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(This is a joint work with Boris Kunyavskĭı.)

Manin in 1972 introduced R-equivalence.

Let X be an algebraic variety over a field k.

Two points x, y ∈ X(k) are called elementarily

related if there exists a rational map φ : A1
k → X

(where A1
k is the affine line over k) such that φ

is defined in 0,1 and that φ(0) = x, φ(1) = y.

We say that x, y ∈ X(k) are R-equivalent if

there exists a finite sequence x0 = x, x1, . . . ,

xn = y of k-points of X, such that xi and xi+1

are elementarily related for all i.

We write X(k)/R for the set of classes of R-

equivalence.

Example. If X = An
k (an affine space), then

X(k)/R = 0 (any two points are elementarily

related).
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Let G be a connected linear algebraic group

over a field k of characteristic 0, then G(k)/R

has a group structure.

Recall that two k-varieties X1 and X2 are called

k-birationally isomorphic if there exist open k-

subvarieties U1 ⊂ X1 and U2 ⊂ X2 and a regular

k-isomorphism U1
∼→ U2. A variety is called k-

rational if it is birationally isomorphic to an

affine space.

Lemma (Colliot-Thélène and Sansuc, 1977) A

birational isomorphism of linear algebraic groups

G1 → G2 induces a bijection G1(k)/R
∼→ G2(k)/R

(not necessarily a group isomorphism).

It follows that if G is a k-rational group, then

G(E)/R = 1 for any field extension E/k.
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Merkurjev, 1996, constructed a semisimple ad-
joint group G of type Dn over a number field
k, such that G(E)/R 6= 1 for some large ex-
tension E/k. Thus he proved that there exist
non-rational adjoint groups. Chernousov and
Merkurjev, 2001, similarly proved existence of
semisimple simply connected non-rational groups
G of type Dn, using G(E)/R.

Problem: To compute G(k)/R.

Colliot-Thélène and Sansuc, 1977, computed
T (k)/R for k-tori T over any field. Colliot-
Thélène, Gille, and Parimala, 2004, computed
G(k)/R for semisimple groups G over some
fields k of cohomological dimension 2, in par-
ticular when k is a p-adic field or a totally imag-
inary number field.

We compute G(k)/R when k is a p-adic field or
a totally imaginary number field, for any con-
nected k-group G, not necessarily semisimple
or a torus.
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Let U be a unipotent group (over any field k

of characteristic 0), then

U(k)/R = 1

because U is isomorphic as a k-variety to an

affine space.

If G is a semisimple simply connected k-group,

where k is a p-adic field or a totally imaginary

number field, then

G(k)/R = 1

(Colliot-Thélène, Gille, and Parimala, 2004).

By the Kottwitz Principle one can compute

G(k)/R from the algebraic fundamental group

π1(G).
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Kottwitz Principle:

If an invariant of a connected linear k-group

G is trivial for unipotent groups and for semi-

simple simply connected groups, then it can be

computed in terms of the algebraic fundamen-

tal group π1(G).

Here π1(G) is a certain finitely generated Galois

module, i.e. a finitely generated abelian group

with an action of Gal(k̄/k), where k̄ is a fixed

algebraic closure of k.

Examples (Kottwitz):

• The Tamagawa number τ(G) for groups over

a number field;

• The Galois cohomology H1(k, G) for groups

over a p-adic field.
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We define the Galois module π1(G).

Let G be any connected linear k-group. Write:

Gu: the unipotent radical of G;

Gred = G/Gu (it is reductive);

Gss: the derived group of Gred (it is semi-

simple);

Gsc: the universal covering of Gss (it is semi-

simple simply connected).
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Consider the composed map

ρ : Gsc → Gss → Gred.

Choose a maximal torus T ⊂ Gred.

Set T sc = ρ−1(T ) ⊂ Gsc, then T sc is a maximal

torus in Gsc. We have a homomorphism

ρ : T sc → T.

Definition. π1(G) = X∗(T )/ρ∗(X∗(T sc)), where

X∗ denotes the cocharacter group, X∗(T ) =

Homk̄(Gm, T ).

π1(G) is a Galois module, it does not depend

on T .

Examples: π1(T ) = X∗(T ), π1(PGLn) = Z/nZ

(not µn).

If k = C, then π1(G) ' πtop
1 (G(C)).

8



Another invariant of G: Pic(Gc).

Here Gc is a smooth compactification of G,

i.e. a smooth projective k-variety such that G

is an open k-subvariety of Gc. A smooth com-

pactification exists (in characteristic 0) by Hi-

ronaka’s theorem.

We write Gc = Gc ×k k̄. We write Pic(Gc) for

the Picard group of Gc, it is a finitely generated

torsion free Galois module.

We wish to compute Pic(Gc) in terms of π1(G).

Note that a smooth compactification Gc is not

unique, but Pic(Gc) is in a sense unique.
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Now I want to write formulas for G(k)/R and

Pic(Gc) in terms of the Galois module π1(G).

Let Γ be a finite group. A Γ-module is an

abelian group with an action of Γ. We consider

only finitely generated Γ-modules.

Definition. A permutation module is a torsion

free Γ-module P , such that P has a Γ-invariant

basis (Γ permutes the elements of the basis).

Example: Γ = {1, σ} is a group of order 2,

P = Z⊕ Z, and σ permutes (1,0) and (0,1).

Lemma (well known) If P is a permutation

module, then H1(Γ, P ) = 0.
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Definition. A coflasque module is a torsion free

Γ-module Q such that

H1(Γ′, Q) = 0

for any subgroup Γ′ ⊆ Γ.

Every permutation module, or a direct sum-

mand of a permutation module, is coflasque.

Proposition (Endo and Miyata, 1974) For a

given finite group Γ, every coflasque Γ-module

is a direct summand of a permutation mod-

ule if and only if all Sylow subgroups of Γ are

cyclic.
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Lemma (Colliot-Thélène and Sansuc 1987)

Every Γ-module M admits a coflasque

resolution, i.e. a short exact sequence

0 → Q → P → M → 0

where P is a permutation module and Q is a

coflasque module.

Note that a cofasque resolution is not unique.

However Q is unique up to addition of a

permutation module. That is, if

0 → Q1 → P1 → M → 0

0 → Q2 → P2 → M → 0

are two coflasque resolutions of M , then there

exist permutation modules P ′1 and P ′2 such that

Q1 ⊕ P ′1 ' Q2 ⊕ P ′2.

We say that Q1 and Q2 are similar, and write

Q1 ∼ Q2.
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Results of a paper of B. and Kunyavskĭı with

an appendix by Gille (J. Algebra 2004):

Let G be a connected k-group. Let Γ be a fi-

nite quotient group of Gal(k̄/k) acting on π1(G),

then π1(G) is a Γ-module. Choose a coflasque

resolution

0 → Q → P → π1(G) → 0.

We write Q = QG. Then QG is a Γ-module,

hence a Gal(k̄/k)-module.

We compute our invariants G(k)/R and Pic(Gc)

in terms of QG, hence in terms of π1(G).
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Let FG be the k-torus such that

X∗(FG) = QG.

Theorem 1. Let k be a p-adic field or a totally

imaginary number field. Then

G(k)/R ' H1(k, FG)

canonically and functorially.

G 7→ π1(G) 7→ QG 7→ FG 7→ H1(k, FG)

The Galois module QG is not unique, hence

the k-torus FG is not unique, but H1(k, FG) is

unique up to a canonical isomorphism.

In the case when G is a k-torus (over any field)

Theorem 1 was proved by Colliot-Thélène and

Sansuc, 1977. In the case when G is semi-

simple, a similar result was proved by Colliot-

Thélène, Gille, and Parimala, 2004.
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Theorem 2. Let k be any field of character-
istic 0. Then

Pic(Gc) ∼ QD
G.

Here QD
G denotes the dual Galois module to

QG, i.e.

QD
G := Hom(QG,Z).

In addition, ∼ means “similar”, i.e. there exist
permutation modules P ′1 and P ′2 such that

Pic(Gc)⊕ P ′1 ' QD
G ⊕ P ′2.

A corollary of Theorem 2:
Theorem 3. Pic(Gc)D is a coflasque module.

This means that

H1(Γ′,Pic(Gc)
D) = 0 ∀Γ′ ⊆ Γ,

where Γ is a finite quotient of Gal(k̄/k) acting
on Pic(Gc).

In the case when G is a torus, Theorems 2 and
3 were proved by Voskresenskĭı, 1970.

15



A generalization of Theorem 3:

Theorem (Colliot-Thélène and Kunyavskĭı,

Preprint, 2005) Let X be a homogeneous

space, X = G/H, where G is a connected k-

group and H is a connected k-subgroup of G.

Let Xc be a smooth compactification of X.

Then Pic(Xc)D is a coflasque module.
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The defect of weak approximation for G

Let k be a number field, Σ a finite set of places
of k. For v ∈ Σ let kv denote the completion
of k at v. Let G be a connected k-group. Con-
sider the diagonal embedding

G(k) →
∏

v∈Σ

G(kv),

and let G(k)Σ̂ denote the closure of G(k) in∏
v∈Σ G(kv).

Definition.

AΣ(G) =


 ∏

v∈Σ

G(kv)


 /G(k)Σ̂ ,

this is the defect of weak approximation for G

with respect to Σ.

Theorem 4.

AΣ(G) ' coker


H1(k, FG) →

∏

v∈Σ

H1(kv, FG)


 .
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The Tate-Shafarevich kernel for G.

Let G be a connected group over a number

field k.

Definition.

X1(k, G) = ker

[
H1(k, G) →

∏
v

H1(kv, G)

]

where the product is taken over all the places

v of k. This is the Tate-Shafarevich kernel for

G.

Theorem 5. There is a canonical bijection

X1(k, G)
∼→X2(k, FG).

Another formula for X1(k, G) in terms of π1(k, G)

was given by Kottwitz, 1984.
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Remark. Recall that G(k)/R, AΣ(G), and

X1(k, G) were computed in terms of a torus

FG, hence in terms of a Galois module QG. By

Theorem 2

QG ∼ Pic(Gc)
D.

But Pic(Gc) is a k-birational invariant of G

(up to similarity): if G1 and G2 are two k-

birationally isomorphic groups, then QG1
∼ QG2

.

We obtain

Corollary. The group G(k)/R (in Theorem 1),

the group AΣ(G), and the set X1(k, G) are k-

birational invariants of G.

For AΣ(G) and X1(k, G) it was proved by

Sansuc, 1981. For G(k)/R it is new (though it

was known that the set G(k)/R is a k-birational

invariant).
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Recently Colliot-Thélène, 2004, found beauti-

ful formulas for the maps

G(k)/R → H1(k, FG),

AΣ(G) → coker


H1(k, FG) →

∏

v∈Σ

H1(kv, FG)


 ,

X1(k, G) →X2(k, FG).

Definitions.

A k-torus T is called quasi-trivial if X∗(T ) is

a permutation module. A k-torus F is called

flasque if X∗(F ) is a coflasque module. Any

quasi-trivial torus is flasque.

A k-group H is called quasi-trivial if Hss is sim-

ply connected and the torus Gtor := Gred/Gss is

quasi-trivial. In other words, H is quasi-trivial

if and only if π1(H) is a permutation module.
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Let G be a reductive k-group. A flasque reso-

lution of G is a short exact sequence

1 → F → H → G → 1

where H is a quasi-trivial reductive k-group and

F is a flasque k-torus.

Proposition (Colliot-Thélène 2004) Any re-

ductive k-group G admits a flasque resolution.

(For k-tori it was proved by Colliot-Thélène

and Sansuc, 1977.)

From a flasque resolution of G we obtain a

short exact sequence of fundamental groups

0 → X∗(F ) → π1(H) → π1(G) → 0

where π1(H) is a permutation module and X∗(F )

is a coflasque module. We see that it is a

coflasque resolution of π1(G), hence X∗(F ) is

our QG, and F is our FG.
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But now we have connecting (coboundary) maps

δ : G(k) → H1(k, FG)

∆: H1(k, G) → H2(k, FG)

(over any field), which over nice fields induce

the maps which we need. For example, Colliot-

Thélène proves that when k is a p-adic field

or a totally imaginary number field, then the

homomorphism δ : G(k) → H1(k, FG) induces

an isomorphism G(k)/R
∼→ H1(k, FG).
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Geometric two-dimensional fields

We do not use class field theory in our con-

structions or proofs. Our results generalize

to geometric fields of cohomological dimen-

sion 2 investigated by Colliot-Thélène, Gille,

and Parimala, 2004, in particular to the fields

of the following types:

• the field of rational functions C(S), where

S is an algebraic surface over the field C of

complex numbers; in this case we assume that

G has no factors of type E8.

• the field of fractions C((X1, X2)) of the ring

of formal power series in two variables C[[X1, X2]].

(In these cases H1(k, G) = 1 and G(k)/R = 1

when G is semisimple simply connected.)
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