Sparse Image Reference Map

Ron Shpilman

This document describes the SIRM data structure. SIRM is used to enhance the time performance of line detection algorithms and facilitate the task of accessing blocks of points in dilute matrices. SIRM is a part of my thesis work at Tel-Aviv University.

The sparse Image Reference Map (SIRM) is a data structure that provides fast access and dilute operations on sparse binary images. The structure combines a reference matrix and a Union-Find tree to reach amortized access time of
[image: image1.wmf]))

,

(

(

n

m

m

O

a

. Where m is the number of operations on n elements, and
[image: image2.wmf])

,

(

n

m

a

 is the inverse Ackerman function. SIRM is constructed to answer the specific needs of windowed detection algorithms on edge images.

In the stepwise procedure, points from the edge image are deleted as a result of object detection. This continuous update of the edge image leads to increasingly sparse images. We use the SIRM structure to generate, at a linear time complexity, the relevant sample points set (that are located within the local window) for the LIP procedure.

We begin with the simplified indexial definition of the reference map. Consider the source binary image as a binary matrix I(N(M), where the cell I(i,j)=1 is called an edge point. We define a reference matrix B(N(M) in the following way:

Definition-1:

An index i is a column location. I.e. index can have the following values i({1,2,..M, ∞}. The ∞ sign indicates the end of the row. Each cell contains a reference index.

Definition-2:

A self cell B(i,j) contains a reference to itself (i.e. B(i,j)=j). A self cell indicates an edge point. Therefore, B(i,j)=j iff I(i,j)=1.

Rule-1:

Each cell B(i,j) contains a reference to the nearest right hand self cell. For example, the following table illustrates the binary image I(1,10) and its reference map.

Index
1
2
3
4
5
6
7
8
9
10

I=
1
0
0
0
1
0
1
1
0
0

B=
1
5
5
5
5
7
7
8
∞
∞

Note that according to rule-1 the rows in the reference map are independent. I.e. there are no references between rows.

SIRM Operations

Self(i,j) - Self is a boolean function that returns true when B(i,j) is a self cell and false otherwise (see definition-2). For example, according to the table above, Self(1,1)=true, Self (1,6)=false. k = Next(i,j) - The next access operation provides the location of the first right-hand self cell in the reference map. i and j are the row and column locations on the source image, and k is the column location of the first right-hand self cell. According to rule-1, Next should simply return the index of the reference map cell B(i,j). For example, according to the table above, Next(1,2)=B(1,2)=5. Consider the case where we need to collect all the edge points in the interval
[image: image3.wmf]]

,

[

c

c

 at some row r. The worst-case access time for p points on single row is 2p Next operations. In the worst case, there is a gap between every pair of adjacent self cells. For example, a source image row contains the values: {1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0 }. We need to access two successive reference map cells for each edge point. In the best-case, the self points are grouped together (e.g. {1, 1, 1, 1, 1, 1}).

Delete(i,j) - The delete operation indicates the omission of the corresponding edge point. This operation requires to update the cells on the left side of B(i,j) until the first left-side self cell. The procedure is demonstrated by the following pseudo-code. The Self(i,j) function returns true if B(i,j) is a self cell.

Delete (i,j) :

k=B(i,j+1)

t=j

while (t(0 and Self(i,t) = false)

B(i,t)=k

t=t-1

endwhile

Consider p Delete operations on a dense reference map row. In the best-case, the operations are made in right to left order (i.e. in a decreasing indexial order). Hence, each delete operation performs one update operation. In the worst-case, the operations are made in an opposite order (i.e. in an increasing indexial order). Here, the total number of update operations is
[image: image4.wmf]2

1

p

i

P

i

<

å

=

.

Construct - The construct operation builds the reference map from the source image. The reference map rows are independent so we only need to describe how to build a single row. The cells are updated in a decreasing indexial order. Each cell is assigned with the last self cell index. Therefore, it takes M update operations to build a single line with M cells, and N(M operations for the entire reference map. The following pseudo-code illustrates the procedure for a single row - l.

ConstructRow (l) :

k= ∞

j=M

while (j(0)

if (I(l,j) = 1) then k=j

B(l,j)=k

j=j-1

endwhile

Union-Find Optimization

The indexial reference map that have been presented may consume a total of O(m2) update operations for a sequence of m delete and access operations. This worst-case scenario can be resolved by using a Union-Find (see [ads]) structure to store the cell indexes. We construct a node (in the UF tree) for each set of reference map cells that have the same index value. The UF node shall contain that index. The Next(i,j) operation is handled by using the UF Find operation on the UF node pointed by B(i,j). The Delete(i,j) operation is done by linking the j-cell with its right-handed edge point (i.e. Link(Find(i, j), Find(i, j+1))). The Union-Find structure is known to have an asymptotic time complexity of
[image: image5.wmf]))

,

(

(

n

m

m

O

a

 (m operations on n nodes).

References

[ads] R.E. Tarjan, Data Structures and Network Algorithms, Ch. 2.

[master] R. Shpilman, A Family of Fast Line Detection Algorithms, master thesis, Tel Aviv University, Computer Sciences Department, October 1997.

_985441180.unknown

_985505351.unknown

_985505440.unknown

_985505242.unknown

_985441141.unknown

