
On representations of integers by

indefinite ternary quadratic forms

Mikhail Borovoi

Raymond and Beverly Sackler School of Mathematical Sciences, Tel Aviv
University, 69978 Tel Aviv, Israel
E-mail: borovoi@math.tau.ac.il

Let f be an indefinite ternary integral quadratic form and let q be a nonzero
integer such that −qdet(f) is not a square. Let N(T, f, q) denote the number
of integral solutions of the equation f(x) = q where x lies in the ball of radius
T centered at the origin. We are interested in the asymptotic behavior of
N(T, f, q) as T → ∞. We deduce from the results of our joint paper with
Z. Rudnick that N(T, f, q) ∼ cEHL(T, f, q) as T → ∞, where EHL(T, f, q) is
the Hardy-Littlewood expectation (the product of local densities) and 0 ≤ c ≤
2. We give examples of f and q such that c takes the values 0, 1, 2.

Key Words: Ternary quadratic forms

0. INTRODUCTION

Let f be a nondegenerate indefinite integral-matrix quadratic form of n
variables:

f(x1, . . . , xn) =
n∑

i,j=1

aijxixj , aij ∈ Z, aij = aji .

Let q ∈ Z, q 6= 0. Let W = Qn. Consider the affine quadric X in W
defined by the equation

f(x1, . . . , xn) = q .

We wish to count the representations of q by the quadratic form f , that is
the integer points of X.
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Since f is indefinite, the set X(Z) can be infinite. We fix a Euclidean
norm | · | on Rn. Consider the counting function

N(T,X) = #{x ∈ X(Z) : |x| ≤ T}

where T ∈ R, T > 0. We are interested in the asymptotic behavior of
N(T,X) as T →∞.

When n ≥ 4, the counting function N(T,X) can be approximated by
the product of local densities. For a prime p set

µp(X) = lim
k→∞

#X(Z/pkZ)
(pk)n−1

.

For almost all p it suffices to take k = 1:

µp(X) =
#X(Fp)

pn−1
.

Set S(X) =
∏

p µp(X); this product converges absolutely (for n ≥ 4); it is
called the singular series. Set

µ∞(T,X) = lim
ε→0

Vol{x ∈ Rn : |x| ≤ T, |f(x)− q| < ε/2}
ε

;

it is called the singular integral. For n ≥ 4 the following asymptotic formula
holds:

N(T,X) ∼ S(X)µ∞(T,X) as T →∞.

This follows from results of [2], 6.4 (which are based on analytical results of
[6], [7], [8]). For certain non-Euclidean norms the similar result was earlier
proved by the Hardy-Littlewood circle method, cf. [5] in the case n ≥ 5
and [9] in the more difficult case n = 4.

We are interested here in the case n = 3, a ternary quadratic form.
This case is beyond the range of the Hardy-Littlewood circle method. Set
D = det(aij). We assume that −qD is not a square. Then the product
S(X) =

∏
µp(X) conditionally converges (see Sect. 1 below), but in gen-

eral N(T,X) is not asymptotically S(X)µ∞(T,X). From results of [2] it
follows that

N(T,X) ∼ cXS(X)µ∞(T,X) as T →∞
with 0 ≤ cX ≤ 2, see details in Subsection 1.5 below. We wish to know
what values can cX take.

A case when cX = 0 was already known to Siegel, see also [2], 6.4.1.
Consider the quadratic form

f1(x1, x2, x3) = −9x2
1 + 2x1x2 + 7x2

2 + 2x2
3 ,
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and take q = 1. Let X be defined by f1(x) = q. Then f1 does not represent
1 over Z, so N(T,X) = 0 for all T . On the other hand, f1 represents 1
over R and over Zp for all p, and S(X)µ∞(T,X) → ∞ as T → ∞. Thus
cX = 0 (see details in Sect. 2).

We show that cX can take the value 2. Recall that two integral quadratic
forms f, f ′ are in the same genus, if they are equivalent over R and over
Zp for every prime p, cf. e.g. [3].

Theorem 0.1. Let f be an indefinite integral-matrix ternary quadratic
form, q ∈ Z, q 6= 0, and let X be the affine quadric defined by the equation
f(x) = q. Assume that f represents q over Z and that there exists a
quadratic form f ′ in the genus of f , such that f ′ does not represent q over
Z. Then cX = 2:

N(T,X) ∼ 2S(X)µ∞(T,X) as T →∞.

Theorem 0.1 will be proved in Sect. 3.

Example 0.1.1. Let f2(x1, x2, x3) = −x2
1 +64x2

2 +2x2
3, q = 1. Then f2

represents 1 (f2(1, 0, 1) = 1) and the quadratic form f1 considered above
is in the genus of f2 (cf. [4], 15.6). The form f1 does not represent 1.
Take |x| = (x2

1 + 64x2
2 + 2x2

3)
1/2. By Theorem 0.1 cX = 2 for the variety

X : f2(x) = 1. Analytic and numeric calculations give 2S(X)µ∞(T,X) ∼
0.794T . On the other hand, numeric calculations give for T = 10, 000 the
value N(T,X)/T = 0.8024.

We also show that cX can take the value 1.

Theorem 0.2. Let f be an indefinite integral-matrix ternary quadratic
form, q ∈ Z, q 6= 0, and let X be the affine quadric defined by the equation
f(x) = q. Assume that X(R) is two-sheeted (has two connected compo-
nents). Then cX = 1:

N(T,X) ∼ S(X)µ∞(T,X) as T →∞.

Theorem 0.2 will be proved in Sect. 4.

Example 0.2.1. Let f2 and |x| be as in Example 0.1.1, q = −1, X :
f2(x) = q. Then X(R) has two connected components, and by Theorem 0.2
cX = 1. Analytic and numeric calculations give S(X)µ∞(T,X) ∼ 0.7065T .
On the other hand, numeric calculations give for T = 10, 000 the value
N(T,X)/T = 0.7048.
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Question 0.3. Can cX take values other than 0, 1, 2?

The plan of the paper is the following. In Section 1 we describe results
of [2] in the case of 2-dimensional affine quadrics. In Section 2 we treat
in detail the example of cX = 0. In Section 3 we prove Theorem 0.1. In
Section 4 we prove Theorem 0.2.

1. RESULTS OF [2] IN THE CASE OF TERNARY
QUADRATIC FORMS

Let f be an indefinite ternary integral-matrix quadratic form

f(x1, x2, x3) =
3∑

i,j=1

aijxixj , aij ∈ Z, aij = aji .

Let q ∈ Z, q 6= 0. Let D = det(aij). We assume that −qD is not a square.
Let W = Q3 and let X denote the affine variety in W defined by the

equation f(x) = q, where x = (x1, x2, x3). We assume that X has a Q-
point x0. Set G = Spin(W, f), the spinor group of f . Then G acts on W
on the left, and X is an orbit (a homogeneous space) of G.

1.1. Rational points in adelic orbits
Let A denote the adèle ring of Q. The group G(A) acts on X(A); let

OA be an orbit. We would like to know whether OA has a Q-rational
point.

Let W ′ denote the orthogonal complement of x0 in W , and let f ′ denote
the restriction of f to W ′. Let H be the stabilizer of x0 in G, then H =
Spin(W ′, f ′). Since dim W ′ = 2, the group H is a one-dimensional torus.

We have det f ′ = D/q, so up to multiplication by a square det f ′ = qD.
It follows that up to multiplication by a scalar, f ′ is equivalent to the
quadratic form u2 + qDv2. Set K = Q(

√
−qD), then K is a quadratic

extension of Q, because −qD is not a square. The torus H is anisotropic
over Q (because −qD is not a square), and H splits over K. Let X∗(HK)
denote the cocharacter group of HK , X∗(HK) = Hom(Gm,K ,HK); then
X∗(HK) ' Z. The non-neutral element of Gal(K/Q) acts on X∗(HK) by
multiplication by −1.

Let OA be an orbit of G(A) in X(A), OA =
∏
Ov where Ov is an

orbit of G(Qv) in X(Qv), v runs over the places of Q, and Qv denotes
the completion of Q at v. We define local invariants νv(Ov) = ±1. If
Ov = G(Qv) · x0, then we set νv(Ov) = +1, if not, we set νv(Ov) = −1.
Then νv(Ov) = +1 for almost all v. We define ν(OA) =

∏
νv(Ov) where

OA =
∏
Ov. Note that the local invariants νv(Ov) depend on the choice of
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the rational point x0 ∈ X(Q); one can prove, however, that their product
ν(OA) does not depend on x0.

Let x ∈ X(A). We set ν(x) = ν(G(A) · x). Then ν(x) takes values ±1;
it is a locally constant function on X(A), because the orbits of G(A) are
open in X(A).

For x ∈ X(A) define δ(x) = ν(x) + 1. In other words, if ν(x) = −1 then
δ(x) = 0, and if ν(x) = +1 then δ(x) = 2. Then δ is a locally constant
function on X(A).

Theorem 1.1. An orbit OA of G(A) in X(A) has a Q-rational point
if and only if ν(OA) = +1.

Below we will deduce Theorem 1.1 from [2], Thm. 3.6.

1.2. Proof of Theorem 1.1
For a torus T over a field k of characteristic 0 we define a finite abelian

group C(T ) as follows:

C(T ) = (X∗(Tk̄)Gal(k̄/k))tors

where k̄ is a fixed algebraic closure of k, X∗(Tk̄)Gal(k̄/k) denotes the group of
coinvariants, and (·)tors denotes the torsion subgroup. If k is a number field
and kv is the completion of k at a place v, then we define Cv(T ) = C(Tkv

).
There is a canonical map iv:Cv(T ) → C(T ) induced by an inclusion
Gal(k̄v/kv) → Gal(k̄/k). These definitions were given for connected reduc-
tive groups (not only for tori) by Kottwitz [10], see also [2], 3.4. Kottwitz
writes A(T ) instead of C(T ).

We compute C(H) for our one-dimensional torus H over Q. Clearly

C(H) = (X∗(HK)Gal(K/Q))tors = Z/2Z .

We have Cv(H) = 1 if K ⊗Qv splits, and Cv(H) ' Z/2Z if K ⊗Qv is a
field. The map iv is injective for any v.

We now define the local invariants κv(Ov) as in [2], where Ov is an orbit
of G(Qv) in X(Qv). The set of orbits of G(Qv) in X(Qv) is in canonical
bijection with ker[H1(Qv,H) → H1(Qv, G)], cf. [13], I-5.4, Cor. 1 of
Prop. 36. Hence Ov defines a cohomology class ξv ∈ H1(Qv,H). The
local Tate–Nakayama duality for tori defines a canonical homomorphism
βv:H1(Qv,H) → Cv(H), see Kottwitz [10], Thm. 1.2. (Kottwitz defines
the map βv in a more general setting, when H is any connected reductive
group over a number field.) The homomorphism βv is an isomorphism for
any v. We set κv(Ov) = βv(ξv). Note that if Ov = G(Qv) · x0, then ξv = 0
and κv(Ov) = 0; if Ov 6= G(Qv) · x0, then ξv 6= 0 and κv(Ov) = 1.
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We define the Kottwitz invariant κ(OA) of an orbit OA =
∏
Ov of

G(A) in X(A) by κ(OA) =
∑

v iv(κv(Ov)). We identify C(H) with Z/2Z,
and Cv(H) with a subgroup of Z/2Z. With this identifications κ(OA) =∑

κv(Ov).
We prefer the multiplicative rather than additive notation. Instead of

Z/2Z we consider the group {+1,−1}, and set

νv(Ov) = (−1)κv(Ov), ν(OA) = (−1)κ(OA).

Here νv(Ov) and ν(OA) take the values ±1. We have ν(OA) =
∏

νv(Ov).
Since κv(Ov) = 0 if and only if Ov = G(Qv) · x0, we see that νv(Ov) = +1
if and only if Ov = G(Qv) ·x0. Hence our νv(Ov) and ν(OA) coincide with
νv(Ov) and ν(OA), resp., introduced in Subsection 1.1.

By Thm. 3.6 of [2] an adelic orbit OA contains Q-rational points if and
only if κ(OA) = 0. With our multiplicative notation κ(OA) = 0 if and only
if ν(OA) = +1. Thus OA contains Q-points if and only if ν(OA) = +1.
We have deduced Thm. 1.1 from [2], Thm. 3.6.

1.3. Tamagawa measure
We define a gauge form on X, i.e. a regular differential form ω ∈ Λ2(X)

without zeroes. Recall that X is defined by the equation f(x) = q. Choose
a differential form µ of degree 2 on W such that µ ∧ df = dx1 ∧ dx2 ∧
dx3, where x1, x2, x3 are the coordinates in W = Q3. Let ω = µ|X , the
restriction of µ to X. Then ω is a gauge form on X, cf. [2], 1.3, and it does
not depend on the choice of µ. The gauge form ω is G-invariant, because
there exists a G-invariant gauge form on X, cf. [2], 1.4, and a gauge form
on X is unique up to a scalar multiple, cf. [2], Cor. 1.5.4.

For any place v of Q one associates with ω a local measure mv on X(Qv),
cf. [14], 2.2. We show how to define a Tamagawa measure on X(A),
following [2], 1.6.2.

We have by [2], 1.8.1, µp(X) = mp(X(Zp)), where µp(X) is defined in the
Introduction. By [14], Thm. 2.2.5, for almost all p we have mp(X(Zp)) =
#X(Fp).

We compute #X(Fp). The group SO(f)(Fp) acts on X(Fp) with sta-
bilizer SO(f ′)(Fp), where SO(f ′)(Fp) is defined for almost all p. This
action is transitive by Witt’s theorem. Thus we obtain that #X(Fp) =
#SO(f)(Fp)/#SO(f ′)(Fp). By [1], III-6,

#SO(f)(Fp) = p(p2 − 1), #SO(f ′)(Fp) = p− χ(p),
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where χ(p) = −1 if f ′ mod p does not represent 0, and χ(p) = +1 if

f ′ mod p represents 0. We have χ(p) =
(
−qD

p

)
. We obtain for p - qD

#X(Fp) =
p(p2 − 1)
p− χ(p)

, µp(X) =
#X(Fp)

p2
=

1− 1/p2

1− χ(p)/p
.

For p|qD set χ(p) = 0. We define

Lp(s, χ) = (1− χ(p)p−s)−1, L(s, χ) =
∏
p

Lp(s, χ)

where s is a complex variable. We set

λp = Lp(1, χ)−1 = 1− χ(p)
p

, r = L(1, χ)−1.

Then the product
∏

p(λ
−1
p µp) converges absolutely, hence the family (λp)

is a family of convergence factors in the sense of [14], 2.3. We define, as in
[2], 1.6.2, the measures

mf = r−1
∏
p

(λ−1
p mp), m = m∞mf ,

then mf is a measure on X(Af ) (where Af is the ring of finite adèles) and
m is a measure on X(A). We call m the Tamagawa measure on X(A).

1.4. Counting integer points
For T > 0 set X(R)T = {x ∈ X(R) : |x| ≤ T}.

Theorem 1.2.

N(T,X) ∼
∫

X(R)T×X(Ẑ)

δ(x)dm.

In other words,

N(T,X) ∼ 2m({x ∈ X(R)T ×X(Ẑ) : ν(x) = +1}). (1)

Theorem 1.2 follows from [2], Thm. 5.3 (cf. [2], 6.4 and [2], Def. 2.3).
For comparison note that

m(X(R)T ×X(Ẑ)) = m∞(X(R)T )mf (X(Ẑ)) = µ∞(T,X)S(X), (2)

cf. [2], 1.8.
The following lemma will be used in the proof of Theorem 0.1.
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Lemma 1.3. Assume that there exists y ∈ X(R × Ẑ) such that ν(y) =
+1. Then the set X(Z) is infinite.

Proof. Since ν is a locally constant function on X(A), there exists a
nonempty open subset Uf ∈ X(Ẑ) and an orbit U∞ of G(R) in X(R) such
that ν(x) = +1 for all x ∈ U∞ × Uf . Set UT

∞ = {x ∈ U∞ : |x| ≤ T}, then
m∞(UT

∞) →∞ as T →∞. We have∫
X(R)T×X(Ẑ)

δ(x)dm ≥
∫
UT
∞×Uf

δ(x)dm = 2m∞(UT
∞)mf (Uf ) .

Since 2m∞(UT
∞)mf (Uf ) →∞ as T →∞, we see that∫

X(R)T×X(Ẑ)

δ(x)dm →∞ as T →∞,

and by Theorem 1.2 N(T,X) →∞. Hence X(Z) is infinite.

1.5. The constant cX

Here we prove the following result:

Proposition 1.4.

N(T,X) ∼ cXS(X)µ∞(T,X) as T →∞

with some constant cX , 0 ≤ cX ≤ 2.

Proof. If X(R) has two connected components, then by Theorem 0.2
(which we will prove in Sect. 4 below), N(T,X) ∼ S(X)µ∞(T,X), so the
proposition holds with cX = 1.

If X(R) has one connected component, then X(R) consists of one G(R)-
orbit and ν∞(X(R)) = +1. For an orbit Of =

∏
Op of G(Af ) in X(Af )

we set νf (Of ) =
∏

p νp(Op). We regard νf as a locally constant function on
X(Af ) taking the values±1. Define X(Ẑ)+ = {xf ∈ X(Ẑ) : νf (xf ) = +1}.
We have ∫

X(R)T×X(Ẑ)

δ(x)dm = 2m∞(X(R)T )mf (X(Ẑ)+).

Set cX = 2mf (X(Ẑ)+)/mf (X(Ẑ)), then 0 ≤ cX ≤ 2 and∫
X(R)T×X(Ẑ)

δ(x)dm = cXm∞(X(R)T )mf (X(Ẑ)) = cXµ∞(T,X)S(X).
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Using Theorem 1.2, we see that

N(T,X) ∼ cXµ∞(T,X)S(X) as T →∞.

2. AN EXAMPLE OF cX = 0

Let

f1(x1, x2, x3) = −9x2
1 + 2x1x2 + 7x2

2 + 2x2
3, q = 1.

This example was mentioned in [2], 6.4.1. Here we provide a detailed
exposition.

Consider the variety X defined by the equation f1(x) = q. We have
f1(− 1

2 , 1
2 , 1) = 1. It follows that f1 represents 1 over R and over Zp for

p > 2.
We have f1(4, 1, 1) = −127 ≡ 1 (mod 27). We prove that f1 represents

1 over Z2. Define a polynomial of one variable F (Y ) = f1(4, 1, Y )−1, F ∈
Z2[Y ]. Then F (1) = −27, |F (1)|2 = 2−7, F ′(Y ) = 4Y , |F ′(1)2|2 = 2−4,
|F (1)|2 < |F ′(1)2|2. By Hensel’s lemma (cf. [11], II-§2, Prop. 2) F has a
root in Z2. Thus f1 represents 1 over Z2.

Now we prove that f1 does not represent 1 over Z. I know the following
elementary proof from D. Zagier.

We prove the assertion by contradiction. Assume on the contrary that

−9x2
1 + 2x1x2 + 7x2

2 + 2x2
3 = 1 for some x1, x2, x3 ∈ Z.

We may write this equation as follows:

2x2
3 − 1 = (x1 − x2)2 + 8(x1 − x2)(x1 + x2).

The left hand side is odd, hence x1−x2 is odd and therefore x1 +x2 is odd.
We have (x1 − x2)2 ≡ 1 (mod 8). Hence the right hand side is congruent
to 1 (mod 8). We see that x3 is odd, hence 2x2

3 − 1 ≡ 1 (mod 16). But

8(x1 − x2)(x1 + x2) ≡ 8 (mod 16).

It follows that

(x1 − x2)2 ≡ 9 (mod 16)
x1 − x2 ≡ ±3 (mod 8).

Therefore x1 − x2 must have a prime factor p ≡ ±3 (mod 8). Hence
2x2

3 − 1 has a prime factor p ≡ ±3 (mod 8). On the other hand, if
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p|(2x2
3 − 1), then

2x2
3 ≡ 1 (mod p)

and 2 is a square modulo p,
(

2
p

)
= 1. By the quadratic reciprocity

law p ≡ ±1 (mod 8). Contradiction. We have proved that f1 does not
represent 1 over Z, hence N(T,X) = 0 for all T .

On the other hand,

S(X)µ∞(T,X) = mf (X(Ẑ))m∞(X(R)T ).

Since X(Ẑ) is a nonempty open subset in X(Af ), mf (X(Ẑ)) > 0. Now
m∞(X(R)T ) → ∞ as T → ∞. Hence S(X)µ∞(T,X) → ∞ as T → ∞,
and thus cX = 0.

3. PROOF OF THEOREM 0.1

Lemma 3.1. Let k be a field of characteristic different from 2, and let
V be a finite-dimensional vector space over k. Let f be a non-degenerate
quadratic form on V . Let u ∈ GL(V )(k), f ′ = u∗f . Then the map y 7→
uy:V → V takes the orbits of Spin(f)(k) in V to the orbits of Spin(f ′)(k).

Proof. Let x ∈ V , f(x) 6= 0. The reflection (symmetry) rx = rf,x:V →
V is defined by

rx(y) = y − 2B(x, y)
f(x)

x, y ∈ V,

where B is the symmetric bilinear form on V associated with f . Every
s ∈ SO(f)(k) can be written as

s = rx1 · · · rxl
(3)

cf. [12], Thm. 43:3. The spinor norm θ(s) of s is defined by

θ(s) = f(x1) · · · f(xl) (mod k∗2) ∈ k∗/k∗2

and it does not depend on the choice of the representation given by (3),
cf. [12], §55. Let Θ(f) denote the image of Spin(f)(k) in SO(f)(k). Then
s ∈ SO(f)(k) is contained in Θ(f) if and only if θ(s) = 1, cf. [13], III-3.2
or [3], Ch. 10, Thm. 3.3.

Now let u, f ′ be as above. Then rf ′,ux = urf,xu−1, f ′(ux) = f(x), and
so θf ′(usu−1) = θf (s). We conclude that uΘ(f)u−1 = Θ(f ′) and that
the map y 7→ uy takes the orbits of Θ(f) in V to the orbits of Θ(f ′).
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Let f, f ′ be integral-matrix quadratic forms on Zn and assume that f ′

is in the genus of f . Then there exists u ∈ GLn(R× Ẑ) such that f ′(x) =
f(u−1x) for x ∈ An. Let q ∈ Z, q 6= 0. Let X denote the affine quadric
f(x) = q, and X ′ denote the quadric f ′(x) = q.

Lemma 3.2. The map x 7→ ux:An → An takes X(R× Ẑ) to X ′(R× Ẑ)
and takes orbits of Spin(f)(A) in X(A) to orbits of Spin(f ′)(A) in X ′(A).

Proof. Let A denote the matrix of f , and A′ denote the matrix of f ′.
We have

(u−1)tAu−1 = A′, A = utA′u .

The variety X is defined by the equation xtAx = q, and X ′ is defined by
xtA′x = q. One can easily check that the map x 7→ ux takes X(R× Ẑ) to
X ′(R× Ẑ) and X(A) to X ′(A).

In order to prove that the map x 7→ ux:X(A) → X ′(A) takes the orbits
of Spin(f)(A) to the orbits of Spin(f ′)(A), it suffices to prove that the map
x 7→ uvx:X(Qv) → X ′(Qv) takes the orbits of Spin(f)(Qv) to the orbits of
Spin(f ′)(Qv) for every v, where uv is the v-component of u. This last asser-
tion follows from Lemma 3.1.

Proposition 3.3. Let f ′ and q be as in Theorem 0.1, in particular f ′

represents q over Zv for any v (we set Z∞ = R), but not over Z. Let X ′

be the quadric defined by f ′(x) = q. Then X ′(R × Ẑ) is contained in one
orbit of Spin(f ′)(A).

Proof. Set G′ = Spin(f ′). We prove that X ′(Zv) is contained in one or-
bit of G′(Qv) for every v by contradiction. Assume on the contrary that for
some v the set X ′(Zv) has nontrivial intersection with two orbits of G′(Qv).
Then νv takes both values +1 and −1 on X ′(Zv). It follows that ν takes
both values +1 and−1 on X ′(R×Ẑ). Hence by Lemma 1.3 X ′ has infinitely
many Z-points. This contradicts to the assumption that f ′ does not repre-
sent q over Z.

Proof of Theorem 0.1. Let u ∈ GL3(R × Ẑ) be such that f ′(x) =
f(u−1x). Let X, X ′ be as above, in particular X ′ has no Z-points. By
Prop. 3.3 X ′(R × Ẑ) is contained in one orbit of Spin(f ′)(A). It follows
from Lemma 3.2 that X(R × Ẑ) is contained in one orbit of Spin(f)(A).
Since f represents q over Z, this orbit has Q-rational points, and ν equals
+1 on X(R× Ẑ). Thus δ equals 2 on X(R× Ẑ), and by Formulas (1) and
(2) of Subsection 1.4 N(T,X) ∼ 2S(X)µ∞(T,X).
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4. PROOF OF THEOREM 0.2

We prove Theorem 0.2. We define an involution τ∞ of X(R) by τ∞(x) =
−x, x ∈ X(R) ⊂ R3. Since f(x) = f(−x), τ∞ is well defined, i.e takes
X(R) to itself. Since | − x| = |x|, τ∞ takes X(R)T to itself. We define an
involution τ of X(A) by defining τ as τ∞ on X(R) and as 1 on X(Qp) for
all prime p. Then τ respects the Tamagawa measure m on X(A).

By assumption X(R) has two connected components. These are the two
orbits of Spin(f)(R). The involution τ∞ of X(R) interchanges these two
orbits. Thus we have

ν∞(τ∞(x∞)) = −ν∞(x∞) for all x∞ ∈ X(R) (4)
ν(τ(x)) = −ν(x) for all x ∈ X(A) (5)

Let X(R)1 and X(R)2 be the two connected components of X(R). Set

X(R)T
1 = X(R)1 ∩X(R)T , X(R)T

2 = X(R)2 ∩X(R)T

Then τ interchanges X(R)T
1 ×X(Ẑ) and X(R)T

2 ×X(Ẑ). From Formula
(5) in this section we have∫

X(R)T
1 ×X(Ẑ)

ν(x)dm = −
∫

X(R)T
2 ×X(Ẑ)

ν(x)dm,

hence ∫
X(R)T×X(Ẑ)

ν(x)dm = 0.

Since δ(x) = ν(x) + 1, we obtain∫
X(R)T×X(Ẑ)

δ(x)dm =
∫

X(R)T×X(Ẑ)

dm = m(X(R)T ×X(Ẑ)),

and m(X(R)T ×X(Ẑ)) = S(X)µ∞(T,X). By Theorem 1.2

N(T,X) ∼
∫

X(R)T×X(Ẑ)

δ(x)dm.

Thus N(T,X) ∼ S(X)µ∞(T,X) as T →∞, i.e. cX = 1.
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