Cl(ϕ2, g2) · Cl(ϕ3, g3) = Cl(j(g2)ϕ3 · ϕ2, j(g2)g3)

where (ϕ2, g2) ∈ Z0(F2 → G2), (ϕ3, g3) ∈ Z0(F3 → G3).

Corollary 3.4.3. Let (F → G) be a crossed module of ∆-groups.
(i) There is an exact sequence

1→ H−1(F → G)→ H0(F )→ H0(G)→ H0(F → G)
(3.4.3.1)

→ H1(F )→ H1(G)→ H1(F → G)

(ii) The group H0(F → G) acts on H1(F ), and there is a canonical bijection

(3.4.3.2) H0(F → G)\H1(F ) ∼−→ ker[H1(G)→ H1(F → G)].

3.5 Quasi-isomorphisms of crossed modules.
3.5.1. A morphism (F1

α1−→G1)→ (F2
α2−→G2) of crossed modules is called a quasi-

isomorphism if the induced homomorphisms kerα1 → kerα2 and cokerα1 →
cokerα2 are isomprhisms.
3.5.2 Examples.

(1) If F ⊂ G is a normal subgroup then (F → G) → (1 → G/F ) is a quasi-
isomorphism.

(2) If F α−→G is a crossed module and α is surjective, then (kerα→ 1)→ (F →
G) is a quasi-isomorphism.
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Theorem 3.5.3. ([Brv5]) Let ε: (F1 → G1)→ (F2 → G2) be a quasi-isomorphism
of crossed modules of ∆-groups. Then the induced maps

ε0∗: H0(F1 → G1)→ H0(F2 → G2)

ε1∗: H1(F1 → G1)→ H1(F2 → G2)

are bijective.

3.6. Let now F
α−→G be a crossed module of algebraic groups over a field K of

characteristic 0. This means that α is a homomorhism of K-groups, and a left
action G×F → F , (g, f) 7→ gf is given such that the axioms (3.2.1.1) and (3.2.1.2)
are satisfied.

For a finite Galois extension K ′/K the Galois group Gal(K ′/K) acts on the
crossed module F (K ′)→ G(K ′), and we set

Hi(K ′/K,F → G) = Hi(Gal(K ′/K), F (K ′)→ G(K ′)) (i = −1, 0, 1).

Set
Hi(K,F → G) = lim−→

K′
Hi(K ′/K,F → G)

where K ′ runs over the Galois extensions of K contained in a fixed algebraic closure
K̄ of K, and the inductive limit is taken with respect to the obvious inflation maps
Hi(K ′/K,F → G)→ Hi(K ′′/K,F → G) for K ′′ ⊃ K ′. We may also write

Hi(K,F → G) = Hi
cont(Γ, F (K̄)→ G(K̄))

where Γ = Gal(K̄/K), and the subscript cont means that we define hypercohomol-
ogy in terms of continuous cocycles.

We now return to the Galois cohomology of reductive groups.
3.7. Let G be a reductive K-group. Consider the complex of K-groups

Gsc ρ−→G.

The canonical homomorphism

G→ Gad = (Gsc)ad ↪→ Aut(Gsc)

defines an action of G on Gsc. We denote this action by (g, s) 7→ gs where g ∈
G,s ∈ Gsc.

Lemma 3.7.1. Gsc ρ−→G is a crossed module.

Indeed, we have obvious equalities

ρ(gs) = g · ρ(s) · g−1

ss′s−1 = ρ(s)s′ (s, s′ ∈ Gsc, g ∈ G),

which was to be proved.
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We define the relative Galois cohomology of G with respect to Gsc by

Hi
rel(K,G) = Hi(K,Gsc ρ−→G) (i = −1, 0, 1)

To any homomorphism β:G1 → G2 of connected reductive K-groups we asso-
ciate the morphism (Gsc

1 → G1) → (Gsc
2 → G2) of crossed modules. We see that

G 7→ (Gsc → G) is a functor with values in the category of crossed modules of K-
groups. Hence G 7→ Hi

rel(K,G) is a functor with values in the category of abelian
groups for i = −1, of groups for i = 0, and of pointed sets for i = 1.

We want to relateHi
rel(K,G) to the abelian Galois cohomologyHi

ab(K,G) defined
in Section 2.

3.8. Let T ⊂ G be a maximal torus defined over K. Let Z be the center of G.

Lemma 3.8.1. All the arrows in the commutative diagram of crossed modules

(3.8.1.1)

(Z(sc) → Z) ⊂−−−→ (T (sc) → GT

∩y
(Gsc → G)

are quasi-isomorphisms.

Proof: We have already proved the assertion when proving Lemma 2.4.1.

Now it follows from Theorem 3.4 and Lemma 3.8.1 that all the maps in the
commutative diagram

(3.8.2)

Hi(K,Z(sc) → Z) ∼−→ Hi(K,T (sc) → T )

∼
y∼

Hi
rel(K,G) = Hi(K,Gsc → G)

are bijections (i = −1, 0, 1).

The sets Hi(K,Z(sc) → Z) and Hi(K,T (sc) → T ) are canonically abelian groups.
In the case i = 0 we conclude that the group H0

rel(K,G) is abelian. In the case
i = 1 we obtain a structure of abelian groups on the pointed set H1

rel(K,G). This
abelian group structure does not depend on the choice of T because it comes from
H1(K,Z(sc) → Z). With this group structure on H1

rel(K,G) all the arrows in the
commutative diagram (3.8.2) become isomorphisms of abelian groups.

We show that this abelian group structure on H1
rel(K,G) is functorial. Let

β:G1 → G2 be a homomorphism. Let T1 ⊂ G1 be a maximal torus. Let T2 ⊂ G2

be a maximal torus such that β(T1) ⊂ T2. From the commutative diagram of
crossed modules

(3.8.3)

(T (sc)
1 → T1) ⊂−−→ (Gsc

1 → G1)y y
(T (sc)

2 → T2) ⊂−−→ (Gsc
2 → G2)
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We get a commutative diagram

(3.8.4)

H1(K,T (sc)
1 → T1)

∼−→ H1
rel(K,G1)y yβ∗

H1(K,T (sc)
2 → T2)

∼−→ H1
rel(K,G2)

The horizontal arrows in the diagram (3.8.4) are isomorphisms of abelian groups.
The left vertical arrow is a homomorphism. Hence the right vertical arrow is a
homomorphism, which was to be proved.
3.9. In Section 2 we defined the abelian Galois cohomology groups Hi

ab(K,G) for
i ≥ −1. By definition Hi

ab(K,G) = Hi(K,T (sc) → T ) where T ⊂ G is a maximal
torus. The vertical arrow in the diagram (3.8.2) defines the canonical isomorphisms
of abelian groups Hi

ab(K,G) ∼−→Hi
rel(K,G) for i = −1, 0, 1. The commutative di-

agtrams (3.8.3) and (3.8.4) show that these isomorhisms define isomorphisms of
functors. We will henceforth identify Hi

ab(K,G) and Hi
rel(K,G) for i = −1, 0, 1.

3.10. The morphism of crossed modules (1→ G)→ (Gsc → G) induces the abelian-
ization maps

abi:Hi(K,G)→ Hi(K,Gsc → G) = Hi
ab(K,G) (i = 0, 1).

The map
ab0:G(K) = H0(K,G)→ H0

ab(K,G)

is a homomorphism. The map

ab1:H1(K,G)→ H1
ab(K,G)

is a morphism of pointed sets. By Corollary 3.4.3 we have an exact sequence

1→ (ker ρ)(K)→ Gsc(K)
ρ−→G(K) ab0

−→H0
ab(K,G)

(3.10.1)

→ H1(K,Gsc)
ρ∗−→H1(K,G) ab1

−→H1
ab(K,G).

In the rest of this section we investigate the maps ab0 and ab1.

Proposition 3.11. abi:Hi(K,G) → Hi
ab(K,G) are morphisms of functors (i =

0, 1).

Note that H0(K,G) = G(K) is a functor from (connected reductive) K-groups
to groups; H1(K,G) is a functor to pointed sets; Hi

ab(K,G) are functors to abelian
groups.
Proof: Let β:G1 → G2 be a homomorphism. From the commutative diagram of
crossed modules

(1→ G1) −−−−→ (Gsc
1 → G1)

β

y yβ∗
(1→ G2) −−−−→ (Gsc

2 → G2)
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we get a commutative diagram

Hi(K,G1)
abi−−−−→ Hi

ab(K,G1)

β∗

y yβ∗
Hi(K,G2)

abi−−−−→ Hi
ab(K,G2).

The proposition is proved.
We show that abelianization maps abi take cohomology exact sequences to

abelian cohomology exact sequences.

Proposition 3.12. Let

1→ G1 → G2 → G3 → 1

be a short exact sequence of connected reductive K-groups. Then the diagram
(3.12.1)

0 −→ G1(K) −→ G2(K) −→ G3(K) δ0−→ H1(G1) −→ H1(G2) −→ H1(G3)y y y y y y
H0

ab(G1) −→ H0
ab(G2) −→ H0

ab(G3)
δ0−→ H1

ab(G1) −→ H1
ab(G2) −→ H1

ab(G3)

with exact rows is commutative.
(ii) Let

1→ G1 → G2 → G3 → 1

be a short exact sequence of reductive K-groups where G2 and G3 are connected
and G1 is a group of multiplicative type (i.e. abelian). Then the diagram

(3.12.2)

0 −−→ G1(K) −−→ G2(K) −−→ G3(K)
δ0−−→ H1(G1) −−→ H1(G2) −−→ H1(G3) −−→ H2(G1)???y∼ ???y ???y ???y∼ ???y ???y ???y∼

G1(K) −−→ H0
ab(G2) −−→ H0

ab(G3)
δ0−−→ H1(G1) −−→ H1

ab(G2) −−→ H1
ab(G3)

δ1−−→ H2(G1)

with exact rows is commutative.

Proof: (i) Consider the commutative diagram
(3.12.3)

1 −−−−→ (1→ G1) −−−−→ (1→ G2) −−−−→ (1→ G3) −−−−→ 1y y y
1 −−−−→ (Gsc

1 → G1) −−−−→ (Gsc
2 → G2) −−−−→ (Gsc

3 → G3) −−−−→ 1

The morhism (3.12.3) of short exact sequences of crossed complexes yields the
morphism (3.12.1) of hypercohomology exact sequences.
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(ii) The morphism

1 −−−−→ (1→ G1) −−−−→ (1→ G2) −−−−→ (1→ G3) −−−−→ 1y∼ y y
1 −−−−→ (1→ G1) −−−−→ (Gsc

2 → G2) −−−−→ (Gsc
3 → G3) −−−−→ 1

of short exact sequences of crossed modules yields (3.12.2).

3.13. We describe the identifications λi: Hi(K,Gsc → G) ' Hi(K,Z(sc) → Z) and
the abelianization maps abi (i = 0, 1) in terms of cocycles.
3.13.0. i = 0. We describe λ0. Let ξ ∈ H0(Gsc → G), ξ = Cl(ϕ, g), where
ϕ: Γ→ Gsc(K̄) is a continuous map and g ∈ G(K̄). Since G = ρ(Gsc) · Z, we may
write g = ρ(f) · g′, where f ∈ Gsc(K̄),g′ ∈ Z(K ′). Acting on the cocycle (ϕ, g) by
f ∈ Gsc(K̄), we get

(ϕ, g) ∗ f = (ϕ′, g′)

where

(3.13.0.1) ϕ′(σ) = f−1 · ϕ(g)σf

(cf. 3.1.1). Since (ϕ′, g′) ∈ Z0(Gsc → G), we have σg′ = ρ(ϕ′(σ))−1 · g′, hence
ρ(ϕ′(σ)) ∈ Z(K̄) and ϕ′(σ) ∈ Z(sc)(K̄). Thus (ϕ′, g′) ∈ Z0(Z(sc) → Z) and
λ0(ξ) = Cl(ϕ′, g′).

We describe ab0. Let g ∈ G(K). There exist g′ ∈ Z(K̄) and f ∈ Gsc(K̄) such
that g = ρ(f) · g′. Then ab0(g) = Cl(ϕ′, g′) ∈ H0(Z(sc) → Z) where

(3.13.0.2) ϕ′(σ) = f−1 · σf

3.13.1. i = 1. We describe λ1. Let η ∈ H1(Gsc → G), η = Cl(u, ψ), where (u, ψ) ∈
Z1(Gsc → G), the maps u: Γ×Γ→ Gsc(K̄) and ψ: Γ→ G(K̄) are continuous. Since
G = ρ(Gsc) · Z, there exist continuous maps s: Γ → Gsc(K̄) and ψ′: Γ → Z(K̄)
such that ψ(σ) = ρ(s(σ)) · ψ′(σ) for σ ∈ Γ. Acting on the cocycle (u, ψ) by
(s−1, 1) ∈ C0(Gsc → G), we get

(u, ψ) ∗ (s−1, 1) = (u′, ψ′)

where
u′( σ, τ) = s(στ)−1 · u(σ, τ) · ψ(σ)σs(τ) · s(σ)

(cf. 3.2.2). Since (u′, ψ) ∈ Z1(Gsc → G),

ψ′(σ, τ) = ρ(u′(σ, τ)) · ψ′(σ) · σψ′(τ),

hence ρ(u′(σ, τ)) ∈ Z(K̄) and u′(σ, τ) ∈ Z(sc)(K̄). Therefore

u′(σ, τ) = s(στ) · u′(σ, τ) · s(στ)−1 = u(σ, τ) · ρ(s(σ))ψ′(σ)σs(τ) · s(σ) · s(στ)−1.

(3.13.1.1)

= u(σ, τ) · s(σ) · σs(τ) · s(στ)−1
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We see that (u′, ψ′) ∈ Z1(Z(sc) → Z), hence λ1(η) = Cl(u′, ψ′) ∈ H1(Z(sc) → Z),
where u′ is defined by (3.13.1.1).

We describe ab1. Let η ∈ H1(K,G), η = Cl(ψ), ψ ∈ Z1(K,G). We write
ψ(σ) = ρ(s(σ)) · ψ′(σ) where s: Γ → Gsc(K̄) and ψ′: Γ → Z(K̄) are continuous
maps. Then ab1(η) = Cl(u′, ψ′) ∈ H1(Z(sc) → Z) where

(3.13.1.2) u′(σ, τ) = s(σ) · σs(τ) · s(στ)−1.

3.14. Examples (In these examples i = 0, 1).
(1) G is a torus. Then Gsc = 1, Hi

ab(K,G) = Hi(K,G), and abi is the identity
map.

(2) Suppose thatGss is simply connected, hence ρ is injective. ThenHi
ab(K,G) =

Hi(K,Gtor). The abelianization map abi is the map t∗:Hi(K,G) → Hi(K,Gtor)
induced by the canonical homomorphism t:G→ G/Gss = Gtor.

(3) Suppose that G is semisimple, hence ρ is surjective and Hi
ab(K,G) =

Hi+1(K, ker ρ). Then the map abi is the connecting map δi:Hi(K,G)→ Hi+1(K, ker ρ)
associated with the short exact sequence

1→ ker ρ→ Gsc → G→ 1

This assertion follows immediately from the explicit formulae (3.3.0.2) and (3.3.1.2)
(see [Se], Ch. I, §5 for the definitions of δ0 and δ1).

(4) In the general case from the commutative diagram with exact rows

1 −−→ Gss −−→ G −−→ Gtor −−→ 1y y y
1 −−→ (Gsc → Gss) −−→ (Gsc → G) −−→ (1→ Gtor) −−→ 1

we get a commutative diagram

Gss(K) −−→ G(K) −−→ Gtor(K) −−→ H1(Gss) −−→ H1(G) −−→ H1(Gtor)yδ0 yab0

∥∥∥ yδ1 yab1

∥∥∥
H1(ker ρ) −−→ H0

ab(G) −−→ Gtor(K) −−→ H2(ker ρ) −−→ H1
ab(G) −−→ H1(Gtor)

3.15. We consider twisting. For ψ ∈ Z1(K,G) consider the twisted K-group ψG
and the groups

H1
ab(K, ψG) = Hi(K, ψ(Gsc → G)) = Hi(K, ψ(Z(sc) → Z)

Since ψ(Z(sc) → Z) = (Z(sc) → Z), we see that Hi
ab(K, ψG) = Hi

ab(K,G). This
identification coincides with that of Corollary 2.9.

There is a canonical map

tψ:H1(K, ψG)→ H1(K,G)

defined by
tψ(Cl(ψ′)) = Cl(ψ′ · ψ) ψ′ ∈ Z1(K, ψG)

(cf. [Se], Ch. I, 5.3, Prop. 3.5 bis). There is also a canonical map

tψ: H1(K, ψ(Gsc → G))→ H1(K,Gsc → G)

defined by
tψ(Cl(u′, ψ′)) = Cl(u′, ψ′ · ψ),

where (u′, ψ′) ∈ Z1(K, ψ(Gsc → G)) (cf. [Brv5], 2.14).



26 MIKHAIL BOROVOI

Lemma 3.15.1. Let ψ ∈ Z1(K,G). The diagram

H1(K,Z(sc) → Z)
x7→x+a(ψ)−−−−−−−→ H1(K,Z(sc) → Z)

∼
y y∼

H1(K, ψ(Gsc → G))
tψ−−−−−−−→ H1(K,Gsc → G)

commutes, where a(ψ) = ab1(Cl(ψ)) ∈ H1(K,Z(sc) → Z).

Proof: Let x = Cl(u0, ψ0), where (u0, ψ0) ∈ Z1(Z(sc) → Z). The image (say y) of x
in H1(K, ψ(Gsc → G)) is again Cl(u0, ψ0). Then tψ(y) = Cl(u0, ψ0ψ) = Cl(u0, ψψ0)
(because ψ0(σ) ∈ Z(K̄)).

We write ψ = ρ(s) · ψ∗ as in 3.13.1. Then

(u0, ψψ0) ∗ (s−1, 1) = (u1, ψ∗ψ0)

where
u1(σ, τ) = s(σ) · σs(τ) · s(στ)−1 · u0(σ, τ).

Set u∗(σ, τ) = s(σ) · σs(τ) · s(στ)−1 ∈ Zsc(K̄); then u1 = u∗u0. We have

tψ(y) = Cl(u1, ψ∗ψ0) = Cl(u∗u0, ψ∗ψ0) = Cl(u∗, ψ∗) + x,

where Cl(u∗, ψ∗) ∈ H1(K,Z(sc) → Z). But by 3.13.1 Cl(u∗, ψ∗) = ab1(Cl(ψ)) =
a(ψ). This proves the lemma.

Now consider the maps

abi:Hi(K,G)→ Hi
ab(K,G) (i = 0, 1).

By definition the map ab0 is a homomorphism. We show that the map ab1 has the
following multiplicativity property:

Proposition 3.16. Let ψ ∈ Z1(K,G). Then the diagram

H1(K, ψG)
tψ−−−−−−−→ H1(K,G)

ab1

y yab1

H1
ab(K, ψG) = H1

ab(K,G)
z 7→x+a(ψ)−−−−−−−→ H1

ab(K,G)

commutes, where a(ψ) = ab1
G(Cl(ψ)).

Proof: For any morphism β: (F → G)→ (F ′ → G′) of crossed modules of K-groups
and a cocycle ψ ∈ Z1(K,G) we have a commutative diagram

H1(ψ(F → G))
tψ−−−−→ H1(F → G)

ψβ

y yβ∗
H1(ψ′(F ′ → G′))

tψ′−−−−→ H1(F ′ → G′)
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where ψ′ = β(ψ) ∈ Z1(K,G)′). In particular, for the morphism (1→ G)→ (Gsc →
G) we obtain the commutative diagram

H1(K, ψG)
tψ−−−−→ H1(K,G)y y

H1
ab(K, ψG)

tψ−−−−→ H1
ab(K,G)

By Lemma 3.15.1 the lower horizontal arrow in this diagram is x 7→ x+ a(ψ). The
proposition is proved.

We can now compute the fibers of the map ab1.

Corollary 3.17. Let ξ ∈ H1(K,G), ξ = Cl(ψ), ψ ∈ Z1(K,G). Let ψρ: ψGsc → ψG
denote the twist of ρ. Then

(i) ker ab1 = ρ∗H
1(Gsc) ' H0

ab(K,G)\H1(K,Gsc)
(ii) (ab1)−1(ab1(ξ)) = tψ((ψρ∗)H1(K,ψ Gsc)) ' H0

ab(K,G)\H1(K, ψGsc)

Proof: (i) follows from (3.10.1) and (3.4.3.2); (ii) follows from (i) and Proposition
2.16; we take in account that H0

ab(K,ψ G) = H0
ab(K,G).
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4. Computation of abelian Galois cohomology

In Section 3 we have defined the abelianization map ab1:H1(K,G)→ H1
ab(K,G).

By Proposition 2.8 H1
ab(K,G) = H1(K,M, K̄×). In this section we try to calculate

H1(K,M, K̄×) for i ≥ 1. We compute H1(K,M, K̄×) for local fields. For a number
field K we compute H1(K,M, K̄×) for i ≥ 2. For i = 1 we compute the kernel and
the cokernel of the localization map H1(K,M, K̄×)→ ⊕H1(Kv,M, K̄×

v).
All this stuff is a kind of Tate-Nakayama theory. The results in the case i = 1

are essentially due to Kottwitz.
In this section K is a local or global field of charactristic 0, Γ = Gal(K̄/K), M

is a finitely generated Γ-module.

Proposition 4.1. Let K be a non-archimedian local field. There are canonical
isomorhisms:

(i) λ1
K :H1(K,M, K̄×) ∼−→(MΓ)tors

(ii) λ2
K :H2(K,M, K̄×) ∼−→(MΓ)tf⊗

Z
Q/Z

(iii) Hi(K,M, K̄×) = 0 for i ≥ 3.

Recall that (MΓ)tf = MΓ/(MΓ)tors.
Proof:

4.1.1. We prove (iii). Let L· → M be a short torsion free resolution, where
L· = (L−1 → L0). In the exact sequence (2.6.5.1)

· · · → Hi(K,L0 ⊗ K̄×)→ Hi(K,M, K̄×)→ Hi+1(K,L−1 ⊗ K̄×)→ · · ·

we have Hi(K,L0 ⊗ K̄×) = 0, Hi+1(K,L−1 ⊗ K̄×) = 0 for i ≥ 3 (cf. [Mi], Ch. 1,
1.11). Hence Hi(K,M, K̄×) = 0, which proves (iii).

4.1.2. We begin proving (i) and (ii). Let L· →M be a short torsion free resolu-
tion. We consider the dual complex

L·∨ = Hom(L·,Z) = (L0∨ → L−1∨)

(recall that ∨ denotes Hom( ·,Z)). Here L0∨ is in degree 0 and L−1∨ is in degree
+1.

We have by definition

Hi(K,M, K̄×) = Hi(K,L· ⊗ K̄×).

The cup product pairing

Hi(K,L· ⊗ K̄×)⊗H2−i(K,L·∨)→ H2(K, K̄×) = Br(K)

defines canonical isomorphisms

(4.1.2.1) Hi(K,M, K̄×) = H2−i(K,L·∨)B ,

where B denotes Hom( ·,Br(K)).
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Lemma 4.1.3. Homomorphisms (4.1.2.1) are isomorphisms for i ≥ 1.

Proof: If M is torsion free then this is the Tate-Nakayama duality theorem. In the
general case we can write down the exact sequence (2.6.5.1) and the corresponding
commutative diagram. Applying the five-lemma we obtain the desired result.

4.1.4. We compute H0(K,L·∨)B . By definition

H0(K,L·∨)B = ker[(L0∨)Γ → (L−1∨)Γ]B = coker [(L−1∨)ΓB → (L0∨)ΓB ]

We have

(L0∨)Γ = HomΓ(L0,Z) = Hom(L0
Γ,Z) = Hom((L0

Γ)tf,Z) = (L0
Γ)∨tf

Hence (L0∨)ΓB = (L0
Γ)tf⊗

Z
Br(K) = L0

Γ⊗
Z

Br(K).

Similarly
(L−1∨)ΓB = L−1

Γ ⊗
Z

Br(K)

Further

coker [(L−1∨)ΓB → (L0∨)ΓB ] = coker [L−1
Γ ⊗

Z
Br(K)→ L0

Γ ⊗ Br(K)]

= coker [L−1
Γ → L0

Γ]⊗
Z

Br(K) = MΓ⊗
Z

Br(K) = (MΓ)tf⊗
Z

Br(K)

There is a canonical isomorphism Br(K) ∼−→Q/Z. Now 4.1 (ii) follows from
Lemma 4.1.3.

4.1.5. We compute H1(K,L·∨)B . Following an idea of Kottwitz [Ko2], we con-
sider the short exact sequence

0→ L·∨ → L·∨⊗
Z

Q→ L·∨⊗
Z

Q/Z→ 0

which gives rise to the hypercohomology exact sequence

H0(K,L·∨ ⊗Q)→ H0(K,L·∨ ⊗Q/Z)→ H1(K,L·∨)→ 0

(because L·∨ ⊗Q is a complex of injective Γ-modules).
We observe that

L·∨ ⊗Q = Hom(L·,Q), L·∨ ⊗ (Q/Z) = Hom(L·,Q/Z).

Since Q and Q/Z are Z-injective, the sequences

0→ Hom(M,Q)→ Hom(L0,Q)→ Hom(L−1,Q)→ 0

0→ Hom(M,Q/Z)→ Hom(L0,Q/Z)→ Hom(L−1,Q/Z)→ 0

are exact. Thus

H0(K,L·∨ ⊗Q) = H0(K,Hom(L·,Q)) = H0(K,Hom(M,Q)) = HomΓ(M,Q)

= Hom(MΓ,Q) = Hom((MΓ)tf,Q)
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and similarly

H0(K,L·∨⊗
Z

Q/Z) = HomΓ(M,Q/Z) = Hom(MΓ,Q/Z)

We see that

H1(K,L·∨) =coker [Hom(MΓ)tf,Q)→ Hom(MΓ,Q/Z)]

=coker [Hom((MΓ)tf,Q/Z)→ Hom(MΓ,Q/Z)]

=Hom(ker[MΓ → (MΓ)tf],Q/Z) = Hom((MΓ)tors,Q/Z)

Using the canonical isomorphism Br(K) ∼−→Q/Z, we conclude that

H1(K,L·∨)B = Hom((Hom(MΓ)tors,Q/Z),Br(K)) ' (MΓ)tors.

Now 4.1 (i) follows from Lemma 4.1.3.
Proposition 4.1 is proved.
The exposition in the remaining part of this section is somewhat sketchy.

Proposition 4.2. For K = R there are canonical isomorphisms

λiR:Hi(R,M,C×) ∼−→Ĥi−2(R,M) for i ≥ 1.

In particular

Hi(R,M,C×) '
{
H1(R,M) if i is odd

Ĥ0(R,M) if i is even (i > 0).

Proof: Similar to that of Proposition 4.1.
4.3. Now let K be a number field. Set Ā = A⊗

K
K̄, where A is the adèle ring of

K. We set C̄ = Ā×/K̄×.
Let M be a finitely generated Γ-module. Let L· → M be a short torsion free

resolution. We consider the short exact sequences

1→ K̄× → Ā× → C̄ → 1

0→ L· ⊗ K̄× → L· ⊗ Ā× → L· ⊗ C̄ → 0

and the corresponding long exact sequence

(4.3.1) · · · → Hi(K,M, K̄×)→ Hi(K,M, Ā×)→ Hi(K,M, C̄)→ · · ·

We would like to compute this exact sequence.

Proposition 4.4. There are canonical isomorphisms

(i) λ1:H1(K,M, C̄) ∼−→(MΓ)tors
(ii) λ2:H2(K,M, C̄) ∼−→(MΓ)tf ⊗Q/Z
(iii) Hi(K,M, C̄) = 0 for i ≥ 3.

Proof: The same as that of Proposition 4.1.
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Lemma 4.5. There is a canonical isomorphism

loc:Hi(K,M, Ā×) ' ⊕Hi(Kv,M, K̄v
×) for i ≥ 1.

Proof: The embedding ⊕(Kv ⊗
K
K̄) ↪→ Ā× induces the homomorphism

⊕Hi(Kv ⊗ K̄)×)→ Hi(K,M, Ā).

By Shapiro’s lemma

Hi(K,M, (Kv ⊗ K̄)×) = Hi(Kv,M, K̄×
v ).

Thus we obtain a homomorphism

⊕Hi(K,M, K̄×
v )→ Hi(K,M, Ā×).

We must prove that it is an isomoprhism. Using the exact sequences (2.6.5.1) we
reduce the assertion to the well known (cf. [Vo2], 6.25) case of a torsion free module
M . The lemma is proved.

Corollary 4.6. For any h ∈ Hi(K,M, K̄×) (i ≥ 0) there exists a finite set S ⊂
V(K) such that locv(h) ∈ Hi(Kv,M, K̄×

v ) is zero for v /∈ S.

Proof: It follows from the proof of Lemma 4.5 that for any ξ ∈ Hi(K,M, Ā×) there
exists a finite set S ⊂ V such that ξ comes from H1(K,M,⊕

S
(Kv ⊗

K
K̄)×). This

implies the corollary.
4.7. We want to describe the map

Hi(Kv,M, K̄×
v ) = Hi(K,M, (K̄ ⊗Kv)×)→ Hi(K,M, Ā)→ Hi(K,M, C̄)

for i = 1, 2.
Set

T −1(M) = (MΓ)tors, T 0(M) = MΓ ⊗Q/Z;

if v ∈ Vf : T −1
v (M) = (MΓv )tors, T 0

v (M) = MΓv ⊗Q/Z;

if v ∈ V∞: T −1(M) = H−1(Γv,M), T 0
v (M) = Ĥ0(Γv,M)

We have canonical corestriction maps corjv: T jv (M)→ T j(M), which for v ∈ Vf
are defined in the obvious way and for v ∈ V∞ are defined as follows:

cor−1
v : T −1

v (M) = H−1(Γv,M) ↪→ (MΓv )tors → (MΓ)tors = T −1(M)

cor0v: T 0
v (M) = Ĥ0(Γv,M)→MΓv ⊗

(
1
2
Z/Z

)
→MΓ ⊗Q/Z = T 0(M)

Proposition 4.8. The diagram

(4.8.1)

Hi(Kv,M, K̄×
v) −−−−→ Hi(K,M, C̄)

λiv

y∼ ∼
yλi

T i−2
v (M)

cori−2
v−−−−→ T i−2(M)
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commutes (i = 1, 2), where λi and λiv are the isomorphisms of Propositions 4.1, 4.2
and 4.4.

Proof: We consider the case i = 1; the case i = 2 can be treated similarly. Let
v ∈ Vf . Consider the map

BrKv = H2(Kv, K̄
×
v) = H2(K, K̄⊗Kv)→ H2(K, (K̄⊗A)×) = H2(K, Ā×)→ H2(K, C̄)

This map is known to be an isomorphism compatible with the isomorphisms

invv: BrKv
∼−→Q/Z

inv :H2(K, C̄) ∼−→Q/Z

We have
H1(Kv,M, K̄v

×) = T −1
v (M) ⊗

Q/Z
BrKv

(see the proof of Proposition 4.1), ,and, similarly,

H1(K,M, C̄) = T −1(M)⊗H2(K, C̄),

hence the diagram (4.8.1) commutes for i = 1, v ∈ Vf .
The case v ∈ V∞ can be treated similarly.

Proposition 4.9. Consider the localization homomorphism

(4.9.0) loci∞:Hi(K,M, K̄×)→ Π
∞
Hi(Kv,M, K̄×

v).

Then

(i) loc0
∞has dense image;

(ii) loci∞ is an epimorphism for i = 1, 2;

(iii) loci∞ is an isomoprhism for i ≥ 3.

Proof:
4.9.1. We prove (iii). The assertion follows from the exact sequence (4.3.1) and

Propositions 4.1(iii) and 4.4(iii).
4.9.2. We prove (ii). The isomorphisms λiv of Propositions 4.2 and 4.4 define an

isomorphism Hi(K,M, Ā×) = ⊕
v∈V
Hi(Kv,M, K̄×) ∼−→ ⊕

v∈V
T iv (M), and we see from

the exact sequence (4.3.1) and Proposition 4.8 that the image of Hi(K,M, K̄×) in
Hi(K,M, Ā×) is isomorphic to

ker
∑
v∈V

coriv:⊕T iv (M)→ T (M).

Let ∆ be the image of Γ in AutM . Let K ′ be the corresponding Galois extension
(so that Gal(K ′/K) = ∆), and for v ∈ V let ∆v be a decomposition group of v
(defined up to conjugation).
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Let v ∈ V. If v′ ∈ Vf and ∆v = ∆v′ (up to conjugation), then im coriv ⊂ im coriv′ .
(These images are equal if both v, v ∈ Vf .) Let v ∈ V∞; then ∆v is cyclic. By
Chebotorev’s density theorem there are infinitely many places v′ ∈ Vf such that
∆v′ is conjugate to ∆v. It follows that the projection

ker
∑
v∈V

coriv → ⊕∞
T iv (M)

is surjective, which proves (ii).

4.9.3. We prove (i). Choose a set S of generators of the abelian group M , and
set

L0 = ZS , L−1 = ker(L0 →M).

Let T0 = Hom(L0,Gm) and T−1 = Hom(L−1,Gm) be the corresponding tori. Then
H1(K ′, T0) = 0 for any extension k′ of K. We have the commutative diagram

T0(K) −−−−→ H0(K,M, K̄×) −−−−→ H1(K,T−1) −−−−→ 1y y y
Π
∞
T0(Kv) −−−−→ Π

∞
H0(Kv,M, K̄×

v ) −−−−→ Π
∞
H1(Kv, T−1) −−−−→ 1

The right vertical arrow in this diagram is surjective (cf. [Ha1], II, A.1.2 or [Sa], 1.8),
and the left vertical arrow has dense image (by the real approximation theorem,
see [Vo2], 6.36 or [Sa], 3.5(iii)). Hence the middle vertical arrow has dense image,
which was to to be proved.

Corollary 4.10 (Tate-Poitou). If i = 2 and M is finite then (4.9.0) is an isomor-
phism.

Proof: This follows from the exact sequence (4.3.1) and Propositions 4.1(ii) and
4.4(ii).

Proposition 4.11. The canonical homomorphisms

tf∗:H2(K,M, K̄×)→ H2(K,Mtf ⊗ K̄×)

loc∞:H2(K,M, K̄×)→ Π
∞
H2(Kv,M, K̄×

v)

define an isomorphism of H2(K,M, K̄×) on the fiber product of H2(K,Mtf ⊗ K̄×)
over Π

∞
H2(Kv,M, K̄v

×) and Π
∞
H2(Kv,Mtf ⊗ K̄×).

Let TM be theK-torus such thatX∗(T̄ ) = Mtf. We have computedH2(K,M,K×)
in terms of the Galois cohomology H2(K,TM ) of this torus and of the real coho-
mology groups H2(K,M, K̄×

v) ' Ĥ0(Kv,M).

Proof: Consider the canonical short exact sequence

0→Mtors
i−→M tf−→Mtf → 0
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and the corresponding commutative diagram

H1(K,TM ) δ−−→ H3(K,Mtors(1)) i∗−−→ H2(K,M, K̄×) tf∗−−→ H2(K,TM )yloc∞

yloc∞

yloc∞

yloc∞

Π
∞
H1(Kv, TM ) δ−−→ Π

∞
H3(K,Mtors(1)) i∗−−→ Π

∞
H2(K,M, K̄×) tf∗−−→ Π

∞
H2(K,TM )

with exact rows. It is clear that

tf∗ × loc∞:H2(K,M, K̄×)→ H2(K,TM )× Π
∞
H2(Kv,M, K̄×

v)

define a homomorphism j fromH2(K,M, K̄×) to the fiber product over Π
∞
H2(Kv, TM ).

We prove that j is injective. Suppose ξ ∈ ker j. Then ξ ∈ ker tf∗, hence
ξ = i∗(η) for some η ∈ H3(K,M, (1)). Now, since ξ ∈ ker loc∞, i∗(loc∞(η)) = 0,
hence loc∞(η) = δ(ζ∞) for some ζ∞ ∈ Π

∞
H1(Kv, TM ). Since the map

loc1
∞:H1(K,TM )→ Π

∞
H1(Kv, TM )

is surjective ([Ha], II, A.1.2, see also [Sa], 1.8), there exists ζ ∈ H1(K,TM ) such
that ζ∞ = loc∞(ζ). We see that loc∞(δ(ζ))= loc∞(η). By Corollary 4.7 the map
loc3

∞:H3(K,Mtors(1))
→ Π

∞
H3(Kv,Mtors(1)) is bijective, hence δ(ζ) = η. By construction ξ = i∗(η).

We conclude that ξ = 0. This proves the injectivity of j.
The proof of the surjectivity of j is left to the reader.

4.12 Let F/K be a finite Galois extension such that Gal(K̄, F ) acts on M trivially.
We set ∆ = Gal(F/K). Then M is a ∆-module. Consider the cokernel

c1(F/K,M) = coker
[
⊕
v
H1( ∆v,M)Σ corv−−−→H1(∆,M)

]
where corv is the corestriction map, and ∆v is a decomposition group of v in F .
One can show that c1(F/K,M) does not depend on the choice of F . We write
c1(K,M) for c1(F/K,M). We set

X1
H(K,M) = ker[loc:H1(K,M, K̄×)→ ⊕

v
H1(Kv,M, K̄×

v)].

Proposition 4.13. There is a canonical isomorphism

c1(K,M) ∼−→X1
H(K,M)

Idea of proof: One can show that X1
H(K,M) is canonically isomorphic to

X1
H(F/K,M) := ker[H1(F/K,M,F×)→ H1(F/K,M, (A⊗

K
F )×)],

where F/K is as in 4.12. We write ∆ for Gal(F/K). This kernel is the cokernel of

Ĥ0(∆,M, (A⊗ F )×)→ Ĥ0(∆,M, (A⊗ F )×/F×)

(see Remark 2.5.3 for the definitions of the groups Ĥi). Then we compute the
groups and the homomorphism by the method used in the proof of Propositions
4.1, 4.4 and Lemma 4.5. We show that this homomorphism is

⊕H1(∆v,M)Σ corv−−−→H1(∆,M).

This proves the assertion.
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5. Galois cohomology over local and number fields

In this section we apply the results of Sections 3 and 4 to the study of the
usual (non-abelian) Galois cohomology of connected reductive groups over local
and (especially) number fields.
5.0. We will need the following fundamental results on Galois cohomology over
local and global fields.

Theorem 5.0.1 ([Kn1], [Kn3]). Let G be a simply connected group over a non-
archimedian local field K. Then H1(K,G) = 1.

Another proof of this result appeared in [Br-T].
5.0.2. Let K be a number field. A K-group G is said to satisfy the Hasse principle
if

X(G) := ker[H1(K,G)→ Π
v∈V

H1(Kv, G)] = 0.

Theorem 5.0.3 (Kneser-Harder-Chernousov). For any semisimple simply con-
nected
group G over a number field K, the map

H1(K,G)→ Π
∞
H1(Kv, G)

is bijective.

In particular, the Hasse principle is valid for such a group.
The classical groups were treated by Kneser (cf. [Kn2], [Kn3]), and the excep-

tional ones, excepting E8, by Harder [Ha1]. The proof in the most difficult case,
E8, initiated by Harder [Ha1], has recently been completed by Chernousov [Ch].

We begin with proving that the maps ab0 and ab1 are in some cases surjective.

Proposition 5.1. Let K be a non-archimedian local field. Then for any connected
reductive group G the homomorphism ab0:G(K)→ H0

ab(K,G) is surjective.

Proof: We have an exact sequence

G(K) ab0

−→H0
ab(K)→ H1(K,Gsc)

(cf. 3.10), and by Theorem 5.0.1 H1(K,Gsc) = 0. This proves the proposition.

Remark 5.1.1. For K = R the homomorphism ab0 is in general non-surjective.
For example let A denote the algebra of the Hamiltonian quaternions over R. Set
G = A×; then Gss is simply connected and Gtor = Gm. Hence

ab0:G(R)→ H0
ab(R, G) = Gm(R) = R×

is the reduced norm
NmA/R:A× → R×

We see that
im ab0

G = R×
+ 6= R× = H0

ab(R, G).

Corollary 5.2. If K is a non-archimedian local field, then H0
ab(K,G) = G(K)/ρ(Gsc(K)).

To prove the surjectivity of ab1 for local and global fields we need the notion of
a fundamental torus.
5.3. Fundamental tori (a survey).

Let K be a local field and let G be a connected reductive K-group.
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Definition 5.3.1 [Ko3]. A fundamental torus T ⊂ G is a maximal torus of minimal
K-rank.

There is a one-to-one correspondence between the maximal K-tori of G and
maximal K-tori of Gsc:

T ⊂ G 7−→ T (sc) ⊂ Gsc

T ′ ⊂ Gsc 7−→ ρ(T ′) · Z(G)0

where Z(G)0 is the connected component of the center of G. We see that a maximal
torus T ⊂ G is fundamental in G if and only if T (sc) is fundamental in Gsc.

Proposition 5.3.2 ([Kn1], II, p. 271). If T ⊂ G is a fundamental torus of a
semisimple group over a non-archimedian field, then T is anisotropic.

In other words, in this case G contains anisotropic maximal tori.

Lemma 5.3.3 [Ko3]. Let T be a fundamental torus of a simply connected semisim-
ple group G over a local field K. Then H2(K,T ) = 0.

Proof: If K is non-archimedian, then T is anisotropic, and by Tate-Nakayama du-
ality H2(K,T ) = 0. Now suppose K = R. Then T is isomorphic to a product of a
compact torus and a torus fo the form (RC/RGm)n (cf. e.g. [Ko3], Lemma 10.4),
hence H2(R, T ) = 0.

Lemma 5.3.4 ([Ko3], 10.1, see also [Brv1]). Let T ⊂ G be a fundamental torus of
a reductive R-group. Then the map H1(R, T )→ H1(R, G) is surjective.

Theorem 5.4. If K is a local field, then the map ab1
G:H1(K,G)→ H1

ab(K,G) is
surjective.

This result is essentially due to Kottwitz [Ko3].
Proof: It suffices to find a maximal torus T ⊂ G such that the map

H1(K,T )→ H1
ab(K,G) = H1(K,T (sc) → T )

is surjective. Let T be a fundamental torus of G; then T (sc) is a fundamental torus
of Gsc. From the exact sequence (2.12.2)

H1(K,T )→ H1
ab(K,G)→ H2(K,T (sc)),

whereH2(K,T (sc)) = 0 by Lemma 5.3.3, we see tht for such T the mapH1(K,T )→
H1

ab(K,G) is surjective. The theorem is proved.

Corollary 5.4.1. If K is a non-archimedian local field, then the map ab1
G of The-

orem 5.4 is bijective.

Proof: By Corollary 3.17 any fiber of ab1
G comes from H1(K, ψGsc) for some cocycle

ψ ∈ Z1(K,G). Since ψGsc is simply connected, by Theorem 5.0.1 H1(K, ψGsc) = 1.
Hence the map ab1

G is injective. By Theorem 5.4 ab1
G is surjective. Thus ab1

G is
bijective, which was to be proved.
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Corollary 5.5 [Ko3]. Let G be a connected reductive group over a local field K.
Set M = π1(Ḡ).

(i) If K is non-archimedian, then there is a canonical, functorial in G bijection
H1(K,G)
→ (MΓ)tors, where Γ = Gal(K̄/K).

(ii) If K = R, then there is a canonical, functorial in G surjective map

H1(R, G)→ Ĥ−1(R,M) = H1(R,M)

Proof: (i) By Corollary 5.4.1 the map ab1
G is bijective. By Proposition 4.1 (i)

H1
ab(K,G) = (MΓ)tors. The assertion (i) is proved.

(ii) By Theorem 5.4 ab1
G is surjective, and by Proposition 4.2H1

ab(R, G) = Ĥ−1(R,M) =
H1(R,M), which proves the assertion (ii).

5.6 To investigate Galois cohomology over number fields we need some lemmas.
Throughout this subsection K is a number field.

Lemma 5.6.1 (Kneser-Harder). Let G be a connected K-group. Then the map

loc∞:H1(K,G)→ Π
∞
H1(Kv, G)

is surjective.

Proof: See [Ha1], II, 5.5.1. See also [Kn3].

Lemma 5.6.2 (Kneser-Harder). Let T be a K-torus. Suppose that there is a place
v0 of K such that T is anisotropic over Kv0 . Then

X2(K,T ) := ker[H2(K,T )→ Π
v∈V

H2(Kv, T )] = 0.

Proof: See[Ha1], II, p. 408, or [Kn3], 3.2, Thm. 7, p. 58, or [Sa], 1.9.3.

Lemma 5.6.3 (Harder). Let G be a K-group. Let Σ ⊂ V be a finite set of places of
K. For any v ∈ Σ let Tv ⊂ GKv be a maximal torus. Then there exists a maximal
torus T ⊂ G such that TKv is conjugate to Tv under G(Kv) for any v ∈ Σ.

Proof: See [Ha], II, Lemma 5.5.3.

Lemma 5.6.4. Let G be a semisimple simply connected K-group. Let j:T ↪→ G
be a maximal torus of G such that for every v ∈ V∞ the torus TKv is fundamental
in GKv . Then the map

j∗:H1(K,T )→ H1(K,G)

is surjective.

Proof: Let ξ ∈ H1(K,G). By Lemma 5.3.4 the map j∗:H1(Kv, T )→ H1(Kv, G) is
surjective for v ∈ V∞. Hence for any v ∈ V∞ there exists an element ηv ∈ H1(Kv, T )
such that j∗(ηv) = locv(ξ). By Lemma 5.6.1 the homomorphism loc∞:H1(K,T )→
Π
∞
H1(Kv, T ) is surjective. Hence there is an element η ∈ H1(K,T ) such that

ηv = locv(η) for all v ∈ V∞. We see that loc∞(j∗(η)) = loc∞(ξ). By Theorem 5.0.3
it follows that ξ = j∗(η). The lemma is proved.
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Lemma 5.6.5. Let G be a semisimple simply connected K-group and let Σ ⊂ V(K)
be a finite set of places of K. Then there exists a maximal K-torus j:T ↪→ G with
the following properties:

(i) H2(Kv, T ) = 0 for v ∈ Σ;

(ii) X2(K,T ) = 0;

(iii) the map j∗:H1(K,T )→ H1(K,G) is surjective.

Proof: We may and will assume that Σ ⊃ V∞ and that Σ contains at least one
non-archimedian place v0 of K. For every place v ∈ Σ choose a fundamental
torus Tv ⊂ GKv . By Lemma 5.6.3 there exists a K-torus T ⊂ G such that TKv is
conjugate to Tv for all v ∈ Σ. We see that TKv is fundamental for any v ∈ Σ. Hence
by Lemma 5.3.3 H2(Kv, T ) = 0, which proves (i). The torus T is fundamental over
Kv0 , where v0 ∈ Vf (K), hence by Lemma 5.3.2 T is Kv0-anisotropic. By Lemma
5.6.2 X2(K,T ) = 0, which proves (ii). Since Σ ⊃ V∞, the assertion (iii) follows
from Lemma 5.6.4. The lemma is proved.

Now we can prove an analogue of Theorem 5.4 for number fields.

Theorem 5.7. Let G be a connected reductive group over a number field K. Then
the map ab1:H1(K,G)→ H1

ab(K,G) is surjective.

Proof: Let h ∈ H1
ab(K,G). It suffices to construct a torus T ⊂ G such that the

image of H1(K,T ) in H1(K,T (sc) → T ) = H1
ab(K,G) contains h.

By Corollary 4.6 there exists a finite set S of places of K such that locv(h) = 0
for v /∈ S. Let T ′ ⊂ Gsc be a maximal torus such as in Lemma 5.6.5. We set
T = ρ(T (sc)) · Z(G)0; then T (sc) = T ′. Consider the exact sequence (2.12.2)

· · · → H1(K,T )→ H1
ab(K,G) δ−→H2(K,T (sc))→ · · ·

Set η = δ(h); then locv(η) = 0 for v /∈ S. Since H2(Kv, T
(sc)) = 0 for v ∈ S by 5.6.5

(i), we see that locv(η) = 0 for v ∈ S as well. Thus η ∈X2(K,T (sc)). By 5.6.5 (ii)
X2(K,T (sc)) = 0. We conclude that η = 0. Hence h comes from H1(K,T ). The
theorem is proved.

Proposition 5.8. Let

(5.8.1) 1→ G1
i−→G2

j−→G3 → 1

be an exact sequence of connected reductive K-groups. Suppose that the maps ab1
G2

and ab1
G2

are surjective. Then the sequence

(5.8.2) H1(K,G2)
j∗−→H1(K,G3)

∆−→H2
ab(K,G1) −→ H2

ab(K,G2)

is exact, where the connecting homomorphism ∆ is the composition

H1(K,G3)
ab1

−→H1
ab(K,G3)

δ−→H2
ab(K,G1).

Proof: Consider the commutative diagram

H1(K,G2)
j∗−−−−→ H1(K,G3)

ab2

y yab3

H1
ab(K,G2)

j∗−−−−→ H1
ab(K,G3)

δ−−−−→ H2
ab(K,G1)

i∗−−−−→ H2
ab(K,G2)



ABELIAN GALOIS COHOMOLOGY OF REDUCTIVE GROUPS 39

with exact bottom row. Since ab3 is surjective, the sequence (5.8.2) is exact in the
term H2

ab(K,G1). It is clear from the diagram that the composition

H1(K,G2)
j∗−→ H1(K,G3)

∆−→ H2
ab(K,G1)

is trivial.
Now let ξ3 ∈ H1(K,G3) lie in the kernel of ∆:H1(K,G3) → H2

ab(K,G1). We
want to prove that ξ3 ∈ im j∗. Since ab2 is surjective, there exists ξ2 ∈ H1(K,G2)
such that ab3(j∗ξ2) = ab3(ξ3). Let ψ2 ∈ Z1(K,G2) be a cocycle representing
ξ2. Twisting the short exact sequence (5.8.1) by ψ2 and applying Proposition 3.16
and Corollary 3.17, we reduce the assertion to be proved to the case ξ2 = 0. Then
ab3(ξ3) = 0. By Corollary 3.17 (i) there exists η3 ∈ H1(K,Gsc

3 ) such that ξ3 = ρ∗η3.
Since the exact sequence of semisimple simply connected groups

1→ Gsc
1 → Gsc

2 → Gsc
3 → 1

splits, the map H1(K,Gsc
2 ) → H1(K,Gsc

3 ) is surjective. Hence η3 is the image
of some cohomology class η2 ∈ H1(K,Gsc

2 ). Set ξ2 = ρ∗η2 ∈ H1(K,G2); then
ξ3 = j∗ξ2.

Using Proposition 5.8 we can compute the fibers of the connecting map

∆:H1(K,G3)→ H2
ab(K,G1).

Corollary 5.9. With the assumptions and notation of Proposition 5.8, for any
ψ ∈ Z1(K,G3) we have

∆−1(∆(Cl(ψ)) = tψ(im [ψj∗:H1(K, ψG2))→ H1(K, ψG3)])

Proof: We apply twisting by ψ.
Applying Proposition 5.8 to the case of local and number fields, we obtain

Corollary 5.10. If K is a local or a number field, then the sequence (5.8.2) of
Proposition 5.8 is exact.

Proof: The assertion follows from Theorems 5.4 and 5.7.

Recall that if K = R then H2
ab(K,G) = Ĥ0(R, π1(Ḡ)). If K is a number field,

H2
ab(K,G) is computed in Proposition 4.11.
When proving Theorem 5.7 we have actually proved that any h ∈ H1

ab(K,G)
comes from some torus T ⊂ G. We will prove that a similar result holds for usual,
non-abelian cohomology H1(K,G).

Theorem 5.11. Let G be a reductive group over a number field K. For any finite

set Ξ ⊂ H1(K,G) there exists a torus T
j
↪→ G such that Ξ ⊂ j∗H1(K,T ).

Remark 5.11.1. Steinberg ([St1]) proved for arbitrary field K that if G is quasi-
split and ξ ∈ H1(K,G), then there is a torus j:T ↪→ G such that ξ ∈ j∗H1(K,G).
Theorem 5.11 shows that for a number field a similar (and even more stronger) as-
sertion holds for any group, not necessarily quasi-split. Of course we use Steinberg’s
theorem when we use the Hasse principle for simply connected groups.
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Proof of Theorem 5.11. Since Ξ is finite, there exists by Corollary 4.6 a finite set
Σ of places of K such that locv(ab1(Ξ)) = 0 for any ξ ∈ Ξ and any v /∈ Σ. We
construct a maximal torus T ′ ⊂ Gsc as in Lemma 5.6.5. We set T = ρ(T ′) ·Z(G)0;
then T (sc) = T ′. We denote by j the inclusion T ↪→ G. We will prove that
j∗(H1(K,T )) ⊃ Ξ.

Let ξ ∈ Ξ. Set h = ab1(ξ) ∈ H1
ab(G). When proving Theorem 5.7 we have proved

that there exists η ∈ H1(K,T ) such that h is the image of η, i.e. ab1(j∗(η)) = h =
ab1(ξ). Thus j∗(η) and ξ lie in the same fiber of ab1.

Choose a cocycle ψ ∈ Z1(K,T ) representing η. By Corollary 3.9 ξ “differs” from
j∗(η) by a certain cohomology class coming from H1(K, ψGsc). Since ψ comes from
T , we have an embedding ψj:T ↪→ ψG. For any v ∈ V∞ the torus T (sc)

Kv
is funda-

mental in ψG
sc
Kv

as well. By Lemma 5.6.4 the map H1(K,T (sc)) → H1(K, ψGsc)
is surjective. Thus there excists an element ζ ∈ H1(K,T (sc)) such that the image
of the cohomology class η + ρ∗(ζ) ∈ H1(K,T ) in H1(K,G) is ξ. The theorem is
proved.

Now using Theorem 5.7 we shall compute the first non-abelian Galois cohomology
in terms of abelian cohomology and real cohomology.

Theorem 5.12. Let G be a reductive group over a number field K. Then

(i) the diagram

(5.12.1) H1(K,G)
ab1×loc∞⊂-------------------------------→H1

ab(K,G)× Π
∞
H1(Kv, G) −−−−→−−−−→Π

∞
H1

ab(Kv, G)

is exact;
(ii) both the projections loc∞:H1(K,G) → Π

∞
H1

ab(Kv, G) and ab1:H1(K,G) →
H1

ab(K,G) are surjective.

Here the exactness of the diagram (5.12.1) means that the commutative diagram

H1(K,G) ab1

−−−−→ H1
ab(K,G)

loc∞

y y
Π
∞
H1(Kv, G) −−−−→ Π

∞
H1

ab(Kv, G)

(in which all the maps are surjective) identifies H1(K , G) with the fiber product
of H1

ab(K , G) and Π
∞
H1(Kv, G) over Π

∞
H1

ab(Kv, G).

Remark 5.12.2. For semisimple groups this assertion was proved by Sansuc [Sa].
In the case Gss = Gsc Theorem 5.12 generalizes a result of Milne and Shih ([M-Sh],
3.1) stating that then the kernel of the map

H1(K,G)→ H1(K,Gtor)× Π
∞
H1(Kv, G)

is trivial.

Proof of Theorem 5.12. By Theorem 5.7 the map ab1:H1(K,G) → H1
ab(K,G) is

surjective. By Corollary 4.12 the homomorphism loc∞:H1(K,G)→ Π
∞
H1

ab(Kv, G)

is also surjective. Thus the assertion (ii) is proved.
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We prove the injectivity of

(5.12.3) H1(K,G)→ H1
ab(K,G)× Π

∞
H1(Kv, G).

From the exact sequence (3.10.1) we obtain the commutative diagram

Gsc(K) −−→ G(K) −−→ H0
ab(K,G)

δ−−→ H1(K,Gsc)
ρ∗−−→ H1(K,G) −−→ H1

ab(K,G)???y ???y ???y ???y ???y ???y
Π
∞
Gsc(Kv) −−→ Π

∞
G(Kv) −−→ Π

∞
H0

ab(Kv, G)
δ−−→ Π

∞
H1(Kv, G

sc)
ρ∗−−→ Π

∞
H1(Kv, G) −−→ Π

∞
H1

ab(Kv, G)

with exact rows. Let ξ ∈ H1(K,G) be such that the images of ξ in H1
ab(K,G)

and Π
∞
H1(K,G) are trivial. Then ξ = ρ∗(η) for some η ∈ H1(K,Gsc), and

ρ∗(loc∞(η)) = 1. Hence loc∞(η) must be the image of some ζ∞ ∈ Π
∞
H0

ab(Kv, G).

The groupG(Kv)/ρ(Gsc(Kv)) is a subgroup of finite index of the groupH0
ab(Kv, G)

(because the set H1(Kv, G
sc) is finite), hence it is open. It follows from Proposition

4.9 (i) that the image of the homomorphism loc∞:H0
ab(K,G) → Π

∞
H0

ab(Kv, G) is

dense. Thus there exists an element ζ ∈ H0
ab(K,G) whose image in Π

∞
H0

ab(Kv, G)

equals ζ∞ modulo Π
∞

(G(Kv)/ρ(Gsc(Kv)). Then δ(loc∞(ζ)) = loc∞(η). Hence

loc∞(η) = loc∞(δ(ζ)), and by the Hasse principle for Gsc (Theorem 5.0.3) η = δ(ζ).
We conclude that ξ = 1.

We have proved that the kernel of (5.12.3) is trivial. Using twisting (and applying
Proposition 3.16 and Corollary 3.17) we obtain the injectivity of (5.12.3).

We prove the exactness at the term H1
ab(K,G) × Π

∞
H1(Kv, G). It is clear that

the image of (5.12.3) is contained in the kernel of the double arrow. Conversely, let

h× ξ∞ ∈ H1
ab(K,G)× Π

∞
H1(Kv, G)

be in the kernel of the double arrow, i.e. loc∞(h) = ab1(ξ∞). We wish to show
that h× ξ∞ comes from H1(K,G).

By Theorem 5.7 h = ab1(η) for some η ∈ H1(K,G). Then ab1(loc∞(η)) =
ab1(ξ∞). Let ψ ∈ Z1(K,G) be a cocycle representing η. By Corollary 3.9 loc∞(η)
and ξ∞ “differ” by an element of the form ψρ∗(ζ∞) where ζ∞ ∈ Π

∞
H1(Kv, ψG

sc).

To be more precise, ξ∞ = tψ(ψρ∗(ζ∞)). By Lemma 5.6.1 there exists a cohomology
class ζ ∈ H1(K, ψGsc) such that loc∞(ζ) = ζ∞. We set ξ = tψ(ψρ∗(ζ)). Then
ab1(ξ) = ab1(η) = h and loc∞(ξ) = tψ(ψρ∗(ζ∞)) = ξ∞. The theorem is proved.

Theorem 5.13. Let G be a connected reductive K-group. The abelianization map
ab1:
H1(K,G)→ H1

ab(K,G) induces a canonical, functorial in G bijection of the Shafarevich-
Tate kernel X(G) onto the abelian group X1

ab(G).

Recall that by definition

X(G) = ker
[
H1(K,G)→ Π

v∈V
H1(Kv, G)

]
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Proof: From the commutative diagram

(5.13.1)

H1(K,G) ab1

−−−−→ H1
ab(K,G)y y

H1(Kv, G)
ab1
v−−−−→ H1

ab(Kv, G)

it is clear that ab1 takes X(G) into X1
ab(G). Write temporarily abX for the

restriction of ab1
G to X(G).

We prove the injectivity of abX. By Theorem 5.12 the map

ab1
G × loc∞:H1(K,G)→ H1

ab(K,G)× Π
∞
H1(Kv, G)

is injective. Since loc∞(X(G)) = 1, we conclude that the restriction abX of ab1
G

to X(G) is injective.
We prove the surjectivity of abX. Let h ∈ X1

ab(G) ⊂ H1
ab(K,G). Then

loc∞(h) = 1 ∈ Π
∞
H1

ab(Kv, G). Hence the element

h× 1 ∈ H1
ab(K,G)× Π

∞
H1(Kv, G)

lies in the fiber product over Π
∞
H1

ab(Kv, G). By Theorem 5.12 h × 1 is the image

of some element ξ ∈ H1(K,G). We will show that ξ ∈X(G).
We observe that loc∞(ξ) = 1. Now let v ∈ Vf ; consider the element locv(ξ) ∈

H1(Kv, G). Since ξ ∈ H1(K,G), we see from the diagram (5.13.1) that ab1
v(locv(ξ)) =

0. By Corollary 5.4.1 the map ab1
v:H

1(Kv, G) → H1
ab(Kv, G) is bijective. Hence

locv(ξ) = 1 for any v ∈ Vf . We conclude that ξ ∈X(G). The theorem is proved.

Corollary 5.14 [Ko3]. With the notation of 4.13 we have a canonical, functorial
in G bijection X(G) ∼−→c1(K,π1(Ḡ)).

Remark 5.14.1. Voskresenskii [Vo1] was first to prove that X(G) has a canonical
structure of abelian group. Sansuc [Sa] showed that this abelian group structure
is functorial in G. He computed X(G) in terms of the arithmetic Brauer group
BraG. Our formula is equivalent to the formula (4.2.2) of [Ko2].

5.15 Corollary 5.14 shows that the kernel of the localization map

(5.15.1) H1(K,G)→ Π
v∈V

H1(Kv, G)

has a natural structure of an abelian group and can be computed in terms of π1(Ḡ).
We show that a similar assertion holds for the cokernel of (5.15.1) as well.

Set M = π1(Ḡ). Let the groups T −1(M), T −1
v (M) and the corestriction map

cor−1
v :

T −1
v (M)→ T −1(M) be as in 4.7. We define the composition

µv:H1(Kv, G) ab1

−→H1
ab(Kv, G) = T −1

v (M)
cor−1

v−→T −1(M) = (MΓ)tors

Let⊕
V
H1(Kv, G) denote the subset of the direct product consisting of the families

(ξv)v∈V such that ξv = 1 for v outside some finite set. We consider the map

µ = Σµv:⊕
V
H1(Kv, G)→ (MΓ)tors

The map µ is functorial in G.
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Theorem 5.16 [Ko3]. The sequence

0→X(G)→ H1(K,G)→ ⊕H1(Kv, G)
µ−→(π1(Ḡ)Γ)tors

is exact.

Proof: We have to prove only the exactness in the term ⊕H1(Kv, G). Consider the
commutative diagram

(5.16.1)

H1(K,G) −−−−→ ⊕H1(Kv, G)yab

y⊕abv

H1
ab(K,G) −−−−→ ⊕H1

ab(Kv, G) −−−−→ (π1(Ḡ)Γ)tors

SetM = π1(Ḡ); then using Proposition 4.8 we see that the lower row of the diagram
is the exact sequence (4.3.1)

H1(K,M ; K̄×)→ H1(K,M, Ā×)→ H1(K,M, C̄),

hence the lower row of (5.16.1) is exact.
It is clear from the diagram that the composition

H1(K,G)→ ⊕H1(Kv, G)→ (MΓ)tors

is zero. Now let ξA = ξ∞ × ξf ∈ ⊕H1(Kv, G), where ξ∞ ∈ Π
∞
H1(Kv, G),

ξf ∈ ⊕
Vf
H1(Kv, G). Suppose that µ(ξA) = 0. Let hA be the image of ξA in

⊕H1
ab(Kv, G). Then the image of hA in (MΓ)tors is zero, hence hA is the image of

some element h ∈ H1
ab(K,G) × Π

∞
H1(Kv, G). It is clear that h × ξ∞ is contained

in the fiber product over Π
∞
H1

ab(Kv, G). By Theorem 5.12 h × ξ∞ comes from

H1(K,G). The theorem is proved.
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