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Let f be an indefinite ternary integral quadratic form and let ¢ be a nonzero
integer such that —gdet(f) is not a square. Let N(T, f,q) denote the number
of integral solutions of the equation f(z) = ¢ where z lies in the ball of radius
T centered at the origin. We are interested in the asymptotic behavior of
N(T, f,q) as T — oo. We deduce from the results of our joint paper with
Z. Rudnick that N(T, f,q) ~ cEgp(T, f,q) as T — oo, where Egp (T, f,q) is
the Hardy-Littlewood expectation (the product of local densities) and 0 < ¢ <
2. We give examples of f and g such that c¢ takes the values 0, 1, 2.
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0. INTRODUCTION

Let f be a nondegenerate indefinite integral-matrix quadratic form of n
variables:

n
f(l‘h - ,{En) = E AijTiTj, Qi € Z, Aij = Qjj -
3,j=1

Let ¢ € Z, ¢ # 0. Let W = Q". Consider the affine quadric X in W
defined by the equation

flxy,...,xn) =q.

We wish to count the representations of ¢ by the quadratic form f, that is
the integer points of X.

Partially supported by the Hermann Minkowski Center for Geometry
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Since f is indefinite, the set X (Z) can be infinite. We fix a Euclidean
norm | - | on R™. Consider the counting function

N(T,X)=#{z € X(Z): |z| < T}

where T € R, T > 0. We are interested in the asymptotic behavior of
N(T,X) as T — oc.

When n > 4, the counting function N(T, X) can be approximated by
the product of local densities. For a prime p set

- #X(Z/p"Z)
pip(X) = JE&W .

For almost all p it suffices to take k = 1:

) = FXE).

Set &(X) =[], p(X); this product converges absolutely (for n > 4); it is
called the singular series. Set

o < _
(T, X) = lim YOHE ER™ el < T |f(x) —al <</2}

e—0 e

it is called the singular integral. For n > 4 the following asymptotic formula
holds:

NT, X) ~6(X)poo (T, X) as T — o0.

This follows from results of [2], 6.4 (which are based on analytical results of
[6], [7], [8])- For certain non-Euclidean norms the similar result was earlier
proved by the Hardy-Littlewood circle method, cf. [5] in the case n > 5
and [9] in the more difficult case n = 4.

We are interested here in the case n = 3, a ternary quadratic form.
This case is beyond the range of the Hardy-Littlewood circle method. Set
D = det(ai;). We assume that —gD is not a square. Then the product
S(X) = [[ p#p(X) conditionally converges (see Sect. 1 below), but in gen-
eral N(T,X) is not asymptotically &(X)ueo (T, X). From results of [2] it
follows that

N(T,X) ~exS(X)poo(T, X) as T — o0

with 0 < cx < 2, see details in Subsection 1.5 below. We wish to know
what values can cx take.

A case when cx = 0 was already known to Siegel, see also [2], 6.4.1.
Consider the quadratic form

fi(zy, 0, 23) = =922 + 22120 + 722 + 222
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and take ¢ = 1. Let X be defined by f;(z) = ¢. Then f; does not represent
1 over Z, so N(T,X) = 0 for all T. On the other hand, f; represents 1
over R and over Z, for all p, and &(X)ueo(T,X) — 00 as T — oo. Thus
cx =0 (see details in Sect. 2).

We show that cx can take the value 2. Recall that two integral quadratic
forms f, f/ are in the same genus, if they are equivalent over R and over
Z,, for every prime p, cf. e.g. [3].

THEOREM 0.1. Let f be an indefinite integral-matrix ternary quadratic
form, q € Z, q # 0, and let X be the affine quadric defined by the equation
f(x) = q. Assume that [ represents q over Z and that there exists a
quadratic form f’ in the genus of f, such that f' does not represent q over
Z. Then cx = 2:

N(T,X) ~26(X)poo(T, X) as T — 0.

Theorem 0.1 will be proved in Sect. 3.

Ezample 0.1.1.  Let fo(w1,22,73) = —23 + 6423+ 223, ¢ = 1. Then f,
represents 1 (f2(1,0,1) = 1) and the quadratic form f; considered above
is in the genus of fo (cf. [4], 15.6). The form f; does not represent 1.
Take |z| = (23 4 6423 + 223)'/2. By Theorem 0.1 cx = 2 for the variety
X : fo(x) = 1. Analytic and numeric calculations give 26 (X ) oo (T, X) ~
0.794T. On the other hand, numeric calculations give for 7" = 10,000 the
value N(T,X)/T = 0.8024.

We also show that cx can take the value 1.

THEOREM 0.2. Let f be an indefinite integral-matrix ternary quadratic
form, q € Z, q # 0, and let X be the affine quadric defined by the equation
f(z) = q. Assume that X(R) is two-sheeted (has two connected compo-
nents). Then cx = 1:

N(T,X) ~6(X)poo(T, X) as T — oc.

Theorem 0.2 will be proved in Sect. 4.

Ezample 0.2.1.  Let fy and |z| be as in Example 0.1.1, ¢ = -1, X :
f2(x) = g. Then X (R) has two connected components, and by Theorem 0.2
c¢x = 1. Analytic and numeric calculations give &(X ) oo (T, X) ~ 0.7065T.
On the other hand, numeric calculations give for T = 10,000 the value
N(T, X)/T = 0.7048.
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Question 0.3. Can cx take values other than 0, 1, 27

The plan of the paper is the following. In Section 1 we describe results
of [2] in the case of 2-dimensional affine quadrics. In Section 2 we treat
in detail the example of cx = 0. In Section 3 we prove Theorem 0.1. In
Section 4 we prove Theorem 0.2.

1. RESULTS OF [2] IN THE CASE OF TERNARY
QUADRATIC FORMS

Let f be an indefinite ternary integral-matrix quadratic form

3

f(z1,z2,23) = E ai;TT5,  ai; €4, ai; = aj.
i=1

Let ¢ € Z, g # 0. Let D = det(a;;). We assume that —gD is not a square.

Let W = Q2 and let X denote the affine variety in W defined by the
equation f(x) = ¢, where z = (z1,22,23). We assume that X has a Q-
point 20, Set G' = Spin(W, f), the spinor group of f. Then G acts on W
on the left, and X is an orbit (a homogeneous space) of G.

1.1. Rational points in adelic orbits

Let A denote the adele ring of Q. The group G(A) acts on X (A); let
Oa be an orbit. We would like to know whether O has a Q-rational
point.

Let W’ denote the orthogonal complement of 2% in W, and let f’ denote
the restriction of f to W’. Let H be the stabilizer of z° in G, then H =
Spin(W”’, f). Since dim W' = 2, the group H is a one-dimensional torus.

We have det f' = D/q, so up to multiplication by a square det f' = ¢D.
It follows that up to multiplication by a scalar, f’ is equivalent to the
quadratic form u? 4+ ¢Dv?. Set K = Q(y/—¢D), then K is a quadratic
extension of Q, because —¢D is not a square. The torus H is anisotropic
over Q (because —¢D is not a square), and H splits over K. Let X, (H)
denote the cocharacter group of Hi, X.(Hk) = Hom(G,, k, Hx); then
X.(Hg) ~ Z. The non-neutral element of Gal(K/Q) acts on X.(Hg) by
multiplication by —1.

Let Oa be an orbit of G(A) in X(A), Oa = [[O, where O, is an
orbit of G(Q,) in X(Q,), v runs over the places of Q, and Q, denotes
the completion of Q at v. We define local invariants v,(0,) = 1. If
0, = G(Q,) - 2°, then we set v,(0,) = +1, if not, we set v,(0,) = —1.
Then v,(0,) = +1 for almost all v. We define v(Oa) = [[v»(O,) where
Oa =]] O,. Note that the local invariants v, (0O, ) depend on the choice of
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the rational point 2° € X (Q); one can prove, however, that their product
v(Oa) does not depend on 0.

Let € X(A). We set v(z) = v(G(A) - ). Then v(z) takes values +1;
it is a locally constant function on X (A), because the orbits of G(A) are
open in X (A).

For z € X(A) define §(z) = v(z) + 1. In other words, if v(z) = —1 then
0(z) = 0, and if v(x) = 41 then §(x) = 2. Then ¢ is a locally constant
function on X (A).

THEOREM 1.1. An orbit Oa of G(A) in X(A) has a Q-rational point
if and only if v(Oa) = +1.

Below we will deduce Theorem 1.1 from [2], Thm. 3.6.

1.2. Proof of Theorem 1.1

For a torus T over a field k of characteristic 0 we define a finite abelian
group C(T) as follows:

C(T) = (Xu(Tr) Gai(k/k) Jtors

where k is a fixed algebraic closure of k, X, (T%) Gai(k k) denotes the group of
coinvariants, and (-)tors denotes the torsion subgroup. If k is a number field
and k, is the completion of k at a place v, then we define C,(T') = C (T}, ).
There is a canonical map %,:C,(T) — C(T) induced by an inclusion
Gal(k,/k,) — Gal(k/k). These definitions were given for connected reduc-
tive groups (not only for tori) by Kottwitz [10], see also [2], 3.4. Kottwitz
writes A(T) instead of C(T).
We compute C(H) for our one-dimensional torus H over Q. Clearly

C(H) = (X*(HK)Gal(K/Q))tors = Z/2Z .

We have C,(H) =1 if K ® Q, splits, and C,(H) ~ Z/2Z if K ® Q,, is a
field. The map i, is injective for any v.

We now define the local invariants ,(O,) as in [2], where O, is an orbit
of G(Qy) in X(Q,). The set of orbits of G(Q,) in X(Q,) is in canonical
bijection with ker[H'(Q,, H) — H(Q,,G)], cf. [13], I-5.4, Cor. 1 of
Prop. 36. Hence O, defines a cohomology class &, € H'(Q,,H). The
local Tate—Nakayama duality for tori defines a canonical homomorphism
Bo: HY(Q,, H) — C,(H), see Kottwitz [10], Thm. 1.2. (Kottwitz defines
the map (3, in a more general setting, when H is any connected reductive
group over a number field.) The homomorphism (3, is an isomorphism for
any v. We set 1,(0,) = 3,(&,). Note that if O, = G(Q,) - 2°, then &, =0
and k,(0,) = 0; if 0, # G(Q,) - 2%, then &, # 0 and x,(0,) = 1.
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We define the Kottwitz invariant x(Oa) of an orbit Oa = [[O, of
G(A) in X(A) by k(Oa) =, iv(ko(Oy)). We identify C'(H) with Z/27Z,
and C,(H) with a subgroup of Z/2Z. With this identifications k(Oa) =
> Ky (Oy).

We prefer the multiplicative rather than additive notation. Instead of
Z/27Z we consider the group {+1,—1}, and set

v(0,) = (~1)%(©), p(On) = (1)),

Here v,(0,) and v(Oa) take the values £1. We have v(Oa) = [[ v (O,).
Since £, (0,) = 0 if and only if O, = G(Q,) - 2°, we see that v,(0,) = +1
if and only if O, = G(Q,)-z°. Hence our v,(0,) and v(Oa) coincide with
vy (Oy) and v(Op), resp., introduced in Subsection 1.1.

By Thm. 3.6 of [2] an adelic orbit Oa contains Q-rational points if and
only if k(Oa) = 0. With our multiplicative notation xK(Oa) = 0 if and only
if v(Oa) = +1. Thus Oa contains Q-points if and only if v(Oa) = +1.
We have deduced Thm. 1.1 from [2], Thm. 3.6. |

1.3. Tamagawa measure

We define a gauge form on X, i.e. a regular differential form w € A%(X)
without zeroes. Recall that X is defined by the equation f(x) = ¢q. Choose
a differential form p of degree 2 on W such that u A df = dxy A dxa A
dxs, where x1, %2, x3 are the coordinates in W = Q3. Let w = i|x, the
restriction of 4 to X. Then w is a gauge form on X, cf. [2], 1.3, and it does
not depend on the choice of . The gauge form w is G-invariant, because
there exists a G-invariant gauge form on X, cf. [2], 1.4, and a gauge form
on X is unique up to a scalar multiple, cf. [2], Cor. 1.5.4.

For any place v of Q one associates with w a local measure m,, on X(Q,),
cf. [14], 2.2. We show how to define a Tamagawa measure on X (A),
following [2], 1.6.2.

We have by [2], 1.8.1, p,,(X) = my,(X(Z))), where p,,(X) is defined in the
Introduction. By [14], Thm. 2.2.5, for almost all p we have m,(X(Z,)) =
£X(F,).

We compute #X (F,). The group SO(f)(F,) acts on X (F,) with sta-
bilizer SO(f’)(F,), where SO(f’)(F,) is defined for almost all p. This
action is transitive by Witt’s theorem. Thus we obtain that #X(F,) =

#S0(f)(Fp)/#SO(f")(Fy). By [1], III-6,

#SO(f)(Fp) =p(p® —1), #SO(f")(Fp) =p— x(p),
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where x(p) = —1 if f' mod p does not represent 0, and x(p) = +1 if
—qD
f/ mod p represents 0. We have x(p) = (q) We obtain for p{ gD
p
p(p* —1)

#X(Ep) = p—x(p)’ o X) p? 1—x()/p’

For p|gD set x(p) = 0. We define

_HX(F,) _ 1-1/p?

Ly(s,x) = (1 =x(@)p~*) " L(s,x) = [[ Lol(s: %)

p

where s is a complex variable. We set

Ap=Ly(1,x) ' =1- X;p)’ r=L(1,x)""

Then the product [[ (A, '11,,) converges absolutely, hence the family (),)
is a family of convergence factors in the sense of [14], 2.3. We define, as in
[2], 1.6.2, the measures

mf:’f’71 H()\;lmp)v m = MecMyf ,
p
then my is a measure on X (A ) (where Ay is the ring of finite adéles) and
m is a measure on X (A). We call m the Tamagawa measure on X (A).

1.4. Counting integer points
For T >0set X(R)T ={z € X(R): |z| < T}.

THEOREM 1.2.
N(T, X) N/ d(x)dm.
X (R)T x X (Z)

In other words,
N(T,X) ~2m({z € X(R)T x X(Z) : v(z) = +1}). (1)

Theorem 1.2 follows from [2], Thm. 5.3 (cf. [2], 6.4 and [2], Def. 2.3).
For comparison note that

m(X(R)T x X(2)) = moe(X(R)T)my(X(2)) = poo(T, X)S(X), (2)

cf. [2], 1.8.
The following lemma will be used in the proof of Theorem 0.1.
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LEMMA 1.3. Assume that there exists y € X (R x Z) such that v(y) =
+1. Then the set X(Z) is infinite.

Proof. Since v is a locally constant function on X (A), there exists a

nonempty open subset Uy € X(Z) and an orbit Us, of G(R) in X (R) such
that v(z) = +1 for all ¥ € Une x Us. Set UL = {x € U : |z| < T}, then
Moo (UL) — 00 as T — oo. We have

/ o(x)dm > / S(z)dm = 2mo (UL )Ym s (Uy) .
X(R)T x X (Z) UT xUy

Since 2meo (UL )m ¢ (Us) — o0 as T — oo, we see that

/ d(z)dm — o0 as T — o0,
X(R)T x X (Z)
and by Theorem 1.2 N (T, X) — co. Hence X(Z) is infinite. ||

1.5. The constant cx
Here we prove the following result:

ProposiTION 1.4.
N(T,X) ~ cxS(X)poo (T, X) as T — o0

with some constant cx, 0 < cx < 2.

Proof. If X(R) has two connected components, then by Theorem 0.2
(which we will prove in Sect. 4 below), N(T, X) ~ &(X)puoo (T, X), so the
proposition holds with cx = 1.

If X(R) has one connected component, then X (R) consists of one G(R)-
orbit and vo (X (R)) = +1. For an orbit Oy = [[ O, of G(Ay) in X (Ay)
we set v¢(Oy) = [, 1(O0p). We regard vy as a locally constant function on

X (Ay) taking the values £1. Define X(Z); = {zy € X(Z) : vy(xy) = +1}.
We have

/ b(@)dm = 2mee (X(R) Y (X(2)4).
X(R)T x X (Z)

Set cx = me(X(Z)+)/mf(X(Z)), then 0 < cx <2 and

/ J(x)dm = exmoo (X (R) )my(X(Z)) = ex poo(T, X)S(X).
X(R)T x X (Z)
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Using Theorem 1.2, we see that

N(T,X) ~ cxpoo(T, X)6(X) as T — oo.

2. AN EXAMPLE OF ¢cx =0
Let
fi(z1, 20, x3) = =922 4 22129 + T3 + 2x§, qg=1.

This example was mentioned in [2], 6.4.1. Here we provide a detailed
exposition.

Consider the variety X defined by the equation fi(z) = ¢q. We have
fl(—%, %, 1) = 1. It follows that f; represents 1 over R and over Z, for
p> 2.

We have f1(4,1,1) = =127 =1 (mod 27). We prove that f; represents
1 over Z5. Define a polynomial of one variable F'(Y) = f1(4,1,Y) -1, F €
ZyY]. Then F(1) = =27, |F(1)|o = 277, F'(Y) = 4Y, |F'(1)?]; = 274,
|F(1)|2 < |F'(1)2]2. By Hensel’s lemma (cf. [11], 1I-§2, Prop. 2) F has a
root in Zs. Thus f; represents 1 over Zs.

Now we prove that f; does not represent 1 over Z. I know the following
elementary proof from D. Zagier.

We prove the assertion by contradiction. Assume on the contrary that

fgxf + 2x120 + 7x§ + 2353) =1 for some x1,x2,x3 € Z.
We may write this equation as follows:
222 — 1= (z1 — x2)* + 8(x1 — 29) (21 + 2).
The left hand side is odd, hence x1 — x5 is odd and therefore x1 + x5 is odd.
We have (11 — x2)? = (mod 8). Hence the right hand side is congruent
to 1 (mod 8). We see that x3 is odd, hence 222 —1 =1 (mod 16). But
8(x1 — x2)(x1 +22) =8 (mod 16).

It follows that

(r1 —22)> = 9 (mod 16)
+3  (mod 8).

Ty — X2

Therefore 1 — x2 must have a prime factor p = £3 (mod 8). Hence
222 — 1 has a prime factor p = +3 (mod 8). On the other hand, if
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p|(223 — 1), then
222 =1 (mod p)

2
and 2 is a square modulo p, () = 1. By the quadratic reciprocity
p

law p = £1 (mod 8). Contradiction. We have proved that f; does not
represent 1 over Z, hence N(T,X) =0 for all T
On the other hand,

S(X)poo (T, X) = my(X(Z))mee (X (R)T).

Since X (Z) is a nonempty open subset in X(Ay), mf(X(Z)) > 0. Now
Moo (X (R)T) — 00 as T — oo. Hence &(X) oo (T, X) — 00 as T — oo,
and thus cx = 0.

3. PROOF OF THEOREM 0.1

LEMMA 3.1. Let k be a field of characteristic different from 2, and let
V' be a finite-dimensional vector space over k. Let f be a non-degenerate
quadratic form on V. Let w € GL(V)(k), f' = u*f. Then the map y —
uy: V — V takes the orbits of Spin(f)(k) in V to the orbits of Spin(f')(k).

Proof. Let x € V, f(x) # 0. The reflection (symmetry) ro =77,V —
V' is defined by

_,_ 2By
T2(y) =y @) yev,

where B is the symmetric bilinear form on V associated with f. Every
s € SO(f)(k) can be written as

S=Tg, T (3)
cf. [12], Thm. 43:3.  The spinor norm 6(s) of s is defined by
0(s) = f(z1)--- f(z;) (mod k*?) € k*/k*?

and it does not depend on the choice of the representation given by (3),
cf. [12], §55. Let ©(f) denote the image of Spin(f)(k) in SO(f)(k). Then
s € SO(f)(k) is contained in O(f) if and only if §(s) = 1, cf. [13], III-3.2
or [3], Ch. 10, Thm. 3.3.

Now let u, f' be as above. Then rp/ ,, = uryu™t, f'(uz) = f(x), and
so O (usu™) = 0¢(s). We conclude that uO(f)u~t = O(f’) and that

the map y +— uy takes the orbits of O(f) in V to the orbits of ©(f’). |
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Let f, f be integral-matrix quadratic forms on Z™ and assume that f’
is in the genus of f. Then there exists u € GL, (R x Z) such that f'(z) =
f(u=tz) for x € A™. Let ¢ € Z, ¢ # 0. Let X denote the affine quadric
f(z) = ¢, and X’ denote the quadric f'(z) = q.

LEMMA 3.2. The map & — uz: A" — A" takes X(R x Z) to X'(R x Z)
and takes orbits of Spin(f)(A) in X (A) to orbits of Spin(f')(A) in X'(A).

Proof. Let A denote the matrix of f, and A’ denote the matrix of f’.
We have

(u ) Au™t = A, A=u'Au.

The variety X is defined by the equation 2'Ax = ¢, and X’ is defined by
x'A’x = q. One can easily check that the map x — ux takes X (R x Z) to
X'(R xZ) and X(A) to X'(A).

In order to prove that the map = — uz: X (A) — X'(A) takes the orbits
of Spin(f)(A) to the orbits of Spin(f’)(A), it suffices to prove that the map
x = u,z: X(Qy) — X' (Q,) takes the orbits of Spin(f)(Q,) to the orbits of
Spin(f")(Qy) for every v, where u,, is the v-component of u. This last asser-

tion follows from Lemma 3.1. |

PROPOSITION 3.3. Let f' and q be as in Theorem 0.1, in particular f'
represents q over Z,, for any v (we set Zo, = R.), but not over Z. Let X’
be the quadric defined by f'(x) = q. Then X'(R X Z) is contained in one
orbit of Spin(f')(A).

Proof. Set G’ = Spin(f’). We prove that X'(Z,) is contained in one or-
bit of G'(Q,) for every v by contradiction. Assume on the contrary that for
some v the set X’(Z,) has nontrivial intersection with two orbits of G'(Q,).
Then v, takes both values +1 and —1 on X'(Z,). It follows that v takes
both values +1 and —1 on X’(RxZ). Hence by Lemma 1.3 X’ has infinitely
many Z-points. This contradicts to the assumption that f’ does not repre-

sent q over Z. |

Proof of Theorem 0.1.  Let u € GL3(R x Z) be such that f/(z) =
f(u=tx). Let X, X’ be as above, in particular X’ has no Z-points. By
Prop. 3.3 X’(R x Z) is contained in one orbit of Spin(f’)(A). It follows
from Lemma 3.2 that X (R x Z) is contained in one orbit of Spin(f)(A).
Since f represents q over Z, this orbit has Q-rational points, and v equals
+1 on X(R x Z). Thus § equals 2 on X (R x Z), and by Formulas (1) and
(2) of Subsection 1.4 N(T, X) ~ 26(X ) (T, X). 1
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4. PROOF OF THEOREM 0.2

We prove Theorem 0.2. We define an involution 7, of X (R) by 7oo(2) =
-z, v € X(R) C R3. Since f(z) = f(—2), T is well defined, i.e takes
X(R) to itself. Since | — x| = |z|, 7o takes X (R)7 to itself. We define an
involution 7 of X (A) by defining 7 as 7o, on X(R) and as 1 on X(Q,) for
all prime p. Then 7 respects the Tamagawa measure m on X (A).

By assumption X (R) has two connected components. These are the two
orbits of Spin(f)(R). The involution 7o, of X (R) interchanges these two
orbits. Thus we have

Voo (Too (Too)) = —Voo(Too) for all zoo € X(R) 4)

v(t(z)) = —v(z) for all z € X(A) (5)

Let X(R); and X(R)s be the two connected components of X (R). Set
XR) =XRuNXR)", XR); =XR):NX[R)"

Then 7 interchanges X (R)T x X(Z) and X(R)? x X(Z). From Formula
(5) in this section we have

/ v(z)dm = —/ v(z)dm,
XR)T xX(2) X(R) xX(2)

hence

/ v(x)dm = 0.
X(R)T x X (Z)

Since §(x) = v(x) + 1, we obtain

/ §(z)dm = dm =m(X(R)T x X(Z)),
X(R)T xX(Z) X(R)T x X (Z)

and m(X (R)T x X(Z)) = 6(X) oo (T, X). By Theorem 1.2

N(T,X) ~ / o(x)dm.
X(R)T x X (Z)

Thus N(T, X) ~ S(X)pieo (T, X) as T — o0, i.e. cx = 1. |
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