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Abstract—A common pre-possessing task in machine learning
is to complete missing data entries in order to form a full dataset.
In case the dimension of the input data is high, it is often the
case that the rows and columns are correlated. In this work,
we construct a multi-scale model that is based on the the dual
row-column geometry of the dataset and apply it to imputation.
The imputation is carried out within the model construction.
Experimental results demonstrate the efficiency of our approach
on a publicly available dataset.

I. INTRODUCTION

Completion of missing data, which is also known as impu-
tation, is a common pre-processing task that arises in signal
processing, data mining and machine learning applications.
Simple imputations approaches propose to impute the missing
data with the mean or median value that is calculated from the
known data entities. When the data has a rectangular structure
of row and columns, the mean and median based imputations
may rely on the known values in the same row or column of
the missing value [6], [8]. More sophisticated methods for im-
putation use random values that are drawn from a distribution
that fits to the known data values. For example the Multiple
imputation algorithm [12] uses a posterior distribution of the
data to draw multiple values for each missing entry and the
final value is determined by pooling step that chooses one
value based on the mean and variance. Another approach is to
use regression to complete missing data. For a given column
with missing values, the column is regressed against other
columns for which the values are known and the regression
based predictions impute the missing data.

When the dimension of the input data is high, and in
particular when each data instance (data row) consist of a
large number of parameters, it is often the case that the
columns reside in a low-dimensional space. The low dimen-
sional representation of the column space can be used to
construct regression type models for imputing missing values.
In [1], the authors suggested an approach that constructs a
low-dimensional model for data imputation in road networks.
Dimensionality reduction and clustering was applied for im-
putation of medical data [14]. Recently, Pierson and Yau
[9] used a linear dimensionality reduction technique to fill
in zero-values of single-cell gene expression data and [15]
proposed a diffusion maps based imputation method for gene-
gene iterations.

In previous work [11], we proposed a two-step algorithm
for data regression based imputation. The first step utilizes a
non-linear manifold learning technique named diffusion maps
[2] for reducing the dimension of the data in terms of columns.
Diffusion maps faithfully embeds complex data while preserv-
ing its geometric structure. The second regression step was
based on the Laplacian pyramids multi-scale method [10].
Laplacian pyramids construct kernels of decreasing scales to
capture finer modes of the data and the scale is automatically
fit to the data density and noise. When regression is carried
out for imputation in a large number of columns, the main
advantage of this scheme is the automatic scale adaption that
is fitted to the behavior of the data in each column [4],
[5]. However, when the number of rows and the number of
columns are both large, column-based regression methods for
imputation do not fully take into account the connections in
the data, they mainly relay on the connections between the
rows.

In this work, the dual geometry structure of the dataset is
utilized by modeling the rows and the columns alternately in
a multi-scale manner. The multi-scale construction is achieved
by extending Laplacian pyramids technique to work in a two-
directional mode, this is described in Section II. Laplacian
pyramids are reviewed in Section II-A. The two-directional
Laplacian pyramids algorithm is described in Section II-B. In
Section III we explains how the proposed method is applied
for imputation. Finally, experimental results are provided in
Section IV, these demonstrate the efficiency of our approach
on a synthetic example and a publicly available dataset.

II. METHODS

A. One-directional Laplacian Pyramids

The Laplacian pyramids is a multi-scale algorithm for
approximating and extending an empirical function f , which is
defined on a dataset Z = {z0, z1, . . . , zn}, to new data points.
In this algorithm, Gaussian kernels with descending widths
are applied on the points in Z to construct a multi-resolution
approximation of f . Then, this approximation can be extended
to evaluate f for new points {z̄}.

An initial Gaussian kernel, G0, having a relatively large
scale σ0, is defined on Z by

g0(zi, zj) = e
−‖zi−zj‖

2

σ0 , zi, zj ∈ Z. (1)
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Normalizing G0 results in a smoothing operator

K0 = (k0(zi, zj)) = q−10 (zi)g0(zi, zj), (2)

where q0(zi) =
∑
j g0(zi, zj). At a finer scale l, the Gaussian

kernel Gl is defined by

gl(zi, zj) = e−‖(zi−zj)‖
2/(

σ0
2l

), l = 1, 2, 3, . . .

Normalization of Gl yields the smoothing operator

Kl = kl(zi, zj) = q−1l (zi)gl(zi, zj), (3)

where ql(zi) =
∑
j gl(zi, zj), l = 1, 2, 3, . . .

The Laplacian Pyramid representation of f is iteratively
defined as follows. For the first level l = 0, a smooth
approximation of f is

f0(zk) =

n∑
i=1

k0(zk, zi)f(zi), k = 1, . . . , n, zi, zk ∈ Z.

(4)
Let

d1(zi) = f(zi)− f0(zi), i = 1, 2, . . . , n zi ∈ Z,

then a finer representation of f is

f1(zk) = f0(zk) +

n∑
i=1

k1(zk, zi)d1(zi), k = 1, . . . , n.

In general, for l = 1, 2, 3 . . .,

dl(zi) = f(zi)− fl−1(zi), i = 1, . . . , n, (5)

fl(zk) = fl−1(zk) +

n∑
i=1

kl(zk, zi)dl(zi), k = 1, . . . , n,

(6)
where f0 is defined in Equation (4). Equation (6) approximates
a given function f by the series of functions {f0, f1, f2, . . .}
in a multi-scale manner, going from a coarser to a finer
representation. The functions {f0, f1, f2, . . .} can be easily
extended to a new point z̄ in the following way.

f0(z̄) =

n∑
i=1

k0(z̄, zi)f(zi) for l = 0 (7)

fl(z̄) = fl−1(z̄) +

n∑
i=1

kl(z̄, zi)dl(zi) for l = 1, 2, 3, . . . ,

(8)
where dl(zi) is defined in Equation (5).

The following example (taken from [3]) demonstrates the
multi-scale approximation of the function that has in it three
different frequencies that are added to h(x) = −0.02(x−4π)2.

f(x) =

 h(x) + sin(x), x ∈ I1
h(x) + sin(x) + 1

2sin(3x), x ∈ I2
h(x) + sin(x) + 1

2sin(3x) + 1
4sin(9x), x ∈ I3

(9)
The regions I1, I2 and I3 are defined by

I1 = 0 ≤ x ≤ 4π
I2 = 4π < x ≤ 7.5π
I3 = 7.5π < x ≤ 10π.

. (10)

Fig. 1. Approximations of the function f that was defined in Equation (9) for
scales l = 3, 5, 8, 11 going from left to right. The function is plotted in blue
in each of the top images, approximations fl in black and the corresponding
residuals dl on the bottom row in red.

Figure 1 demonstrates how the function is approximated in a
multi-scale manner.

1) Stopping Criteria and the Auto-adaptive Laplacian Pyra-
mids: The Laplacian Pyramids iterations may be stopped
by setting an admissible error to a small threshold err, for
example by requiring ‖f − fl‖ < err. When err is too
large, then the iterations stop at a coarse scale, thus the
approximation does not capture finer structures of the function
f . If err is too small, then in finer scales a point may have
few or no neighbors, thus over-fitting may occur. The auto-
adaptive Laplacian Pyramids, which were introduced in [5],
[4], slightly modify the kernels constructed in Equations (2)
and (3). This prevents over-fitting and provides a criteria for
selecting a proper stopping scale l. The main modification is to
replace the kernels Gl = (gl(zi, zj)) by G̃l, which are defined
by

G̃l(zi, zj) =

{
Gl(zi, zj) i 6= j

0 i = j.
(11)

These yield the normalized operators k̃l(zi, zj) =
q̃−1l (zi)g̃l(zi, zj), where q̃l(zi) =

∑
j g̃l(zi, zj) and the

iterative construction

f0(zk) =

n∑
i=1

k̃0(zk, zi)f(zi) for level l = 0 (12)

fl(zk) = fl−1(zk) +

n∑
i=1

k̃l(zk, zi)dl(zi) forl = 1, 2, . . . .

(13)
Extension to new points is done in a similar manner, z̄ replaces
zk in Equations (12) and (13).

By using the above modification, the pyramids are con-
structed using a Leave-one-out-cross-validation that is inherent
in the algorithm, as each train point in Z is treated as test point.
The approximation of f at zi is built without using the value of
the point itself, the contribution is only from z′is neighboring
points. This modification makes the procedure more robust in
the presence of noise. The stopping scale l is determined by
computing the mean square error errl = ‖f − fl‖ at each
level and choosing the stopping scale l as the minimum value
of the vector errl. To conclude, this procedure is equivalent
to running the Laplacian Pyramids algorithm in a Leave one
out cross validation manner and choosing the scale where the
error is minimal.
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B. Two-directional Laplacian Pyramids

Given a function f = f(x, y) of size M×N , the Laplacian
pyramid method is modified to work in a two-direction manner
that takes into account the relationship between the rows
and columns of the data. At each scale l, two kernels are
constructed. The kernels are based on the pairwise distances
between the rows and columns of f , and are denoted by G

(L)
l

and G
(R)
l , respectively, where L stands for left and R stands

for right. Denote the associated normalized kernels by K
(L)
l

and K
(R)
l . First, f is coarsely approximated by

f0 = K
(L)
0 ∗ f ∗K(R)

0 .

Next, the difference

d1 = f − f0,

is calculated and it becomes input for the next finer approxi-
mation. In the second step f is approximated by

f1 = f0 + K
(L)
1 ∗ d1 ∗K(R)

1 .

After l iterations the difference between f and its multi-scale
representation is given by

dl = f − fl−1,

and the a finer version of f is

fl = fl−1 + K
(L)
l ∗ dl ∗K(R)

l . (14)

III. APPLICATION TO DATA IMPUTATION

Let X be a dataset of size M × N that has in it missing
values. The two-directional Laplacian pyramids is applied for
approximating X is a multi-scale manner. Begin by construct-
ing a normalized row-kernel, denoted by K

(L)
0 , based on the

known data entries in the rows X . For example, if K(L)
0 is a

Gaussian kernel, then the distances between two rows X(i, :)
and X(j, :) that belong to X can be computed by considering
only the subset of columns in which the two rows both have

known values. The distance e
−‖X(i,:)−X(j,:)‖2

σ0 is then evaluated
restricted to this set of columns. Next, X is convolved with
the wide row kernel and the result K

(L)
0 ∗ X is a smooth

version of X that has values for all entries of X , in particular
where data was missing. Similarly, a course column-kernel
is constructed based on the pariwise distances between the

columns of X . The pairwise distances e−
‖X(:,i)−X(:,j)‖2

ε0 are
calculated restricted to the known data entries. A first course
and imputed approximation of X is then

X0 = K
(L)
0 ∗X ∗K(R)

0 .

The residual D1 = X −X0 is input for the next iterations.
The kernel scales are modified to be σ1 = σ0

2 and ε1 = ε0
2 and

new kernels K(L)
1 and K

(R)
1 are computed. By convolving D1

with the new kernels, a finer, imputed representation of X ,

X1 = X0 + K
(L)
1 ∗D1 ∗K(R)

1

is obtained.

The iterations continue for a pre-defined number of times,
and the optimal stopping scale L = L? is set automatically as
explained in Section II-A1. At each step we have

XL = XL−1 + K
(L)
L ∗DL−1 ∗K(R)

L .

The process results in the imputed multi-scale representation
X that is given by

XL? = X0 +

L?∑
l=1

K
(L)
l ∗Dl−1 ∗K(R)

l . (15)

IV. EXPERIMENTAL RESULTS

In this section we provide two examples that demonstrate
the described approach. The first, synthetic example, holds
sample values from the function f(x, y) = sin(4x)sin(y),
0 ≤ x ≤ 2π, 0 ≤ y ≤ π. The data is of size M × N =
120 × 60 and has in it 20% missing values. Note that the
dataset X is just the function values, X = f(x, y). Figure 2
displays the function with missing values.

Fig. 2. f(x, y) = sin(4x)sin(y) with 20% of missing values.

The multi-scale imputation process stops after 5 iterations.
The imputed approximations X0, X1, X3, and X5, are plotted
in Figure 3. The root mean square error for the imputed data
is 0.0203.

Fig. 3. Top left: X0, top right: X1, bottom left: X3 and bottom right: X5 -
the finest approximation level.
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The same procedure is carried out once more with 80%
missing data. The function is plotted in Figure 4. The multi-
scale process stops after 7 iterations, imputed approximations
X1, X4, X6, and X7, are plotted in Figure 5. The root mean
square error for the imputed data is 0.1169.

Fig. 4. f(x, y) = sin(4x)sin(y) with 80% of missing values.

Fig. 5. Top left: X1, top right: X4, bottom left: X6 and bottom right: X7 -
the finest approximation level.

The second example uses a public dataset from the UCI
repository [13]. The data consists of expression levels of
77 proteins and has in it many missing values. A subset of
complete data X , of size M ×N = 1000× 66 was taken for
evaluation. The results are compared with the WinMice soft-
ware [7] that implements the multiple imputation algorithm.

Figure 6 plots a 3D view of the full data matrix X ,
where the values are sorted (sorting was applied to simplify
visualization). Next, 20% of the data is randomly removed
and marked as missing entries. The multi-scale imputation
procedure is applied, 8 iterations are needed. The imputed
matrixes X0, X4, X6 and X8 are displayed in Figure 7.

The experiments are repeated with 50% and 80% of missing
data. Table I displays the root mean square error for the
imputation with the two-directional Lapalcian pyramids and
Winmice.

V. CONCLUSION

In this paper, we presented a multi-scale approach for
modeling a dataset with respect to its dual-geometry structures
in different scales. The application to data imputation is

Fig. 6. Protein dataset (sorted)

Fig. 7. Top left: X0, top right: X4, bottom left: X6 and bottom right: X8 -
the finest approximation level.

TABLE I
ROOT MEAN SQUARE IMPUTATION ERRORS

% missing 2D-LapPyds (L?) WinMice
20% 0.1483 0.2722
50% 0.1564 0.2692
80% 0.2622 0.2787

immediate and the missing data is completed in one pass,
together with the model construction. The general representa-
tion extended and applied to other learning tasks such learning
functions over datasets while considering the two-directional
geometric structures.
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