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(This is a joint work with Boris Kunyavskil.)
Manin in 1972 introduced R-equivalence.

Let X be an algebraic variety over a field k.
Two points x,y € X (k) are called elementarily
related if there exists a rational map ¢: A% — X
(where Al is the affine line over k) such that ¢
is defined in 0,1 and that ¢(0) =z, ¢(1) = .

We say that z,y € X (k) are R-equivalent if
there exists a finite sequence g = =z, x1,...,
xn = y Of k-points of X, such that z; and x;44
are elementarily related for all 7.

We write X (k)/R for the set of classes of R-
equivalence.

Example. If X = A} (an affine space), then
X(k)/R = 0 (any two points are elementarily
related).



Let G be a connected linear algebraic group
over a field k of characteristic 0, then G(k)/R
has a group structure.

Recall that two k-varieties X1 and X» are called
k-birationally isomorphic if there exist open k-
subvarieties U1 C X7 and U> C X5 and a regular
k-isomorphism U; — Us. A variety is called k-
rational if it is birationally isomorphic to an
affine space.

Lemma (Colliot-Thélene and Sansuc, 1977) A
birational isomorphism of linear algebraic groups
G1 — Gy induces a bijection G1(k)/R = Go(k)/R
(not necessarily a group isomorphism).

It follows that if G is a k-rational group, then
G(E)/R =1 for any field extension E/k.



Merkurjev, 1996, constructed a semisimple ad-
joint group G of type D, over a number field
k, such that G(E)/R # 1 for some large ex-
tension E/k. Thus he proved that there exist
non-rational adjoint groups. Chernousov and
Merkurjev, 2001, similarly proved existence of
semisimple simply connected non-rational groups
G of type Dy, using G(FE)/R.

Problem: To compute G(k)/R.

Colliot-Thélene and Sansuc, 1977, computed
T(k)/R for k-tori T over any field. Colliot-
Thélene, Gille, and Parimala, 2004, computed
G(k)/R for semisimple groups G over some
fields k of cohomological dimension 2, in par-
ticular when k is a p-adic field or a totally imag-
inary number field.

We compute G(k)/R when k is a p-adic field or
a totally imaginary number field, for any con-
nected k-group G, not necessarily semisimple
or a torus.



Let U be a unipotent group (over any field k
of characteristic 0), then

U(k)/R=1

because U is isomorphic as a k-variety to an
affine space.

If G is a semisimple simply connected k-group,
where k is a p-adic field or a totally imaginary
number field, then

G(k)/R=1
(Colliot-Thélene, Gille, and Parimala, 2004).

By the Kottwitz Principle one can compute
G(k)/R from the algebraic fundamental group
71 (G).



Kottwitz Principle:

If an invariant of a connected linear k-group
G is trivial for unipotent groups and for semi-
simple simply connected groups, then it can be
computed in terms of the algebraic fundamen-
tal group 71(G).

Here m1(G) is a certain finitely generated Galois
module, i.e. a finitely generated abelian group
with an action of Gal(k/k), where k is a fixed
algebraic closure of k.

Examples (Kottwitz):

e The Tamagawa number 7(G) for groups over
a number field,

e The Galois cohomology H1(k,G) for groups
over a p-adic field.



We define the Galois module 71 (G).

Let G be any connected linear k-group. Write:
GY: the unipotent radical of G;

G"ed = G/GVY (it is reductive):

GSS:  the derived group of G'd (it is semi-
simple);

G°¢: the universal covering of G>° (it is semi-
simple simply connected).



Consider the composed map
p . GSC —> GSS —> Gred.

Choose a maximal torus T C G'ed.
Set T5¢ = p~1(T) C G5¢, then TS€ is a maximal
torus in G°¢. We have a homomorphism

p: T°¢ —T.

Definition. w1 (G) = X« (T)/p«(X«(T=%)), where
X« denotes the cocharacter group, X (T) =

m1(G) is a Galois module, it does not depend
on T.

Examples: 71 (T) = X«(T), m1(PGLy) = Z/nZ
(not un).

If k = C, then 71(G) ~ n°P(G(C)).



Another invariant of G: Pic(G.).

Here G. is a smooth compactification of G,
i.e. a smooth projective k-variety such that GG
IS an open k-subvariety of G.. A smooth com-
pactification exists (in characteristic 0) by Hi-
ronaka’'s theorem.

We write G, = G x; k. We write Pic(G.) for
the Picard group of Gg, it is a finitely generated
torsion free Galois module.

We wish to compute Pic(G.) in terms of 71 (Q).
Note that a smooth compactification G is not
unique, but Pic(Ge.) is in a sense unique.



Now I want to write formulas for G(k)/R and
Pic(G.) in terms of the Galois module 71 (G).

Let ' be a finite group. A ['-module is an
abelian group with an action of . We consider
only finitely generated -modules.

Definition. A permutation module is a torsion
free -module P, such that P has a [-invariant
basis (" permutes the elements of the basis).

Example: ' = {1,0} is a group of order 2,
P=7®7Z, and o permutes (1,0) and (0,1).

Lemma (well known) If P is a permutation
module, then H1(I", P) = 0.
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Definition. A coflasque module is a torsion free
[-module @ such that

HY(M,Q) =0
for any subgroup I C r.

Every permutation module, or a direct sum-
mand of a permutation module, is coflasque.

Proposition (Endo and Miyata, 1974) For a
given finite group I, every coflasque I -module
is a direct summand of a permutation mod-
ule if and only if all Sylow subgroups of I are
cyclic.
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Lemma (Colliot-Thélene and Sansuc 1987)
Every I -module M admits a coflasque
resolution, j.e. a short exact sequence

O—-Q—-P—-M—D0

where P is a permutation module and (@) is a
coflasque module.

Note that a cofasque resolution is not unique.
However ( is unique up to addition of a
permutation module. That is, if

O—-Q1 —>FPL—M—0

O— Qo —FP>b—->M—0

are two coflasque resolutions of M, then there
exist permutation modules P; and Pj5 such that

Ql@P{QQQ@Pé.

We say that @)1 and Q> are similar, and write

Q1 ~ Q2.

12



Results of a paper of B. and Kunyavskil with
an appendix by Gille (J. Algebra 2004):

Let G be a connected k-group. Let I be a fi-
nite quotient group of Gal(k/k) acting on 71 (G),
then 71 (G) is a N'-module. Choose a coflasque
resolution

0—-Q— P —m(G)— 0.

We write Q = Qg. Then Qg is a '-module,
hence a Gal(k/k)-module.

We compute our invariants G(k) /R and Pic(G.)
in terms of Qg, hence in terms of 71 (G).
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Let F; be the k-torus such that

X«(Fg) = Qg-

Theorem 1. Let k be a p-adic field or a totally
imaginary number field. Then

G(k)/R ~ H'(k, Fp)

canonically and functorially.
G — m(G) — Qg — Fg — H(k, Fg)

The Galois module Qg is not unique, hence
the k-torus Fy is not unique, but H(k, Fg) is
unique up to a canonical isomorphism.

In the case when G is a k-torus (over any field)
Theorem 1 was proved by Colliot-Thélene and
Sansuc, 1977. In the case when G is semi-
simple, a similar result was proved by Colliot-
Thélene, Gille, and Parimala, 2004.
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Theorem 2. Let k be any field of character-
istic 0. Then

Pic(G.) ~ QF.

Here Qg denotes the dual Galois module to
Qg, i.e.

QG = Hom(Qg, Z).

In addition, ~ means “similar”, i.e. there exist
permutation modules P] and P5 such that

Pic(Ge) ® P| ~ QE & Pb.

A corollary of Theorem 2:
Theorem 3. Pic(G.)P is a coflasque module.

This means that

HY( Pic(Go)P)=0 wvr'cr,
where I is a finite quotient of Gal(k/k) acting
on Pic(G.).

In the case when G is a torus, Theorems 2 and
3 were proved by Voskresenskir, 1970.
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A generalization of Theorem 3:

Theorem (Colliot-Thélene and Kunyavski,
Preprint, 2005) Let X be a homogeneous
space, X = G/H, where G is a connected k-
group and H is a connected k-subgroup of G.
Let X, be a smooth compactification of X.
Then Pic(X.)PY is a coflasque module.
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T he defect of weak approximation for G

Let kK be a number field, > a finite set of places
of k. For v € X let k, denote the completion
of k at v. Let G be a connected k-group. Con-
sider the diagonal embedding

G(k) — ]I Gko),
vVE2
and let G(k)y denote the closure of G(k) in

HUGZ G(kv)

Definition.

Az (G) = (H G(kv)> /G(K)s

VED
this is the defect of weak approximation for G
with respect to 2.

T heorem 4.

As(G) ~ coker {Hl(k, Fe) — 1] Hl(kv,FG)
VED
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The Tate-Shafarevich kernel for (.

Let G be a connected group over a number
field k.

Definition.
it (k,G) = ker |H (k,G) — [[ H (kv, G)
(0

where the product is taken over all the places
v Of k. This is the Tate-Shafarevich kernel for

G.
Theorem 5. There is a canonical bijection

1l (k, G) = HI2(k, Fp).

Another formula for I (k, G) in terms of 71 (k, Q)
was given by Kottwitz, 1984.
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Remark. Recall that G(k)/R, As(G), and

111 (k, G) were computed in terms of a torus
F, hence in terms of a Galois module Q4. By
Theorem 2

Qg ~ PIC(GC)D-
But Pic(G.) is a k-birational invariant of G
(up to similarity): if G1 and G, are two k-

birationally isomorphic groups, then QGl ~ QGQ.
We obtain

Corollary. The group G(k)/R (in Theorem 1),
the group As(GR), and the set 1111 (k,G) are k-
birational invariants of G.

For As(GQ) and I (k, G) it was proved by
Sansuc, 1981. For G(k)/R it is new (though it
was known that the set G(k)/R is a k-birational
invariant).
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Recently Colliot-Thélene, 2004, found beauti-
ful formulas for the maps

G(k)/R — HY(k, Fp),

A5 (G) — coker |HY(k, Fg) — [[ H(kv, Fg)|,
VE

Mk, G) — I%(k, Fo).

Definitions.

A k-torus T is called quasi-trivial if X4(T) is
a permutation module. A k-torus F' is called
flasque if X«(F) is a coflasque module. Any
quasi-trivial torus is flasque.

A k-group H is called quasi-trivial if H> is sim-
ply connected and the torus Gt°" := Gred/GSS is
quasi-trivial. In other words, H is quasi-trivial
if and only if 71 (H) is a permutation module.

20



Let G be a reductive k-group. A flasque reso-
lution of (G is a short exact sequence

1—-—F —-H—-G—1

where H is a quasi-trivial reductive k-group and
F is a flasque k-torus.

Proposition (Colliot-Thélene 2004) Any re-
ductive k-group G admits a flasque resolution.
(For k-tori it was proved by Colliot-Théléene
and Sansuc, 1977.)

From a flasque resolution of G we obtain a
short exact sequence of fundamental groups

0— X«(F) »m((H) —»m(G)—0

where w1 (H) is a permutation module and X« (F)
is a coflasque module. We see that it is a
coflasque resolution of m1(G), hence X« (F) is
our Q¢g, and F'is our Fg.
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But now we have connecting (coboundary) maps

§: G(k) — HY(k, Fp)
A HY(k,G) — H2(k, Fa)

(over any field), which over nice fields induce
the maps which we need. For example, Colliot-
Thélene proves that when k is a p-adic field
or a totally imaginary number field, then the
homomorphism §: G(k) — H1(k,Fs) induces
an isomorphism G(k)/R = HY(k, Fz).
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Geometric two-dimensional fields

We do not use class field theory in our con-
structions or proofs. Our results generalize
to geometric fields of cohomological dimen-
sion 2 investigated by Colliot-Thélene, Gille,
and Parimala, 2004, in particular to the fields
of the following types:

e the field of rational functions C(S), where
S is an algebraic surface over the field C of
complex numbers; in this case we assume that
G has no factors of type Fg.

e the field of fractions C((X1, X)) of the ring
of formal power series in two variables C[[ X1, X>]].

(In these cases H1(k,G) =1 and G(k)/R =1
when G is semisimple simply connected.)
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