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Abstract
In Ben-Artzi et al. (SIAM J Numer Anal 47:3087–3108, 2009) we introduced an embedded
Cartesian scheme for the biharmonic problem in twodimensions.Herewe extend thismethod-
ology to the 2D Navier–Stokes system. Hermite (or Birkhoff) interpolation is invoked in one
and two dimensions to obtain finite difference operators. The consistency analysis of the dis-
crete formulas for irregular grids is emphasized. Numerical results demonstrate remarkable
accuracy for a series of test cases for flows in elliptical domains.

Keywords Biharmonic problem · Embedded compact scheme · Navier–Stokes equations

1 Introduction

In [3] an embeddedCartesian finite difference scheme for the biharmonic problem in irregular
domainswas introduced. A regular Cartesian grid is laid out in the embedded domain. Inmost
of the interior physical domain the regular Cartesian grid is kept unchanged. Thus, points
which are far from the boundary are the center of regular elements containing the points’
immediate neighbors. However, irregular elements are constructed around points which are
close to the boundary. As a result, the grid is not necessarily aligned to the boundary, as in
the case of body fitted grids.

This paper is dedicated to the memory of Professor Saul Abarbanel.

B Dalia Fishelov
daliaf@afeka.ac.il

Matania Ben-Artzi
mbartzi@math.huji.ac.il

Jean-Pierre Croisille
jean-pierre.croisille@univ-lorraine.fr

1 Institute of Mathematics, The Hebrew University, 91904 Jerusalem, Israel

2 Department of Mathematics, IECL, UMR 7502, Université de Lorraine, 57045 Metz, France

3 Afeka - Tel-Aviv Academic College of Engineering, 218 Bnei-Efraim St., 69107 Tel-Aviv, Israel

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10915-019-01012-2&domain=pdf


Journal of Scientific Computing

-1 -0.5 0 0.5 1

-1.5

-1

-0.5

0

0.5

1

1.5

TOPOLOGICAL CODING

-1 -0.5 0 0.5 1

-1.5

-1

-0.5

0

0.5

1

1.5

LOGICAL CODING

Fig. 1 Ellipse embedded in a square supporting a Cartesian grid. Left panel: Topological coding of the points:
the points are exterior (black small circles), boundary (triangles) or internal (clear small circles). Right panel:
the logical coding of the different kinds of interior points are subdivided into Regular calculated points (small
circles), Irregular calculated points (large circle), Edge points (open squares)

In case the physical domain is not a rectangular, but rather an irregular domain, the scheme
results in a Cartesian 9-point compact scheme at points “far” from the boundary. However,
the Cartesian stencil is distorted around points which are close to the boundary. A crucial tool
in our embedding approach consists of classifying grid points near the boundary. First, the
Cartesian points are labeled as interior points if they are inside the physical domain, exterior
points if they are outside the domain, and boundary points if they are on the boundary. This
is called a topological coding. Points which are inside the domain are then divided into three
subcategories. This is named a logical coding (see Fig. 1). A first category contains regular
calculated points; their neighboring points reside on the Cartesian grid and are far enough
from the boundary. A second category contains edge points; these are points which are too
close to the boundary and therefore they are not included in the computational stencil, but
are replaced by points on the boundary. A third category contains irregular calculated points
which are close to the boundary and at least one of their neighboring points is too close
to the boundary. Irregular calculated points are surrounded by a distorted stencil. Figure 2
shows the stencil of an irregular calculated point M0, which includes the edge point M̃2. The
topological and logical coding are shown in Fig. 1 for an ellipse. We refer to [3,7] for more
details.

Extending finite difference approximations to irregular domains is not a new idea. It
originates from early works such as [34]. Important contributions in the 70’s with emphasis
on the capacitance matrix method include [12,31]. A significant renewal of interest in this
approach is recently observed. For example, Poisson solvers are suggested in [19,22]. For
time dependent problemswe refer to [1,16]. Concerning theNavier–Stokes equationswe refer
to [21,28]. Approximating the Navier–Stokes equations in pure stream function formulation
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Fig. 2 The figure shows the stencil of the irregular calculated point M0 as the dash line. It consists of the
set {M1,M2,M3,M5,M8,M7,M6,M4}. The points M1, M4, M6 and M7 belong to the Cartesian grid.
The points M2, M3, M5 and M8 belong to the boundary of the domain. The point ˜M2 is labeled as an edge
point since it it too close to the boundary to be a calculated point. The pointM2 is defined as the point on the
boundary which lies on the line connectingM0 and ˜M2

using a high order compact scheme was first introduced in [10] in the case of a square domain
(see also [20]). Extending this kind of scheme to irregular geometries was considered in
[23,30] using a boundary fitted grid. Another approach for handling Navier–Stokes equation
in irregular geometries was introduced in [17]. We refer to Sect. 4 for the relation of the
scheme [17] to the present work.

Here the compact scheme is based on a particular interpolation polynomial of degree
six, combined with a compact interpolation for the gradient. The main features of this
approximation have been introduced in [3]. As in the approach to finite differences using
an interpolating polynomial presented in classic treatises [14,24,26], the key problem is to
find a suitable polynomial which interpolates the “data” on a stencil around any calculated
point xi, j . For all calculated points, this is a 9 point compact stencil. At regular points,
the stencil is regular; only at irregular points (near the boundary) the stencil is distorted
(see Fig. 2). Differentiating this polynomial provides finite difference operators at xi, j in
terms of the data. When collecting the discrete equations for all points xi, j the data become
“unknowns” to be computed as solution of the global linear system. Note that a full mathe-
matical convergence analysis of our scheme is not available yet. However, elements of error
bounds and convergence analysis are available in one dimension [6,8,9,11,18]. The interest
in this approach is supported by the remarkable accuracy of the numerical results obtained
so far [3,7,17].

The outline of the paper is as follows. In Sect. 2 we summarize the one-dimensional design
of the compact scheme using a polynomial approach. In Sect. 3 the structure of the two
dimensional polynomial, introduced in [3] is outlined. Emphasis is given on the directional
splitting between the two axis directions x and y and the two diagonal directions x + y and
x − y. In Sect. 4, we display several facts concerning discrete operators on compact stencils,
regular or not, which are used in our approximation to the Navier–Stokes equation. Finally,
Sect. 5 displays numerical results obtained for the Navier–Stokes system in two dimensions
for irregular domains.
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2 Irregular Finite Difference Operators in One Dimension

In this section, we describe the basics of our finite difference scheme for the one dimensional
case.

Let us consider the interval I = [a, b] with the irregular grid

a = x0 < x1 < · · · < xN−1 < xN = b. (2.1)

We denote by h j the spacing between neighboring points, thus h j = x j−x j−1, j = 1, . . . , N
and h = [h1, . . . , hN ].

Furthermore, ε and h are defined by (see [3]),

⎧

⎪

⎪

⎨

⎪

⎪

⎩

h = max
j

h j , (i)

ε = min
j

(

h j+1

h j
,

h j

h j+1

)

. (i i)
(2.2)

The design of finite difference operators is based on a particular interpolation procedure of
the data. For clarity we consider the following two steps in the analysis.

• Interpolation of the data u j , u′
j :

We first consider the case where each interpolating point x j carries the two interpolating
data u j and u′

j . The values u j and u′
j are supposed to be known data. The primary data u j

stands for some approximation of u(x j ) and the value u′
j approximates the derivative u′(x j ),

j = 1, . . . , N − 1. In approximation theory [32], these data are considered to be given,
either as exact data or as measurements. To each point x j , j = 1, . . . , N − 1, we associate
a polynomial p(x)

p(x) = a0 + a1x + a2x
2 + a3x

3 + a4x
4 + a5x

5. (2.3)

Assuming the knowledge of the six data u j , u′
j , u j+1, u′

j+1, u j−1, u′
j−1 (see Fig. 3), p(x) is

the solution of
{

p(x j ) = u j , p(x j−1) = u j−1, p(x j+1) = u j+1,

p′(x j ) = u′
j , p′(x j−1) = u′

j−1, p′(x j+1) = u′
j+1.

(2.4)

xjxj−1 xj+1

uj−1

u′
j−1

uj

u′
j

uj+1

u′
j+1

Fig. 3 One dimensional Hermite interpolation (2.4). The unique polynomial p(x) = a0 + a1x + a2x
2 +

a3x
3 + a4x

4 + a5x
5 with the six data u j−1, u

′
j−1, u j , u

′
j , u j+1, u

′
j+1 is given in (2.5)
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The coefficients aα in (2.3) are expressed in terms of u j−1, u j , u j+1, u′
j−1, u

′
j , u

′
j+1 by

a0 = u j , a1 = u′
j

(aα) j = A1,α(h j , h j+1)u j−1 + (−1)αA1,α(h j+1, h j )u j+1 + A2,α(h j , h j+1)u j

+ B1,α(h j , h j+1)u
′
j−1 − (−1)αB1,α(h j+1, h j )u

′
j+1 + B2,α(h j , h j+1)u

′
j ,

(2.5)

The rational fractions A1,α(h1, h2), A2,α(h1, h2), B1,α(h1, h2) and B2,α(h1, h2), 2α ≤ 5 are

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

A1,2(h1, h2) = h22 (5 h1 + 3 h2)

h21 (h1 + h2)3
, A2,2(h1, h2) = −3 h21 − 4 h2 h1 + 3 h22

h21 h
2
2

,

B1,2(h1, h2) = h22
h1 (h1 + h2)2

, B2,2(h1, h2) = −2
h1 − h2
h2 h1

,

(2.6)

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

A1,3(h1, h2) = −2
h2

(

h2 h1 − h22 + 5 h12
)

h13 (h1 + h2)3
, A2,3(h1, h2) = 2

(h1 − h2)
(

h12 − 3 h2 h1 + h22
)

h13h23
,

B1,3(h1, h2) = − h2 (2 h1 − h2)

h12 (h1 + h2)2
, B2,3(h1, h2) = h12 − 4 h2 h1 + h22

h1
,

(2.7)

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

A1,4(h1, h2) = −5 h2 h1 − 4 h22 + 5 h12

h13 (h1 + h2)3
, A2,4(h1, h2) = 4 h12 − 7 h2 h1 + 4 h22

h13h23
,

B1,4(h1, h2) = −2 h2 + h1
h12 (h1 + h2)2

, B2,4(h1, h2) = 2
h1 − h2
h12h22

.

(2.8)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

A1,5(h1, h2) = 2
2 h1 + h2

h13 (h1 + h2)3
, A2,5(h1, h2) = 2

h1 − h2
h13h23

,

B1,5(h1, h2) = 1

h12 (h1 + h2)2
, B2,5(h1, h2) = 1

h12h22
.

(2.9)

Denoting
ū = [[u1, . . . , uN−1], [u′

1, . . . , u
′
N−1]

]

, (2.10)

the discrete operator (Dα
x ū) j � dα

dxα u(x j ) (also denoted ∂α
x u(x j )) at x j is related to aα by

(Dα
x ū) j = α! (aα) j α = 2, 3, 4, 5. (2.11)

We should denote the coefficients aα by aα(ū,h) and the discrete derivative (Dα
x ū) j by

Dα
x (ū,h) j , but instead we adopt the notation (2.11). The operator (Dα

x ū) j approximates
∂α
x u(x j ) in terms of the six data (uk, u′

k) j−1≤k≤ j+1 and of the two mesh spacing h j , h j+1.
The truncation error analysis for Dα

x ū is given in Sect. 7.

• Approximating the derivative u′
j by Hermitian derivatives ux, j

The discrete operators above depend on the gridfunction ū in (2.10). In particular, the vector
of the derivatives [u′

1, . . . , u
′
N−1] is assumed to be known. However, in our context below,

the data u′
j is not available.

1 Thus, u′
j must be interpolated from the primal data u j . Here, this

interpolation is obtained bymean of an interpolation polynomial calledq(x). This polynomial
is a priori different from p(x) in (2.3). We define the polynomial q(x) associated with x j as

q(x) = b0 + b1x + b2x
2 + b3x

3 + b4x
4. (2.12)

1 In some numerical methods, as the the finite element Discontinuous Galerkin approach, u′ is kept as a primal
unknown.
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The gridfunction ux = [ux,1, . . . , ux,N−1] is calculated implicitly as follows. Suppose that
ux, j−1 and ux, j+1 are given. Then the vector b = [b0, b1, b2, b3, b4]T ∈ R

5 is the solution
of the Hermite interpolation problem

{

q(x j−1) = u j−1, q(x j ) = u j , q(x j+1) = u j+1,

q ′(x j−1) = ux, j−1, q ′(x j+1) = ux, j+1.
(2.13)

The vector ux = [ux, j ]1≤ j≤N−1 is then defined from the five data u j−1, u j , u j+1,

ux, j−1, ux, j+1 by
ux, j = q ′(x j ). (2.14)

Relations (2.14) for j = 1, . . . , N −1 form a linear system with unknown ux , which is given
for a general grid by

α1, j ux, j + ux, j + α2, j ux, j = β1, j u j−1 + β2, j u j + β3, j u j+1. (2.15)

The five coefficients α1, j , α2, j , β1, j , β2, j and β3, j are
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

α1, j = h2j+1

(h j+1 + h j )2
, α2, j = h2j

(h j+1 + h j )2
, β2, j = 2(h j+1 − h j )

h j h j+1
,

β1, j = −2h2j+1(2h j + h j+1)

h j (h j + h j+1)3
, β3, j = 2h2j (2h j+1 + h j )

h j+1(h j + h j+1)3
.

(2.16)

Relation (2.15) is called the Hermitian closure for the derivative. In [3, Lemma 4.2], it is
shown that

max
1≤ j≤N−1

|u′(x j ) − ux, j | ≤ C
h4

ε
max
x∈[a,b] |∂

5
x u(x)|, (2.17)

where ε is given in (2.2)i i . In the case of a regular grid h = h j = h j+1, j = 1, . . . , N − 1,
(2.15) becomes the standard Hermitian relation given by

⎧

⎨

⎩

1

6
ux, j−1 + 2

3
ux, j + 1

6
ux, j+1 = u j+1 − u j−1

2h
, 1 ≤ j ≤ N − 1,

ux,0 = u′(a), ux,N = u′(b).
(2.18)

Assuming periodicity, the truncation error on a uniform grid is given by.2

(u∗)x, j − (∂xu)∗j = − h4

180
(∂5x u)∗j + O(h6). (2.19)

Replacing the exact derivatives u′
j (= ∂xu j ) in (2.11) by the approximate values ux, j gives

the finite difference operator denoted by ˜Dα
x u:

(˜Dα
x u) j = α! (aα) j ([u], [ux ]) α = 2, 3, 4, 5. (2.20)

The gridfunction ux = [ux,1, . . . , ux,N−1] is not [u′
1, . . . , u

′
N−1] but it is rather its approxi-

mation by (2.15). In addition this approximation is non-local (see Sect. 7). This implies that
the truncation error at x j depends on the full vector h and not only on h j , h j+1 as in (7.5).
Consider the particular case of the two operators ˜D2

x and ˜D4
x , which satisfy

(˜D2
xu) j � ∂2x u(x j ), (˜D4

xu) j � ∂4x u(x j ). (2.21)

We have

2 Refer to Sect. 7 for more comments on truncation error analysis.
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Proposition 2.1 Let u(x) be a smooth function. Assuming that the grid (2.1) is such that

c h ≤ h j ≤ h, c > 0, (2.22)

The truncation errors for ˜D2
x and ˜D4

x

t̃2(u) = (˜D2
xu

∗) − (∂2x u)∗, t̃4(u) = (˜D4
xu

∗) − (∂4x u)∗ (2.23)

satisfy the estimates
{ |t̃2(u)| ≤ Ch3, (i)

|t̃4(u)| ≤ Ch, (i i)
(2.24)

where C is a constant depending only on u(x).

Proof The truncation error t̃2(u) is decomposed as

t̃2(u) = ˜D2
xu

∗ − (∂2x u)∗

= ˜D2
xu

∗ − D2
xu

∗
︸ ︷︷ ︸

(I )

+ D2
xu

∗ − (∂2x u)∗
︸ ︷︷ ︸

(I I )

. (2.25)

The term (I) is the truncation error t2(u) in (7.5)a . It satisfies the estimate

|(I I )| ≤ C(u)h4. (2.26)

Invoking (2.5), (2.6), (2.17), (2.20) and assuming that c ≤ ε, it is easy to see that (II) satisfies

|(I I )| ≤ 2B1,2(h j , h j+1)|ux, j−1 − ∂xu j−1|
+ 2B1,2(h j+1, h j )|ux, j+1 − ∂xu j+1|
+ 2B2,2(h j , h j+1)|ux, j − ∂xu j |

≤ Ch3,

(2.27)

where C is a constant depending only on u. A similar argument is used for (2.24)i i . ��
In the case of a regular grid, (i.e with h = h j , 1 ≤ j ≤ N − 1), the operators ˜D2

xu and ˜D4
xu

are
⎧

⎨

⎩

˜D2
xu j = δ̃2xu j = 2δ2xu j − δxux, j ,

˜D4
xu j = δ4xu j = 12

h2
(

δxux, j − δ2xu j
)

.
(2.28)

The nominal truncation error (i.e. assuming periodicity) of ˜D2
x and of of ˜D4

x are
⎧

⎪

⎪

⎨

⎪

⎪

⎩

(˜D2
xu

∗) j − (∂2x u)∗j = h4

360
(∂6x u)∗j + O(h6),

(˜D4
xu

∗) j − (∂4x u)∗j = − h4

720
(∂8x u)∗j + O(h6).

(2.29)

In [4,6], the operators δ̃2x and δ4x were introduced using the polynomial q(x) only, and not the
polynomial p(x). The reason is thatwhen using ux, j instead of ∂xu(x j ) in p(x), then p(x) and
q(x) are identical. Here for clarity of the presentation we choose to introduce separately the
two polynomials p(x) and q(x). Another Hermitian closure for the derivative, different from
(2.14), could be selected to define the approximate values ux, j (see for example Equation
(3.37) in [5]). In fact, in the two dimensional setting introduced in [3], the polynomials p
and q are distinct, as will be seen below in Sect. 3.
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Remark 2.1 The truncation results in Proposition 2.1 are in agreement with Equations (4.27)
and (4.35) of [17].

Remark 2.2 We refer to [25,32,33] for a general presentation of Hermite interpolation.

Remark 2.3 The linear system (2.15) is distinct from the one employed to define the cubic
splines derivatives, [2, (2.1.14) p.12]. However, the two systems are close. Both coincide
with (2.18) in the case of a regular grid. See also [11].

3 Finite Difference Scheme on Two Dimensional Irregular Grids by
Interpolation

In two dimensions we consider a Cartesian grid in a rectangular domain embedding an
irregular domain �. The definition of the finite difference operators on Cartesian grids can
be obtained in two ways. The first is by expanding finite difference formulas in Taylor series
(see [27]). In the second approach a local interpolating polynomial is defined around each
computational point which is the center point of an element (regular or irregular) inside the
physical domain. Successive differentiation of this polynomial provides discrete differential
operators. This is done in [35] for the Biharmonic operator. The latter has been extended
in [3] to define a high order approximation to the biharmonic operator on the stencil shown
in Fig. 4. The polynomial P(x, y), defined in [3], is the solution of a specific Birkhoff
interpolation problem.3 The polynomial P(x, y) ∈ P19 = Span{lk, k = 1, . . . 19} where the
homogeneous polynomials lk(x) are

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

l1(x, y) = 1, l2(x, y) = x, l3(x, y) = x2, l4(x, y) = x3,

l5(x, y) = x4, l6(x, y) = x5, l7(x, y) = y, l8(x, y) = y2, l9(x, y) = y3,

l10(x, y) = y4, l11(x, y) = y5, l12(x, y) = xy, l13(x, y) = xy(x + y),

l14(x, y) = xy(x − y), l15(x, y) = xy(x + y)2, l16(x, y) = xy(x − y)2, l17(x, y) = xy(x + y)3,

l18(x, y) = xy(x − y)3, l19(x, y) = x2y2(x2 + y2).
(3.1)

The polynomial P(x, y) is equivalently expressed as

P(x, y) = P(0, 0) + P1(x) + P2(y) + xyQ(x, y), (3.2)

where

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

(a) P1(sx) = a2x + a3x
2 + a4x

3 + a5x
4 + a6x

5,

(b) P2(y) = a7y + a8y
2 + a9y

3 + a10y
4 + a11y

5,

(c) Q(x, y) = a12 + a13(x + y) + a14(x − y) + a15(x + y)2 + a16(x − y)2

+ a17(x + y)3 + a18(x − y)3 + a19xy(x
2 + y2).

(3.3)

Considerψ(x, y) a given function andψ∗
i, j its restriction to the grid. The quintic polynomials

P(0, 0) + P1(x) and P(0, 0) + P2(y) solve interpolation problems of the form (2.4). The

3 In a Birkhoff problem, the set of data carried by each point in the stencil is dependent on the point. We refer
to [29] for a theory of multivariate Birkhoff interpolation.
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Fig. 4 Case of an irregular stencil: the 8 neighbor nodes of M0 are the points M1, M2, M3, M4, M5, M6, M7
and M8 with h = [h1, h2, h3, h4, h5, h6, h7, h8]. The 19 data determining uniquely the polynomial P(x, y)
in (3.2) are of two kinds. First, the 9 data for u are marked with circles. Second, the 10 data corresponding to
directional derivatives are marked with arrows

polynomial P(0, 0) + P1(x) ∈ Span{1, x, x2, x3, x4, x5} is given by the 6 horizontally
aligned data (see Fig. 4):

{

	4(ψ) = ψ∗(M4), 	5(ψ) = ψ∗(M0), 	6(ψ) = ψ∗(M5),

	13(ψ) = −∂xψ
∗(M4), 	14(ψ) = ∂xψ

∗(M0), 	16(ψ) = ∂xψ
∗(M5).

(3.4)

Similarly, the polynomial P(0, 0)+ P2(y) ∈ Span{1, y, y2, y3, y4, y5} is determined by the
6 vertically aligned data

{

	8(ψ) = ψ∗(M7), 	5(ψ) = ψ∗(M0), 	2(ψ) = ψ∗(M2),

	18(ψ) = −∂yψ
∗(M7), 	15(ψ) = ∂yψ

∗(M0), 	11(ψ) = ∂yψ
∗(M2).

(3.5)

Consider now the 8 diagonally aligned data. They are denoted as:
⎧

⎪

⎨

⎪

⎩

	3(ψ) = ψ∗(M3), 	7(ψ) = ψ∗(M6), 	9(ψ) = ψ∗(M8), 	1(ψ) = ψ∗(M1),

	12(ψ) = (∂x + ∂y)ψ
∗(M3), 	17(ψ) = (−∂x − ∂y)ψ

∗(M6),

	19(ψ) = (∂x − ∂y)ψ
∗(M8), 	10(ψ) = (−∂x + ∂y)ψ

∗(M1).

(3.6)

Proposition 3.1 For any values α1, . . . , α8, there exists a unique polynomial Q(x, y) of the
form (3.3)c satisfying the 8 relations

	k(Q) = αk, (3.7)

where k ∈ IQ = {3, 7, 9, 1, 12, 17, 19, 10}
Proof Since the problem is linear, it is sufficient to prove that αk = 0, k ∈ IQ , implies that
Q(x, y) ≡ 0. This is easily obtained by analyzing Q(x, y) along the two diagonal directions
x = y, x = −y: it is found that Q is a quartic polynomial along these two directions with 5
zero data. This implies Q(x, y) ≡ 0 by considering the coefficient of xy(x2 + y2). ��
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As a corollary, there exists a unique solution P(x, y)which is a solution of the 19×19 linear
system

	k(P) = 	k(ψ
∗), 1 ≤ k ≤ 19. (3.8)

where the 19 data 	k(ψ
∗) are defined in (3.4), (3.5) and (3.6). Denoting

�(ψ∗) = [	k(ψ
∗)]1≤k≤19 : (3.9)

the polynomial P(x, y) is expressed as,

P(x, y) =
19
∑

k=1

ak
(

�(ψ∗)
)

lk(x, y). (3.10)

The expression of P(x, y) in terms of �(ψ∗) ∈ R
19 and the lengths h ∈ R

8 is obtained by
symbolic calculation.4 The decomposition (3.2) is applied as follows. First, the polynomials
P1(x) and P2(y)) are calculated. They are of the form (2.3), in the directions x and y
respectively. The coefficients of P(x, 0) (resp. P(0, y)) are obtained by (2.5) in terms of
h4, h5 (resp. h2, h7). Second, the polynomial Q(x, y) is calculated by solving a 8×8 system
deduced from Proposition 3.1. Third, the 8 data 	l(Q) in (3.6) are expressed in terms of the
19 data 	k(P), k = 1, . . . , 19. This is easily obtained using (3.2).

4 Discrete Operators on Compact Stencils for the Navier–Stokes
Equations

Let� ⊂ R
2 be a regular bounded domain. TheNavier–Stokes system in pure stream function

form and with viscosity ν > 0 is
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

∂t�ψ(t, x) +
(

∇⊥ψ · ∇(�)
)

ψ(t, x) − ν�2ψ(t, x) = f (t, x),

ψ(t, x) = g1(t, x),

∂ψ

∂n
(t, x) = g2(t, x), x = (x1, x2) ∈ ∂�.

(4.1)

with x = (x1, x2) ∈ �, t > 0. The velocity v(t, x) is related to ψ by

v(t, x) = ∇⊥ψ(t, x) = (−∂2ψ, ∂1ψ). (4.2)

Three spatial operators must be approximated: the Biharmonic operator �2ψ , the Lapla-
cian operator �ψ and the convective term C(ψ) = (∇⊥ψ · ∇(�)

)

ψ . The approximations,
described hereafter, are all based on the polynomial P . They are called �2

h, �h and Ch
respectively. The numerical scheme used hereafter is second order accurate. It is expressed
as

⎧

⎪

⎪

⎨

⎪

⎪

⎩

�hψ
n+1/2 − �hψ

n

�t/2
= −Ch(ψ

n) + ν

2

(

�2
hψ

n + �2
hψ

n+1/2) + ( f (tn+1/4, ·))∗,
�hψ

n+1 − �hψ
n

�t
= −Ch(ψ

n+1/2) + ν

2

(

�2
hψ

n + �2
hψ

n+1) + ( f (tn+1/2, ·))∗.
(4.3)

Refer to [6,10] for the derivation of (4.3).

4 Performed in MAPLE.
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4.1 The Biharmonic Operator

In this section, we briefly review various finite difference Biharmonic operators used in
regular stencils [6,10] or irregular stencils [3,7,17]. The 9 point stencil in regular form in
shown in Fig. 5 and in irregular form in Fig. 4. The Biharmonic operator is

�2ψ(x, y) = ∂4xψ(x, y) + ∂4yψ(x, y) + 2∂2x ∂
2
yψ(x, y). (4.4)

The basic discrete Biharmonic is the one of Stephenson [35]. It operates on the 9 point regular
stencil. It is expressed as

�2
hψi, j = δ4xψi, j + δ4yψi, j + 2δ2xδ

2
yψi, j . (4.5)

The Hermitian derivative ψx,i, j (resp. ψy,i, j ) is involved in δ4x , (resp. δ
4
y), (see Sect. 7). Both

δ4x and δ4y are fourth order. The operator �2
h is second order with truncation error

�2
h(ψ)∗i, j − (�2ψ)∗i, j = h2

6

(

∂4x ∂
2
y + ∂2x ∂

4
y )ψ

)∗ + O(h4). (4.6)

The second order accuracy in (4.6) is due to the approximation of the mixed term (∂2x ∂
2
yψ)∗i, j

by δ2xδ
2
yψ

∗
i, j . A modified version �̃2

h of �2
h was introduced in [7,17]:

�̃2
hψi, j = �2

hψi, j − h2

6
(δ2xδ

4
y + δ2yδ

4
x )ψi, j . (4.7)

The perturbation is O(h2). It is designed to cancel the leading truncation term in (4.6). The
operator �̃2

hψi, j is fourth order. The truncation error is

Fig. 5 Same as for Fig. 4, but in the case of a regular stencil with step size h
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�̃2
h(ψ)∗i, j − (�2ψ)∗i, j = −h4

(

1

720

(

(∂8xψ)∗ + (∂8yψ)∗
)

+ 1

72

(

∂4x ∂
4
yψ

)∗

− 1

180

(

(∂2x ∂
6
yψ)∗ + (∂6x ∂

2
yψ)∗)

)

)

+ O(h6). (4.8)

Consider now extending (4.7) to the irregular stencil shown in Fig. 4. The polynomial
P(x, y) = ∑19

k=1 aklk(x, y) is associated to the point M0 with global coordinates (xi , y j )
and local coordinates (0, 0). The approximate Biharmonic operator atM0 is defined in terms
of the data �(ψ∗) = [	l(ψ

∗)]1≤l≤19 via

�2
hψi, j =

19
∑

k=1

ak(�(ψ∗))�2lk(0, 0) = 24
(

a5(�(ψ∗)) + a10(�(ψ∗))
)

+ 16
(

a15(�(ψ∗)) − a16(�(ψ∗))
)

. (4.9)

It has been proved in Theorem 3.11 of [3] that if (u, ∂xu, ∂yu) are considered to be known
exactly, then in analogy with (7.5)c, �2

hψi, j in (4.9) satisfies

|�2
h(ψ

∗)i, j − (�2ψ)∗i, j | ≤ Ch2. (4.10)

In fact, this estimate is optimal, since on a regular one dimensional grid, the operator �2
h

coincides with D4
xu j in (2.11), which is second order accurate (see (7.5)(c)).

In Sect. 5we approximate the first order derivatives (∂xu, ∂yu) via theHermitian derivative
(2.15). The latter are invoked in the approximation (4.9) of theBiharmonic operator.At regular
points, the compact stencil is regular (see Fig. 5), i.e. hk = h, 1 ≤ k ≤ 8. It has been proved
in [7, pp. 227-228] that the operator (4.9) coincides with (4.7), and therefore is fourth order
accurate. At irregular points, which are near boundary, the accuracy drops to a lower value.

Remark 4.1 An alternative approximate Biharmonic operator may be derived from the iden-
tity [15]

�2ψ = 2

3

(

∂4ψ

∂x4
+ ∂4ψ

∂ y4

)

+ 2

3

(

∂4ψ

∂η4
+ ∂4ψ

∂ξ4

)

. (4.11)

In (4.11) (η, ξ) are the diagonal variables defined by η = (x + y)/
√
2, ξ = (y − x)/

√
2. A

discrete counterpart of (4.11) was introduced in [17] as

̂�2
hui, j = 2

3
(δ4xui, j + δ4yui, j ) + 2

3
(δ4ηui, j + δ4ξ ui, j ). (4.12)

If all the first-order derivatives with respect to x, y, ξ, η are approximated via the Hermitian
derivative, then the scheme is fourth-order accurate. If the first-order derivatives with respect
to x, y are computed via the Hermitian derivative and the first-order derivatives with respect
to ξ, η are computed from the first-order derivatives with respect to x, y via the chain rule,
then the scheme is second order accurate. In [17], the approximate Biharmonic operator
(4.12) was used only at near boundary points, whereas (4.7) was used at interior points. This
resulted in an observed fourth order accuracy of the numerical results.
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4.2 Discrete Laplacian and Convective Term

Consider first the Laplacian. The discrete Laplacian used in the sequel is the operator �h
defined by

�hψi, j =
19
∑

k=1

ak(�(ψ∗))�lk(0, 0). (4.13)

This gives

�hψi, j = 2
(

a2(�(ψ∗)) + a8(�(ψ∗))
)

. (4.14)

The discrete Laplacian is easily proved to be fourth order. On a regular grid, �h satisfies

�h = δ̃2x + δ̃2y . (4.15)

In what follows, the convective term C(ψ) is approximated by Ch(ψ) defined by

Ch(ψ) = −ψy
[

(� ◦ ∂x )P(0, 0)
] + ψx

[

(� ◦ ∂y)P(0, 0)
]

. (4.16)

In terms of the coefficients ak(�(ψ∗)) this gives the formula:

Ch(ψ) = −ψy

(

6a4(�(ψ∗)) + 2
{

a13(�(ψ∗))) − a14(�(ψ∗)
}

)

+ψx

(

6a9(�(ψ∗)) + 2a13
{

�(ψ∗)) + a14(�(ψ∗)
}

)

, (4.17)

where a4, a9, a13, a14 are given in (3.3). In the case of a regular grid, (4.17) is second order
accurate. For this reason, the global order in space of the semi discrete scheme (4.3) is second
order. This accuracy will be observed numerically below in Sect. 5.

Remark 4.2 We have chosen to approximate the convective term by (4.16) mainly for sim-
plicity. We refer to [5], formula (3.37) for a fourth order accurate convective term in the
regular case. Extending the approach in [5] to the present embedding context will be the
topic of a forthcoming work. See also [17] for an alternative approach.

5 Numerical Results for Navier–Stokes Equation in Pure
Streamfunction

In order to assess the accuracy of our scheme for the system (4.1) three numerical test cases
are presented. In Sect. 5.1 we refer to Test cases 1 and 2, where the Navier–Stokes problem
(4.1) is approximated in an ellipse. In Test cases 1 and 2 the exact solutions are chosen to
be polynomials in space and exponential in time. We inspect the accuracy of the numerical
solution by measuring the errors in ψ , ∂xψ and ∂yψ . Test case 2 was also considered in [28],
where a Cartesian embedding scheme for the Navier–Stokes equations was applied.

In Sect. 5.2 we approximate the solution of the Navier–Stokes equation in a square. The
physical domain (the square) is rotated with some angle θ and then embedded in a bigger
square, which is aligned to the x, y grid.We analyze numerically the way the angle of rotation
θ of the physical domain affects the accuracy of the computation. For this purposewe consider
an analytic solution of the Navier–Stokes equations in the embedded square. We observe the
behaviour of the numerical solution as a function of the rotation angle θ . From the numerical
results one may observe that the angle of rotation has limited impact on the quality of the
numerical results.
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Fig. 6 Cases 1 and 2: The ellipse x2/0.52 + y2/0.252 = 1. Left panel: coarser grid with embedding square is
[−1, 1]× [−1, 1]. Right panel: finer grid with embedding square is [−0.6, 0.6]× [−0.6, 0.6]. The three types
of points inside the domain are: Regular calculated points (small circles), Irregular calculated points (large
circle) and Edge points (open squares)

5.1 Navier–Stokes Equation in an Ellipse

5.1.1 Test Case 1

In Test case 1 and Test case 2, we consider the Navier–Stokes equation in an irregular domain
�, which is defined by the ellipse

x2

0.52
+ y2

0.252
= 1. (5.1)

This ellipse is equivalently defined as the level set zero of the function

ϕ(x, y) =
√

4x2 + 16y2 − 1. (5.2)

In Test case 1, the forcing function f (t, x, y) is chosen to be the right-hand side of
Eq. (4.1), for which the exact solution is

ψe(t, x, y) = (x4 + y4)2 exp(t). (5.3)

The spatial part (x4 + y4)2 is a polynomial of order 8. This polynomial is not included in the
space P19 in (3.1). The viscosity is chosen as ν = 1/1000. The following errors are reported
in Table 2 at the final time T f = 0.5:

⎧

⎪

⎨

⎪

⎩

max
i, j

|(ψe)
∗
i, j (T f ) − ψi, j (T f )|,

max
i, j

|(∂xψe)
∗
i, j (T f ) − ψx,i, j (T f )|, max

i, j
|(∂yψe)

∗
i, j (T f ) − ψy,i, j (T f )|.

(5.4)

Figure 7 put later displays the least-square convergence rates corresponding to this test
case. Two embedding squares are considered. In the first case the embedding square is
[−1, 1] × [−1, 1] and in the second it is [−0.6, 0.6] × [−0.6, 0.6]. The number of points in
each direction x, y are chosen to be the same for both cases. Therefore, the square [−1, 1]×
[−1, 1] corresponds to a coarser grid of the ellipse, and the square [−0.6, 0.6] × [−0.6, 0.6]
corresponds to a finer grid. The detailed embedding grid is shown in Fig. 6 for the two
cases. In comparing the two cases, we would like to see whether the accuracy deteriorates in
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Table 1 Cases 1 and 2: in the case of a computational grid 61×61, the two embedding squares [−1, 1]×[−1, 1]
and [−0.6, 0.6] × [−0.6, 0.6] are compared

grid 61 × 61 Embed. sq. [−1, 1] × [−1, 1] Embed. sq. [−0.6, 0.6] × [−0.6, 0.6]
Total number of points 61 × 61 = 3721 61 × 61 = 3721

Number of regular calculated points 233 779

Number of irregular calculated points 80 142

Total number of calculated points 313 921

Number of edge points 38 52

Number of boundary points 6 26

The embedding square [−1, 1]×[−1, 1] corresponds to a coarse grid with 313 vertices inside the ellipse (5.1).
The embedding square [−0.6, 0.6] × [−0.6, 0.6] correspond to a fine grid with 779 vertices inside the ellipse
(5.1)

Table 2 Case 1: Time dependent Navier–Stokes equation with exact solution ψ(t, x, y) = (x4 + y4)2 exp(t)

Grid N × N Nite e∞ Rate (ex )∞ Rate (ey)∞ Rate

20 × 20 20 4.007(−5) 9.3139(−4) 2.3117(−4)

40 × 40 80 8.4084(−7) 5.57 4.8964(−5) 4.25 2.3607(−5) 3.29

80 × 80 320 1.5857(−7) 2.41 3.3584(−6) 3.87 4.4192(−6) 2.42

160 × 160 1280 3.1146(−8) 2.34 8.6214(−7) 1.96 1.2430(−6) 1.83

The domain is the ellipse x2/0.52 + y2/0.252 = 1. The embedding square is [−1, 1] × [−1, 1], which
corresponds to a coarser grid of the ellipse. The final time is T f = 0.5 and the viscosity is ν = 0.001. The
asymptotic order of convergence is close to 2 for ψ and gradψ . This is due to the convective term (4.16)
which is approximated to order 2. Note that the errors are very small in magnitude

Table 3 Case 1: Time dependent Navier–Stokes equation with exact solution ψ(t, x, y) = (x4 + y4)2 exp(t)

Grid N × N Nite e∞ Rate (ex )∞ Rate (ey)∞ Rate

20 × 20 20 5.8548(−5) 1.5547(−4) 6.5855(−5)

40 × 40 80 8.7691(−7) 6.06 1.1092(−5) 3.81 1.7557(−5) 1.91

80 × 80 320 3.2634(−8) 4.75 8.3786(−7) 3.73 1.0619(−6) 4.05

160 × 160 1280 3.9768(−9) 3.04 1.2299(−7) 2.77 1.6797(−7) 2.66

The domain is the ellipse x2/0.52 + y2/0.252 = 1. The embedding square [−0.6, 0.6] × [−0.6, 0.6], which
corresponds to a fine grid of the ellipse. The final time is T f = 0.5 and the viscosity is ν = 0.001

cases where the irregular domain is embedded in a larger computational square. According
to Table 1, there are 921 calculated points in the finer grid (which corresponds to embedding
the domain in [−0.6, 0.6] × [−0.6, 0.6]) and 313 in the coarser grid (which corresponds to
embedding the domain in [−1, 1]×[−1, 1]). As expected, a better accuracy is observed with
the finer grid. However, in both cases the errors are small and comparable in magnitude and
the convergence rates are satisfactory (around second order and above). See Tables 2, 3 and
Fig. 7.

Remark 5.1 The size of the computational domain is usually adjusted to the physical domain
as much as possible to reduce the computational effort. However, with our present coding,
a direct solver is used to solve the global linear systems. The points exterior to the physical
domain as well as the edge points are dummy points associated to the identity matrix in
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Fig. 7 Case 1: Navier Stokes equations in the ellipse x2/0.52+ y2/0.252 = 1with exact solutionψ(t, x, y) =
(x4 + y4)2 exp(t). Regression line for the errors on ψ and ∂yψ . Left panel: coarse grid with embedding
square [−1, 1] × [−1, 1]. The averaged rate of convergence for |(∂xψ)∗i, j (T f ) − ψx,i, j (T f )|) is 3.41 (not
shown). Right panel: fine grid with embedding square [−0.6, 0.6] × [−0.6, 0.6]. The rate of convergence for
|(∂xψ)∗i, j (T f ) − ψx,i, j (T f )|) is 3.47 (not shown). The grids are N = 20, 40, 80, 160. The accuracy for ψ

and gradψ ranges between 2 and 4. In addition, the error levels are very good, due to the polynomial regularity
of the exact solution

global linear systems. Therefore, the computational effort is in fact smaller with the large
square [−1, 1] × [−1, 1] than with the small square [−0.6, 0.6] × [−0.6, 0.6].

5.1.2 Test Case 2

We consider again the same ellipse (5.1) embedded in the square [−0.6, 0.6] × [−0.6, 0.6],
which corresponds to the fine grid in Sect. 5.1.1. The exact solution is

ψe(t, x, y) =
{

K
(

r(x, y)α − ( 14 )
α
)

cos(t), if ϕ(x, y) ≤ 1

0, otherwise ,
(5.5)

where r(x, y) = x2 + 4y2, α > 0 and K are parameters to be picked. The corresponding
velocity is

{

v1(t, x, y) = −∂yψe(t, x, y),

v2(t, x, y) = ∂xψe(t, x, y).
(5.6)

The vorticity is
ωe(t, x, y) = �ψe(t, x, y). (5.7)

In [28] the particular case α = 1, K = 1 is considered. The shape of the exact and approx-
imated solution are shown in Fig. 8 (left panel). In Table 4 and in Fig. 9 (left panel) the
numerical results are reported using our scheme. Note that in this case the spatial part of the
function ψe belongs to Span(x4, y4, x2y2) ⊂ P19. So that there is no truncation error in the
spatial direction x, y when using the scheme (4.3) and therefore there is no error in space.
The errors originate from the temporal discretization. Therefore, fourth order accuracy is
expected and observed in Table 4.

Amore difficult case is obtainedwhenwe chose the exact solution of (5.5) with parameters
α = 2 and K = 20. The shape of the exact and approximated solutions are shown in Fig. 8
(right panel). The error levels for ψ , ∂xψ and ∂yψ are reported in Table 5. The convergence
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Fig. 8 Case 2: Ellipse (5.1) embedded in the square [−0.6, 0.6] × [−0.6, 0.6]. The Cartesian embedding grid
is 40 × 40 and there are 80 time iterations in (4.3). The exact and approximated solutions ψ(T f = 0.5, x, y)
are shown. Left panel: parameters α = 1, K = 1 in (5.5). Right panel: parameters α = 2, K = 20 in (5.5)

Table 4 Case 2: Time dependent Navier–Stokes equation with ν = 0.001 in the ellipse x2/0.52+ y2/0.252 =
1 with exact solution (5.5) with the parameter α = 1 and K = 1

Grid N × N Nite e∞ Rate (ex )∞ Rate (ey)∞ Rate

20 × 20 20 3.3063(−7) 1.8255(−6) 3.9043(−6)

40 × 40 80 1.7633(−8) 4.23 1.2356(−7) 3.88 2.2015(−7) 4.15

80 × 80 320 1.0386(−9) 4.09 7.8840(−9) 3.97 1.2288(−8) 4.16

160 × 160 1280 6.8827(−11) 3.91 5.1392(−10) 3.94 7.8928(−10) 3.96

The final time is T f = 0.5. The embedding square is [−0.6, 0.6] × [−0.6, 0.6]. The asymptotic convergence
rate is close to 4 for ψ and gradψ . In this case, the truncation error in space vanishes since the exact solution
belongs to the space P19. The error is only due to the time integration scheme

Fig. 9 Case 2: Navier Stokes equations in the ellipse x2/0.52 + y2/0.252 = 1 with exact solution (5.5). The
embedding square is [−0.6, 0.6] × [−0.6, 0.6]. Left panel: Parameters α = 1 and K = 1 in (5.5). The rate
of convergence for |(∂xψ)∗i, j (T f ) − ψx,i, j (T f )|) is 3.94 (not shown). Right panel: Parameters α = 2 and

K = 20 in (5.5). The rate of convergence for |(∂xψ)∗i, j (T f ) − ψx,i, j (T f )|) is 2.59 (not shown)

slopes are displayed inFig. 9. The observed accuracy is around4 forψ(t, x, y)gradψ(t, x, y)
for the case α = 1, K = 1 and around 2 for the case α = 2, K = 20.
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Table 5 Case 2: Time dependent Navier–Stokes equation with ν = 0.001 in the ellipse x2/0.52+ y2/0.252 =
1 with exact solution (5.5) with the parameter α = 2 and K = 20

Grid N × N Nite e∞ Rate (ex )∞ Rate (ey)∞ Rate

20 × 20 20 1.3111(−2) 9.9770(−2) 3.1718(−1)

40 × 40 80 1.7879(−3) 2.87 1.7643(−2) 2.50 3.5885(−2) 3.15

80 × 80 320 4.3797(−4) 2.03 4.5494(−3) 1.996 6.9431(−3) 2.37

160 × 160 1280 1.0803(−4) 2.02 1.1213(−3) 2.021 1.7036(−3) 2.03

The final time is T f = 0.5. The embedding square is [−0.6, 0.6] × [−0.6, 0.6]. The asymptotic order of
convergence is 2. The error levels for ψ , ψx and ψy are very good

5.2 Invariance Under Grid Rotation: A Numerical Study

In this test case we consider the domain � = [−0.5, 0.5] × [−0.5, 0.5] embedded in the
computational square [−1, 1]×[−1, 1]. The Navier Stokes equations (4.1) with ν = 1/1000
are solved in � with a forcing term f (t, x, y) such that the radial, polynomial in space
solution is ψe(t, x, y) = (x2 + y2)4e−t . The computation is repeated for a series of rotated
positions of [−0.5, 0.5]×[−0.5, 0.5] in [−1, 1]×[−1, 1]. This permits to evaluate the effect
of the position of the calculated points on the global accuracy. In particular, the labelling of
near-boundary points changes when the domain changes of position.

We let rotate � from the position θ = 0 to the position θ = π/4 with an angle step
�θ = π/360 (0.5 deg). For each position θk = k�θ , k = 0, . . . 90 the same computation is
reproduced. First, a grid 20× 20 is considered. Second, a grid 30× 30 is used. In each case,

Fig. 10 Effect of the position of the domain in the embedding square on the accuracy. The square [−0.5, 0.5]
embedded in the computational square [−1, 1] × [−1, 1] is shown at positions θ = 0, θ = π/16, θ = π/8,
θ = 3π/16 and θ = π/4. The type of near boundary points (Regular calculated, Irregular calculated or Edge)
varies according to their position with respect to the boundary. See Fig. 1
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Fig. 11 Case 3:Maximumerror for theNavier–Stokes equation in the squarewith size [−0.5, 0.5]×[−0.5, 0.5]
embedded in [−1, 1] × [−1, 1]. The grid is 20 × 20. The exact solution is ψ(t, x, y) = (x2 + y2)4 exp(−t).
The final time T f = 0.25 is reached in 20 iterations. The same computation is repeated 91 times on the
domain [−0.5, 0.5] × [−0.5, 0.5] rotated with an angle θ = k π

360 for k = 0, . . . , 90. Left panel: maximum
error for ψ(t, x, y) at time T f = 0.25 in function of the position of the domain. Right panel: maximum error
for ψx (t, x, y) at time T f in function of the position of the domain. The accuracy for ψy is similar to the one
for ψx

Fig. 12 Case 3: Maximum error for the Navier–Stokes equation in the square [−0.5, 0.5] × [−0.5, 0.5]
embedded in [−1, 1] × [−1, 1]. The grid is 30 × 30. The exact solution is ψ(t, x, y) = (x2 + y2)4 exp(−t).
The final time T f = 0.25 is reached in 45 iterations. The same computation is repeated 91 times on the
domain [−0.5, 0.5] × [−0.5, 0.5] rotated with an angle θ = k π

360 for k = 0, . . . , 90. Left panel: maximum
error for ψ(t, x, y) at time T f = 0.25 in function of the position of the domain. Right panel: maximum error
for ψx (t, x, y) at time T f in function of the position of the domain. The accuracy for ψy is similar to the one
for ψx

the maximum errors forψ(T f , x, y) and ∂xψ(T f , x, y) are evaluated at final time T f = 0.25
using the scheme (4.3)

Several positions of � are shown in Fig. 10. The maximum errors for ψ(T f , xi , y j ) and
∂xψ(T f , xi , y j )with the grid 20×20 in function of the position angle are reported in Fig. 11.
The error for ∂yψ(T f , xi , y j ) is similar to the one obtained for ∂xψ(T f , xi , y j ). In Fig. 11,
one sees that the error level slightly fluctuates in function of the angle within the interval
[10−4.6, 10−3.4] for ψ and [10−3.3, 10−2.2] for ∂xψ . In Fig. 12 the error levels are reported
with a grid 30× 30. As expected, the error levels are smaller with the grid 30× 30 than with
the 20 × 20 grid. The behavior of the error appears to be piecewise linear in all cases. The
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jumps in the errors are attributed to the change of labelling of near boundary points when the
physical domain rotates. Despite these jumps in the errors, the magnitude of the error varies
by a factor of 10 only and remains small. Overall, the errors behave satisfactorily.

6 Conclusion

The numerical approach to the Navier–Stokes equation in pure streamfunction introduced in
[10] is extended to irregular domains using embedded finite differences. The methodology
presented uses high order interpolating polynomials. The numerical results presented are
promising. The accuracy obtained so far is remarkable and is in line with the one observed
in the purely Cartesian case.

The approach needs to be extended to more complex problems, with higher Reynolds
numbers and more irregular geometries. In addition higher order time schemes with A- and
L- stable must be considered. Bifurcation phenomena for flows in elliptical domains will be
explored in the near future. Finally performing a stability analysis in the spirit of [13,36,37]
is also a perspective.

7 Appendix: Truncation Error Analysis for Finite Differences

In this section, we present a truncation error analysis for finite differences on a bounded
interval. Suppose given a regular function u(x) on [a, b]. The operator u(x) �→ u∗ maps the
function u(x) on the gridfunction obtained by evaluating u(x) at gridpoints. We write

u∗ = [u(x1), . . . , u(xN−1)], (7.1)

meaning that the evaluation holds at all scales h > 0. The notion of gridfunction is convenient
to express the truncation error of a finite difference operator. For example the truncation error
u �→ t(u) of the operator δ2x is the gridfunction obtained by

t(u) = δ2x (u
∗) − (∂2x u)∗. (7.2)

The components of t(u) are

t(u) j = (δ2xu
∗) j − (∂2x u)∗j

= h2

12
(∂4x u)∗j + O(h4).

(7.3)

In (7.3) u(x) is assumed to be periodic on [a, b]. This corresponds to a nominal order of
2. For any regular function u(x), we denote ū∗ = [u∗, (∂xu)∗] where u∗, (∂xu)∗ are the
gridfunctions associated to u(x) and ∂xu(x) respectively.

Consider for example the discrete operator Dα
x in (2.11). The truncation error u �→ tα(u)

is
tα(u) = Dα

x ū
∗ − (∂α

x u)∗. (7.4)

The leading term of the truncation error of Dα
x is found5 in the case of a general irregular

grid (2.1) for α = 1, 2, 3 and 4 as

5 With MAPLE.
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⎪

⎩

t2(u) j = (D2
x ū

∗) j − (∂2x u)∗j = − 1

360
h2j h

2
j+1∂

6
x u j + O(h5), (a)

t3(u) j = (D3
x ū

∗) j − (∂3x u)∗j = 1

60
(h2j h j+1 − h j h

2
j+1)∂

6
x u j + O(h4), (b)

t4(u) j = (D4
x ū

∗) j − (∂4x u)∗j = − 1

30
(h2j + h2j+1 − 4h j h j+1)∂

6
x u j + O(h3), (c)

t5(u) j = (D5
x ū

∗) j − (∂5x u)∗j = 1

3
(h j+1 − h j )∂

6
x u j + O(h2) (d).

(7.5)
The leading terms in the right-hand sides of (7.5) are associated solely with the three grid-
points {x j−1, x j , x j+1} and the two mesh spacing h j , h j+1. In the case where the boundary
conditions are taken in account, the truncation error will in general depend on the full set
of values ∂

(5)
x u(xk), 1 ≤ k ≤ N − 1. In this case, only an estimate of the truncation error

is available in general. Even in the case of a regular grid with h = h j , the leading term of

the truncation error also depends on the full set of values ∂
(5)
x u(xk), 1 ≤ k ≤ N − 1. As an

example we have for the Hermitian derivative on a regular grid the following

Proposition 7.1 (Pointwise truncation error of the Hermitian derivative). Let u �→ ux be the
Hermitian gradient defined in (2.18) with boundary data ux,0 = 0, ux,N = 0. Then the
truncation error is expressed as the multi-point Taylor expansion

t(u)i = (u∗)x,i − (∂xu)∗i = − h4

180

N−1
∑

j=1

αi
j (∂

(5)
x u)∗(x j ) + O(h6). (7.6)

where

αi
j =

N−1
∑

k=1

Zi
k Z

j
k

1 − λk/6
, (7.7)

and
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

Zi
k =

√

2

N
sin

(

ikπ

N

)

, 1 ≤ i, k ≤ N − 1,

λk = 4 sin2
(

kπ

N

)

, 1 ≤ k ≤ N − 1.

(7.8)

Proof The relation (2.18) is rewritten
(

I + h2

6
δ2x

)

ux = δxu. (7.9)

This gives that ux =
(

(I + h2
6 δ2x )

−1 ◦ δx

)

u. Let x ∈ [0, 1] �→ u(x) be a regular function.

The truncation error u �→ t(u) is

t(u) = (u∗)x − (∂xu)∗

(

I + h2

6
δ2x

)−1
(

δxu
∗ − (I + h2

6
δ2x )(∂xu)∗

)

= (

I + h2

6
δ2x

)−1
(

(δxu
∗ − (∂xu)∗)

︸ ︷︷ ︸

(I )

− h2

6
δ2x (∂xu)∗

︸ ︷︷ ︸

(I I )

)

.

(7.10)
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The term (I ) is expressed as

(I ) = h2

6
(∂3x u)∗ + h4

120
(∂5x u)∗ + v, (7.11)

where v satisfies
‖v‖L∞ ≤ Ch6‖(∂7x u)∗)‖L∞ . (7.12)

The term (II) is

(I I ) = h2

6
δ2x (∂xu)∗ = h2

6

(

(∂3x u)∗ + h2

12
(∂5x u)∗ + h4

360
w

)

, (7.13)

where w satisfies
‖w‖L∞ ≤ C‖((∂7x u)∗)‖L∞ . (7.14)

Therefore, the truncation error is

t =
(

I + h2

6
δ2x

)−1 (

− h4

180
(∂5x u)∗ + O(h6)

)

. (7.15)

Using the fact that −δ2x Zk = λk Zk and that (Zk)1≤k≤N−1 is an orthonormal basis of RN−1

gives the gridfunction component t(u)i is

t(u)i = − h4

180

N−1
∑

k=1

(1 − λk/6)
−1Zi

k

N−1
∑

j=1

Z j
k (∂

5
x u)(x j ) + O(h6)

= − h4

180

N−1
∑

j=1

αi
j (∂

5
x u)∗j + O(h6),

where the coefficients αi
j are given by (7.7). Therefore the leading term in the truncation

error involves all the values (∂5x u)∗j as given in (7.6). ��
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